The Effect of Vitamins on the Immune Systems of Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immune System
2.1. Primary and Secondary Lymphoid Organs
2.2. Innate and Adaptive Immunity
3. Nutrition and Immune System
3.1. Micronutrients and Immune System
3.2. Vitamins and Immune System
3.2.1. Fat-Soluble Vitamins
3.2.2. Water-Soluble Vitamins
4. Vitamin Supplementation in Pigs
4.1. Gestation and Lactation Phases
4.2. Post-Weaning Phase
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cervantes, M.; Antoine, D.; Valle, J.A.; Vásquez, N.; Camacho, R.L.; Bernal, H.; Morales, A. Effect of feed intake level on the body temperature of pigs exposed to heat stress conditions. J. Therm. Biol. 2018, 76, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Broom, D.M.; Johnson, K.G. Stress and Animal Welfare. Key Issues in the Biology of Humans and Other Animals, 2nd ed.; Springer: London, UK, 2019; pp. 71–97. [Google Scholar]
- Chantziaras, I.; Dewulf, J.; Van Limbergen, T.; Klinkenberg, M.; Palzer, A.; Pineiro, C.; Aarestrup Moustsen, V.; Niemi, J.; Kyriazakis, I.; Maes, D. Factors associated with specific health, welfare and reproductive performance indicators in pig herds from five EU countries. Prev. Vet. Med. 2018, 159, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Racewicz, P.; Ludwiczak, A.; Skrzypczak, E.; Składanowska-Baryza, J.; Biesiada, H.; Nowak, T.; Nowaczewski, S.; Zaborowicz, M.; Stanisz, M.; Ślósarz, P. Welfare Health and Productivity in Commercial Pig Herds. Animals 2021, 11, 1176. [Google Scholar] [CrossRef] [PubMed]
- Black, J.L.; Pluske, J.R. Review of Innate Immunity in Pigs; Final Report; Australian Pork Limited: Canberra, Australia, 2011. [Google Scholar]
- Pluske, J.R.; Kim, J.C.; Black, J.L. Manipulating the immune system for pigs to optimise performance. Anim. Prod. Sci. 2018, 58, 666–680. [Google Scholar] [CrossRef]
- Albernaz-Gonçalves, R.; Olmos Antillón, G.; Hötzel, M.J. Linking Animal Welfare and Antibiotic Use in Pig Farming—A Review. Animals 2022, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Mescher, A.L. The immune system & lymphoid organs. In Junqueira’s Basic Histology: Text and Atlas, 15th ed.; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Lauriano, E.R.; Alesci, A.; Aragona, M.; Pergolizzi, S.; Miller, A.; Zuwala, K.; Kuciel, M.; Zaccone, G.; Germanà, A.; Guerrera, M.C. Immunohistochemistry of the Gut-Associated Lymphoid Tissue (GALT) in African Bonytongue (Heterotis niloticus, Cuvier 1829). Int. J. Mol. Sci. 2023, 24, 2316. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Hugot, J.P.; Barreau, F. Peyer’s Patches: The Immune Sensors of the Intestine. Int. J. Inflamm. 2010, 19, 823710. [Google Scholar] [CrossRef] [PubMed]
- Rothkotter, H.J. Anatomical particularities of the porcine immune system—A physician’s view. Dev. Comp. Immunol. 2009, 33, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Mair, K.H.; Sedlak, C.; Käser, T.; Pasternak, A.; Levast, B.; Gerner, W.; Saalmüller, A.; Summerfield, A.; Gerdts, V.; Wilson, H.L.; et al. The porcine innate immune system: An update. Dev. Comp. Immunol. 2014, 45, 321–343. [Google Scholar] [CrossRef]
- Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 2012, 4, a006049. [Google Scholar] [CrossRef]
- Riera Romo, M.; Pérez-Martínez, D.; Castillo Ferrer, C. Innate immunity in vertebrates: An overview. Immunology 2016, 148, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Pepper, M.; Thomas, P.G. Principles and therapeutic applications of adaptive immunity. Cell 2024, 187, 2052–2078. [Google Scholar] [CrossRef] [PubMed]
- Childs, C.E.; Calder, P.C.; Miles, E.A. Diet and Immune Function. Nutrients 2019, 11, 1933. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Nordgreen, J.; Edwards, S.A.; Boyle, L.A.; Bolhuis, J.E.; Veit, C.; Sayyari, A.; Marin, D.E.; Dimitrov, I.; Janczak, A.M.; Valros, A. A Proposed Role for Pro-Inflammatory Cytokines in Damaging Behavior in Pigs. Front. Vet. Sci. 2020, 7, 646. [Google Scholar] [CrossRef] [PubMed]
- Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hong, Y.; Huang, H. Triptolide Attenuates Inflammatory Response in Membranous Glomerulo-Nephritis Rat via Downregulation of NF-κB Signaling Pathway. Kidney Blood Press. Res. 2016, 41, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.; Smith, T. Malnutrition: Causes and consequences. Clin. Med. 2010, 10, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Stratton, R.; Green, C.J.; Elia, M. Disease-Related Malnutrition: An Evidence-Based Approach to Treatment, 1st ed.; Cabi Publishing: Wallingford, UK, 2003; pp. 178–184. [Google Scholar]
- Rodrigues, L.A.; Koo, B.; Nyachoti, M.; Columbus, D.A. Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals 2022, 12, 2877. [Google Scholar] [CrossRef]
- Calder, P.C. Immunonutrition. BMJ 2003, 327, 117–118. [Google Scholar] [CrossRef]
- Scrimshaw, N.S.; Taylor, C.E.; Gordon, J.E. Interactions of Nutrition and Infection; World Health Organization Monograph Series; World Health Organization: Geneva, Switzerland, 1968; Volume 57, pp. 3–329. [Google Scholar]
- Tomkins, A.; Watson, F. Malnutrition and Infection−A Review−Nutrition Policy Discussion Paper No. 5; United Nations—Administrative Commitee on Coordination–Subcommitee on Nutrition: Geneva, Switzerland, 1989. [Google Scholar]
- Newsholme, P. Cellular and metabolic mechanisms of nutrient actions in immune function. Eur. J. Clin. Nutr. 2021, 75, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Bowens, M.; Souvelkoul, H.F.G. Poultry and Pig Nutrition: Challenges of the 21st Century, 1st ed.; Wageningen Academic Publisher: Wageningen, The Netherlands, 2019; pp. 105–127. [Google Scholar]
- Theil, P.K.; Krogh, U.; Bruun, T.S.; Feyera, T. Feeding the modern sow to sustain high productivity. Mol. Reprod. Dev. 2023, 90, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.K.S.; Novais, A.K.; Borges, D.S.; Alves, J.B.; Dario, J.G.N.; Frederico, G.; Pierozan, C.R.; Batista, J.P.; Pereira, M.; Silva, C.A. Increased vitamin supplement to sows, piglets and finishers and the effect in productivity. Animal 2020, 14, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, S.D.; Kim, I.H. Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Chew, B.P.; Park, J.S. Carotenoid action on the immune response. J. Nutr. 2004, 134, 257S–261S. [Google Scholar] [CrossRef] [PubMed]
- Biesalski, H.K. Nutrition meets the microbiome: Micronutrients and the microbiota. Ann. N. Y. Acad. Sci. 2016, 1372, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2017, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Maggini, S.; Pierre, A.; Calder, P.C. Immune function and micronutrient requirements change over the life course. Nutrients 2018, 10, 1531. [Google Scholar] [CrossRef] [PubMed]
- Maggini, S.; Wintergerst, E.; Beveridge, S.; Hornig, D. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007, 98, S29–S35. [Google Scholar] [CrossRef]
- Gao, H.; Dai, W.; Zhao, L.; Min, J.; Wang, F. The Role of Zinc and Zinc Homeostasis in Macrophage Function. J. Immunol. Res. 2018, 6, 6872621. [Google Scholar] [CrossRef]
- Saeed, F.; Nadeem, M.; Ahmed, R.; Nadeem, M.; Arshad, M.; Ullah, A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds—A review. Food Agric. Immunol. 2016, 27, 205–229. [Google Scholar] [CrossRef]
- Carr, A.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Gombart, A.F.; Pierre, A.; Maggini, S.A. Review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Alpert, P. The role of vitamins and minerals on the immune system. Home Health Care Manag. Pract. 2017, 29, 199–202. [Google Scholar] [CrossRef]
- Maggini, S.; Beveridge, S.; Sorbara, J.P.; Senatore, G. Feeding the immune system: The role of micronutrients in restoring resistance to infections. CAB Rev. 2008, 3, 1–21. [Google Scholar] [CrossRef]
- Smith, A.D.; Panickar, K.S.; Urban, J.F., Jr.; Dawson, H.D. Impact of Micronutrients on the Immune Response of Animals. Annu. Rev. Anim. Biosci. 2018, 6, 227–254. [Google Scholar] [CrossRef] [PubMed]
- McDowel, L.R. Vitamins in Animal and Human Nutrition, 2nd ed.; Iowa State University Press: Ames, IA, USA, 2021; pp. 128–164. [Google Scholar]
- Panchumarthy, R.; Reddy, A.A.; Nagalakshmi, B.; Koushik, O.S.; Kumar, V.B.; Panchumarthy, S.A. The Comprehensive Review on Fat Soluble Vitamins. IOSR J. Pharm. 2015, 5, 12–28. [Google Scholar]
- Alwarawrah, Y.; Kiernan, K.; MacIver, N.J. Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Front. Immunol. 2018, 9, 1055. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, M.T.; Snyder, L.; Arora, J. Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 184–192. [Google Scholar] [CrossRef]
- Shastak, Y.; Pelletier, W. Review: Vitamin A supply in swine production: Current science and practical considerations. Appl. Anim. Sci. 2023, 39, 289–305. [Google Scholar] [CrossRef]
- Mccullough, F.S.; Northropclewes, C.A.; Thurnham, D.I. The effect of vitamin A on epithelial integrity. Proc. Nutr. Soc. 1999, 58, 289. [Google Scholar] [CrossRef] [PubMed]
- Stephensen, C.B.; Blount, S.R.; Schoeb, T.R.; Park, J.Y. Vitamin A Deficiency Impairs Some Aspects of the Host Response to Influenza A Virus Infection in BALB/c Mice. J. Nutr. 1993, 123, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Hanel, A.; Carlberg, C. Vitamin D and evolution: Pharmacologic implications. Biochem. Pharm. 2020, 173, 113595. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Oster, M.; Reyer, H.; Wimmers, K.; Fischer, D.C. Efficacy of dietary vitamin D3 and 25(OH)D3 on reproductive capacities, growth performance, immunity and bone development in pigs. Br. J. Nutr. 2023, 130, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Hamza, F.N.; Daher, S.; Fakhoury, H.M.A.; Grant, W.B.; Kvietys, P.R.; Al-Kattan, K. Immunomodulatory properties of vitamin D in the intestinal and respiratory systems. Nutrients 2023, 15, 1696. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef]
- Wang, X.; Quinn, P.J. Vitamin E and its function in membranes. Prog. Lipid Res. 1999, 38, 309–336. [Google Scholar] [CrossRef]
- Lewis, E.D.; Meydani, S.N.; Wu, D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life 2019, 71, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Meydani, S.N. Age-associated changes in immune and inflammatory responses: Impact of vitamin E intervention. J. Leukoc. Biol. 2008, 84, 900–914. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, S.; Wu, D.; Wang, Y.; Chen, J.; Duan, L.; Li, S.; Li, Y. Vitamin K: Infection, Inflammation, and Au-to-Immunity. J. Inflamm. Res. 2024, 17, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Rachma, P.; Rosyida, S.; Yuni, H. Vitamin K and The Immune System. Ahmad Dahlan Med. J. 2022, 3, 52–58. [Google Scholar]
- Coelho, S.C.; Estevinho, B.N.; Rocha, F. Recent Advances in water-soluble vitamins delivery systems prepared by mechanical processes (electrospinning and spray-drying techniques) for food and nutraceuticals applications—A review. Foods 2022, 11, 1271. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, C.; Matte, J.J.; Lessard, M.; Celi, P.; Litta, G. Role of vitamins for gastro-intestinal functionality and health of pigs. Anim. Feed Sci. Technol. 2021, 273, 114823. [Google Scholar] [CrossRef]
- Hagel, A.F.; Layritz, C.M.; Hagel, W.H.; Hagel, H.J.; Hagel, E.; Dauth, W.; Kressel, J.; Regnet, T.; Rosenberg, A.; Neurath, M.F.; et al. Intravenous infusion of ascorbic acid decreases serum histamine concentrations in patients with allergic and non-allergic diseases. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, C.; Jensen, S.K. Influence of supplementation of all-rac-α-tocopheryl acetate preweaning and vitamin C postweaning on α-tocopherol and immune response of piglets. J. Anim. Sci. 2005, 83, 1274–1286. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine: Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012.
- Faccin, J.E.G.; Tokach, M.D.; Goodband, R.D.; DeRouchey, J.M.; Woodworth, J.C.; Gebhardt, J.T. Industry survey of added vitamins and trace minerals in U.S. swine diets. Transl. Anim. Sci. 2023, 7, txad035. [Google Scholar] [CrossRef]
- Lauridsen, C.; Matte, J. Recent Advances in Understanding the Role of Vitamins in Pig Nutrition; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2017; Volume 10, pp. 165–184. [Google Scholar]
- Litta, G.; Hernéndez, J.M. New Swine Vitamin Recommendations for More Productive and Sustainable Farming. Feed. Compd. 2023, 43, 34–38. [Google Scholar]
- Jeong, J.H.; Hong, J.S.; Han, T.H.; Fang, L.H.; Chung, W.L.; Kim, Y.Y. Effects of dietary vitamin levels on physiological responses, blood profiles, and reproductive performance in gestating sows. J. Anim. Sci. Technol. 2019, 61, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Matte, J.J.; Audet, I. Maternal perinatal transfer of vitamins and trace elements to piglets. Animal 2019, 14, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Langendijk, P.; Fleuren, M.; Page, G. Review: Targeted nutrition in gestating sows: Opportunities to enhance sow performance and piglet vitality. Animal 2023, 17, 100756. [Google Scholar] [CrossRef] [PubMed]
- Schalk, C.; Pfaffinger, B.; Schmucker, S.; Weiler, U.; Stefanski, V. Pregnancy-Associated Alterations of Peripheral Blood Immune Cell Numbers in Domestic Sows Are Modified by Social Rank. Animals 2019, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Merlot, E.; Pastorelli, H.; Prunier, A.; Père, M.C.; Louveau, I.; Lefaucheur, L.; Perruchot, M.H.; Meunier-Salaün, M.C.; Robert, F.; Gondret, F.; et al. Influence of sow environment during gestation: Part I. Maternal physiology and lacteal secretions in relation with neonatal survival. Animal 2019, 3, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Merlot, E.; Meunier-Salaün, M.; Peuteman, B.; Père, M.; Louveau, I.; Perruchot, M.; Prunier, A.; Gardan-Salmon, D.; Gondret, F.; Quesnel, H. Improving maternal welfare during gestation has positive outcomes on neonatal survival and modulates offspring immune response in pigs. Physiol. Behavior. 2022, 249, 113751. [Google Scholar] [CrossRef] [PubMed]
- Theil, P.K.; Farmer, C.; Feyera, T. Review: Physiology and nutrition of late gestating and transition sows. J. Anim. Sci. 2022, 100, skac176. [Google Scholar] [CrossRef] [PubMed]
- Ostrenko, K.; Nekrasov, R.; Ovcharova, A.; Lemiasheuski, V.; Kutin, I. The effect of lithium salt with ascorbic acid on the antioxidant status and productivity of gestating sows. Animals 2022, 12, 915. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Chen, F.; Guan, W.; Zhang, S. Nutritional strategies to alleviate oxidative stress in sows. Anim. Nutr. 2022, 9, 60–73. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Su, G.; Shi, B.; Shan, A. High concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation affects the immunological variables and antioxidative parameters in piglets. J. Dairy Res. 2017, 84, 8–13. [Google Scholar] [CrossRef]
- Pinelli-Saavedra, A.; Scaife, J.R. Pre and postnatal transfer of vitamin E to piglets in sows supplemented with vitamin E and vitamin C. Livest. Prod. Sci. 2005, 97, 231–240. [Google Scholar] [CrossRef]
- Pinelli-Saavedra, A.; Calderón de la Barca, A.M.; Hernández, J.; Valenzuela, R.; Scaife, J.R. Effect of supplementing sows’ feed with α-tocopherol acetate and vitamin C on transfer of α-tocopherol to piglet tissues, colostrum, and milk: Aspects of immune status of piglets. Res. Vet. Sci. 2008, 85, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.; Fossum, C.; Ederoth, M.; Hakkarainen, R.V. The effect of vitamin E on the cell-mediated immune response in pigs. J. Vet. Med. Ser. B 1988, 35, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Chepngeno, J.; Amimo, J.O.; Michael, H.; Jung, K.; Raev, S.; Lee, M.V.; Damtie, D.; Mainga, A.O.; Vlasova, A.N.; Saif, L.J. Rotavirus A Inoculation and Oral Vitamin A Supplementation of Vitamin A Deficient pregnant sows enhances maternal adaptive immunity and passive protection of piglets against virulent rotavirus A. Viruses 2022, 14, 2354. [Google Scholar] [CrossRef] [PubMed]
- Chepngeno, J.; Amimo, J.O.; Michael, H.; Jung, K.; Raev, S.; Lee, M.V.; Damtie, D.; Mainga, A.O.; Vlasova, A.N.; Saif, L.J. Vitamin A deficiency and vitamin A supplementation affect innate and T cell immune responses to rotavirus A infection in a conventional sow model. Front. Immunol. 2023, 14, 1188757. [Google Scholar] [CrossRef] [PubMed]
- Amimo, J.O.; Michael, H.; Chepngeno, J.; Jung, K.; Raev, S.; Paim, F.C.; Lee, M.V.; Damtie, D.; Vlasova, A.N.; Saif, L.J. Maternal immunization and vitamin A sufficiency impact sow primary adaptive immunity and passive protection to nursing piglets against porcine epidemic diarrhea virus infection. Front. Immunol. 2023, 14, 1188757. [Google Scholar] [CrossRef] [PubMed]
- Langel, S.N.; Paim, F.C.; Alhamo, M.A.; Lager, K.M.; Vlasova, A.N.; Saif, L.J. Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets. Vet. Res. 2019, 50, 101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Bae, J.E.; Jeong, Y.J.; Kim, I.H. Impact of 25-hydroxyvitamin D3 on productive performance of gestating sows. Korean J. Agric. Sci. 2017, 44, 254–260. [Google Scholar]
- Upadhaya, S.D.; Chung, T.K.; Jung, Y.J.; Kim, I.H. Dietary 25(OH)D3 supplementation to gestating and lactating sows and their progeny affects growth performance, carcass characteristics, blood profiles and myogenic regulatory factor-related gene expression in wean-finish pigs. Anim. Biosci. 2022, 35, 461–474. [Google Scholar] [CrossRef]
- Zhang, L.; Li, M.; Shang, Q.; Hu, J.; Long, S.; Piao, X. Effects of maternal 25-hydroxycholecalciferol on nutrient digestibility, milk composition and fatty-acid profile of lactating sows and gut bacterial metabolites in the hindgut of suckling piglets. Archiv. Anim. Nutr. 2019, 73, 271–286. [Google Scholar] [CrossRef]
- Knauer, M.; Bergstrom, J.R.; Hough, S.D. 115 Sow Supplementation with Vitamin C Enhances Pig Throughput. J. Anim. Sci. 2023, 101, 68–69. [Google Scholar] [CrossRef]
- Wang, S.-P.; Yin, Y.-L.; Qian, Y.; Li, L.-L.; Li, F.-N.; Tan, B.-E.; Tang, X.-S.; Huang, R.-L. Effects of folic acid on the performance of suckling piglets and sows during lactation. J. Sci. Food Agric. 2011, 91, 2371–2377. [Google Scholar]
- Lechowski, J.; Kasprzyk, A.; Tyra, M.; Trawinska, B. Effect of ascorbic acid as a feed additive on indicators of the reproductive performance of Pulawska breed gilts. Med. Weter 2016, 72, 378–382. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K.; Fang, R.; Li, M. Weaning stress and intestinal health of piglets: A review. Front. Immunol. 2022, 13, 1042778. [Google Scholar] [CrossRef]
- Lauridsen, C.; Engel, H.; Jensen, S.K.; Craig, A.M.; Traber, M.G. Lactating sows and suckling piglets preferentially incorporate RRR- over all-rac-α-tocopherol into milk, plasma and tissues. J. Nutr. 2002, 132, 1258–1264. [Google Scholar] [CrossRef]
- Buchet, A.; Belloc, C.; Leblanc-Maridor, M.; Merlot, E. Effects of age and weaning conditions on blood indicators of oxidative status in pigs. PLoS ONE 2017, 12, e0178487. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Z.; Li, J.; Li, Y.; Huang, P.; Ding, X.; Yin, J.; He, S.; Yang, H.; Yin, Y. Dietary vitamin E affects small intestinal histomorphology, digestive enzyme activity, and the expression of nutrient transporters by inhibiting proliferation of intestinal epithelial cells within jejunum in weaned piglets1. J. Anim. Sci. 2019, 97, 1212–1221. [Google Scholar] [CrossRef]
- Li, J.; Yin, l.; Wang, L.; Li, J.; Huang, P.; Yang, H.; Yin, Y. Effects of vitamin B6 on growth, diarrhea rate, intestinal morphology, function, and inflammatory factors expression in a high-protein diet fed to weaned piglets1. J. Anim. Sci. 2019, 97, 4865–4874. [Google Scholar] [CrossRef]
- Kim, J.C.; Mullan, B.P.; Black, J.L.; Hewitt, R.J.; van Barneveld, R.J.; Pluske, J.R. Acetylsalicylic acid supplementation improves protein utilization efficiency while vitamin E supplementation reduces markers of the inflammatory response in weaned pigs challenged with enterotoxigenic E. coli. J. Anim. Sci. Biotechnol. 2016, 7, 58. [Google Scholar] [CrossRef]
- Amazan, D.; Rey, A.I.; Fernández, E.; López-Bote, C.J. Natural vitamin E (d-α-tocopherol) supplementation in drinking water prevents oxidative stress in weaned piglets. Livest. Sci. 2012, 145, 55–62. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Wang, Y.; Wang, L.; Yin, Y.; Yin, L.; Yang, H.; Yin, Y. Dietary vitamin A affects growth performance, intestinal development, and functions in weaned piglets by affecting intestinal stem cells. J. Anim. Sci. 2020, 98, skaa020. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, L.; Cui, B.; Wen, X.; Jiang, Z.; Hu, S. Effects of Vitamin A on Growth Performance, Antioxidants, Gut Inflammation, and Microbes in Weaned Piglets. Antioxidants 2023, 12, 2049. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, Y.; Jin, H.; Yuan, D.; Huang, K.; Wang, J.; Tan, B.; Yin, Y. Vitamin A Ameliorated Irinotecan-Induced Diarrhea in a Piglet Model Involving Enteric Glia Modulation and Immune Cells Infiltration. Nutrients 2022, 14, 5120. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, L.; Zhang, Y.; Xiong, H.; Wang, F.; Wang, Y.; Lu, Z. Effects of starch and gelatin encapsulated vitamin A on growth performance, immune status and antioxidant capacity in weaned piglets. Anim. Nutr. 2020, 6, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Ching, S.; Mahan, D.C.; Ottobre, J.S.; Dabrowski, K. Ascorbic acid synthesis in fetal and neonatal pigs and in pregnant and postpartum sows. J. Nutr. 2001, 131, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Rey, A.I.; López-BotE, C.J.; Litta, G. Effects of dietary vitamin E (DL-α-tocopheryl acetate) and vitamin C combination on piglets oxidative status and immune response at weaning. J. Anim. Feed Sci. 2017, 26, 226–235. [Google Scholar] [CrossRef]
- Shi, B.M.; Su, Y.; Chang, S.Y.; Sun, Y.C.; Meng, X.Y.; Shan, A.S. Vitamin C protects the piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes. Food Funct. 2017, 8, 3675–3687. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Sun, Y.; Ju, D.; Chang, S.; Shi, B.; Shan, A. The detoxification effect of vitamin C on zearalenone toxicity in piglets. Ecotoxicol. Environ. Saf. 2018, 158, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, S.; Piao, X. Dietary 25-hydroxycholecalciferol supplementation improves performance, immunity, antioxidant status, intestinal morphology, and bone quality in weaned piglets. J. Sci. Food Agric. 2021, 101, 2592–2600. [Google Scholar] [CrossRef]
- Zhao, Y.; Wen, X.; Xiao, H.; Hou, L.; Wang, X.; Huang, Y.; Lin, Y.; Zheng, C.; Wang, L.; Jiang, Z. Effects of phytase and 25-hydroxyvitamin D3 supplementation on growth performance and bone development in weaned piglets in Ca- and P-deficient dietary. J. Sci. Food Agric. 2022, 102, 940–948. [Google Scholar] [CrossRef]
- Zhou, X.; Zou, Y.; Xu, Y.; Zhang, Z.; Wu, Y.; Cao, J.; Qiu, B.; Qin, X.; Han, D.; Piao, X.; et al. Dietary Supplementation of 25-Hydroxyvitamin D3 Improves Growth Performance, Antioxidant Capacity and Immune Function in Weaned Piglets. Antioxidants 2022, 11, 1750. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Li, J.; Wang, H.; Yi, Z.; Wang, L.; Zhang, S.; Li, X.; Wang, Q.; Li, J.; Yang, H.; et al. Effects of vitamin B6 on the growth performance, intestinal morphology, and gene expression in weaned piglets that are fed a low-protein diet1. J. Anim. Sci. 2020, 98, skaa022. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qiu, Y.; Gu, F.; Xu, X.; Wu, S.; Jin, Z.; Wang, L.; Gao, K.; Zhu, C.; Yang, X.; et al. Niacin Improves Intestinal Health through Up-Regulation of AQPs Expression Induced by GPR109A. Int. J. Mol. Sci. 2022, 23, 8332. [Google Scholar] [CrossRef] [PubMed]
Vitamins | Equivalent Names |
---|---|
Water-soluble | |
Vitamin B1 | Thiamin |
Vitamin B2 | Riboflavin |
Vitamin B3 | Niacin |
Vitamin B4 | Choline |
Vitamin B5 | Pantothenic acid |
Vitamin B6 | Pyridoxamine |
Vitamin B12 | Cobalamin |
Vitamin C | Ascorbic Acid |
Vitamin H | Biotin |
Vitamin M | Folic acid |
Fat-soluble | |
Vitamin A1 | Retinol |
Vitamin A2 | Dehydroretinol |
Vitamin D2 | Ergocalciferol |
Vitamin D3 | Cholecalciferol |
Vitamin E | Tocopherol |
Vitamin K1 | Phylloquinone |
Vitamin K2 | Menaquinone |
Vitamin K3 | Menadione |
Estimated Requirements | |||||
---|---|---|---|---|---|
Sow (amount/kg feed) | Piglets (amount/daily) | ||||
Gestation | Lactation | 5–7 kg | 7–11 kg | 11–25 kg | |
Fat-soluble vitamins | |||||
Vitamin A IU | 4000 | 2000 | 585 | 1030 | 1584 |
Vitamin D IU | 800 | 800 | 59 | 103 | 181 |
Vitamin E mg | 44 | 44 | 4.3 | 7.5 | 10 |
Vitamin K mg | 0.50 | 0.50 | 0.13 | 0.23 | 0.45 |
Water-soluble vitamins | |||||
Riboflavin mg | 3.75 | 3.75 | 1.06 | 1.64 | 2.72 |
Pantothenic acid mg | 12 | 12 | 3.19 | 4.68 | 8.15 |
Niacin mg | 10 | 10 | 7.98 | 14.05 | 27.16 |
Folacin mg | 1.30 | 1.30 | 0.08 | 0.14 | 0.27 |
Biotin mg | 0.20 | 0.20 | 0.02 | 0.02 | 0.05 |
Thiamine mg | 1 | 1 | 0.40 | 0.47 | 0.91 |
Vitamin B6 mg | 1 | 1 | 1.86 | 3.28 | 2.72 |
Vitamin B12 mg | 15 | 15 | 5.32 | 8.20 | 13.58 |
Vitamin Supplementation | |||||
---|---|---|---|---|---|
Sow | Piglets | ||||
Gestation | Lactation | 5 kg | 5–11 kg | 11–25 kg | |
Fat-soluble vitamins | |||||
Vitamin A IU/kg | 10,500–15,700 | 10,500–15,700 | 10,500–22,500 | 10,500–16,000 | 10,500–16,000 |
Vitamin D IU/kg | 1570–2100 | 1570–2100 | 1890–2100 | 1890–2100 | 1890–2100 |
Vitamin E mg/kg | 105–160 | 105–190 | 105–160 | 105–160 | 105–160 |
Vitamin K mg/kg | 4.7–5.2 | 4.7–5.2 | 8.5–11 | 5.2–6.4 | 5.2–6.4 |
Water-soluble vitamins | |||||
Riboflavin mg/kg | 6.3–10.5 | 6.3–10.5 | 10.5–16 | 10.5–16 | 10.5–16 |
Pantothenic acid mg/kg | 37–42 | 37–42 | 32–52 | 26–46 | 26–46 |
Niacin mg/kg | 32–47 | 40–100 | 63–84 | 38–58 | 38–58 |
Folacin mg/kg | 3.7–5.7 | 3.7–5.7 | 1.6–3.3 | 1.6–2.6 | 1.6–2.6 |
Biotin mg/kg | 0.52–0.84 | 0.52–0.84 | 0.32–0.52 | 0.32–0.52 | 0.32–0.52 |
Thiamine mg/kg | 2.1–2.6 | 2.1–3 | 3.8–5.8 | 3.2–5.2 | 3.2–5.2 |
Vitamin B6 mg/kg | 3.7–5.7 | 3.7–5.7 | 6.4–8.4 | 6.4–8.4 | 6.4–8.4 |
Vitamin B12 mg/kg | 0.032–0.052 | 0.032–0.052 | 0.052–0.072 | 0.042–0.062 | 0.042–0.062 |
Supplement | Dose | Animal | Effects | Treatment vs. Control, % | References |
---|---|---|---|---|---|
Vitamin E α-tocopheryl acetate) | 250 IU/kg feed | Gestating sow from 107 d | Sow Plasma (0 d) IgG IgA α-tocopherol Piglet Plasma (21 d): IgG IgA α-tocopherol | +9.2% * +9.4% * +45.1% ** +11.4% * +9.1% * +36.3% ** | [80] |
Vitamin E α-tocopheryl acetate | 500 mg/kg feed | Gestating sow from 0 d | Sow Plasma (103 d) α-tocopherol Colostrum: IgG Piglet serum: IgG | +84% ** NS NS | [82] |
Vitamin C | 2.4 g/daily | Gestating sow from 114 d | Colostrum: IgG Vitamin C | +4.5% * +28.3% ** | [93] |
Vitamin D 25(OH)D3 | 50 μg/kg feed | Lactating sows | Post weaning piglets Plasma: IL-6 | −11% * | [89] |
Supplement | Dose | Animal Duration | Effects | Treatment vs. Control, % | Reference |
---|---|---|---|---|---|
Encapsulated vitamin A | 13,667 IU/kg | Weaned piglets, 42 days | Serum: GSH-Px IgA | +3.76% * +128% * | [104] |
vitamin A | 4400 IU/kg | Weaned piglets, 28 d | Serum: CAT IgA IgG | +28.6% * NS NS | [102] |
Vitamin C | 500 mg/kg | Weaned piglets, 49 d | Serum IgM | +18.9% * | [75] |
Vitamin C | 500 mg/kg | Weaned piglets, 68 d | Serum IgA | +36.2% * | [106] |
Vitamin D 25(OH)D3 | 13,667 IU/kg | Weaned piglets, 42 d | Serum GSH-Px IgA | +53% * +131.42 * | [110] |
Vitamin D 25(OH)D3 | 2000 IU/kg | Weaned piglets, 28 d | Serum IgG GSH-Px | +13.6% * +29.1% * | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mainardi, E.; Corino, C.; Rossi, R. The Effect of Vitamins on the Immune Systems of Pigs. Animals 2024, 14, 2126. https://doi.org/10.3390/ani14142126
Mainardi E, Corino C, Rossi R. The Effect of Vitamins on the Immune Systems of Pigs. Animals. 2024; 14(14):2126. https://doi.org/10.3390/ani14142126
Chicago/Turabian StyleMainardi, Edda, Carlo Corino, and Raffaella Rossi. 2024. "The Effect of Vitamins on the Immune Systems of Pigs" Animals 14, no. 14: 2126. https://doi.org/10.3390/ani14142126
APA StyleMainardi, E., Corino, C., & Rossi, R. (2024). The Effect of Vitamins on the Immune Systems of Pigs. Animals, 14(14), 2126. https://doi.org/10.3390/ani14142126