The Improvement Effects of a Nutritional Fortifier on the Reproductive Performance, Sex Steroid Hormone Production, and Health of the Striped Bamboo Shark Chiloscyllium plagiosum
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Design and Preparation of the Nutritional Fortifier
2.3. Animals and Experimental Design
2.4. Sample Collection
2.5. Determination of Serum Indices
2.6. Determination of Proximate Composition and Fatty Acids of Lecithal Eggs
2.7. Calculation Formulas
2.8. Data Statistical Analysis
3. Results
3.1. Reproductive Performance
3.2. Biochemical Composition of Eggs and Fatty Acid Composition in Serum and Eggs
3.3. Serum Physiological and Biochemical Indicators
4. Discussion
4.1. A Nutritional Fortifier Can Obviously Increase the Reproductive Performance of the Striped Bamboo Shark
4.2. Possible Mechanisms of the Improvement Effects of a Nutritional Fortifier on the Reproductive Performance of the Striped Bamboo Shark
4.2.1. A Nutritional Fortifier May Increase the Reproductive Performance of Striped Bamboo Sharks by Improving the Nutritional Composition of Eggs
4.2.2. A Nutritional Fortifier May Increase the Reproductive Performance of Striped Bamboo Sharks by Regulating Steroid Hormone Production
4.2.3. A Nutritional Fortifier May Increase Reproductive Performance by Improving the Health of the Striped Bamboo Shark
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albieri, R.J.; Araújo, F.G.; Ribeiro, T.P. Gonadal development and spawning season of white mullet Mugil curema (Mugilidae) in a tropical bay. J. Appl. Ichthyol. 2010, 26, 105–109. [Google Scholar] [CrossRef]
- Atalah, E.; Maria Hernandez-Cruz, C.; Benitez-Santana, T.; Ganga, R.; Roo, J.; Izquierdo, M. Importance of the relative levels of dietary arachidonic acid and eicosapentaenoic acid for culture performance of gilthead seabream (Sparus aurata) larvae. Aquac. Res. 2011, 42, 1279–1288. [Google Scholar] [CrossRef]
- Tocher, D.R.; Glencross, B.D.; Matthew, C.; Bell, J.G. Interactions between dietary docosahexaenoic acid and other long-chain polyunsaturated fatty acids on performance and fatty acid retention in post-smolt Atlantic salmon (Salmo salar). Fish Physiol. Biochem. 2014, 40, 1213–1227. [Google Scholar] [CrossRef]
- Betancor, M.B.; Atalah, E.; Caballero, M.J.; Benitez-Santana, T.; Roo, J.; Montero, D.; Izquierdo, M. α-Tocopherol in weaning diets for European sea bass (Dicentrarchus labrax) improves survival and reduces tissue damage caused by excess dietary DHA contents. Aquac. Nutr. 2011, 17, 112–122. [Google Scholar] [CrossRef]
- Parrish, C.C.; Deibel, D.; Thompson, R.J. Effect of sinking spring phytoplankton blooms on lipid content and composition in suprabenthic and benthic invertebrates in a cold ocean coastal environment. Mar. Ecol. Prog. Ser. 2009, 391, 33–51. [Google Scholar] [CrossRef]
- Colombo, S.M.; Wacker, A.; Parrish, C.C.; Kainz, M.J.; Arts, M.T. A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems. Environ. Rev. 2017, 25, 163–174. [Google Scholar] [CrossRef]
- Watanabe, T.; Vassallo-Agius, R. Broodstock nutrition research on marine finfish in Japan. Aquaculture 2003, 227, 35–61. [Google Scholar] [CrossRef]
- London, S.; Volkoff, H. Effects of fasting on the central expression of appetite-regulating and reproductive hormones in wild-type and Casper zebrafish (Danio rerio). Gen. Comp. Endocrinol. 2019, 282, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Migaud, H.; Bell, G.; Cabrita, E.; McAndrew, B.; Davie, A.; Bobe, J.; Herraez, M.P.; Carrillo, M. Gamete quality and broodstock management in temperate fish. Rev. Aquac. 2013, 5, S194–S223. [Google Scholar] [CrossRef]
- Delbes, G.; Blazquez, M.; Fernandino, J.I.; Grigorova, P.; Hales, B.F.; Metcalfe, C.; Navarro-Martin, L.; Parent, L.; Robaire, B.; Rwigemera, A.; et al. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. Environ. Res. 2022, 204, 112–118. [Google Scholar] [CrossRef]
- Bennetau Pelissero, C.; Breton, B.B.; Bennetau, B.; Corraze, G.; Le Menn, F.; Davail-Cuisset, B.; Helou, C.; Kaushik, S.J. Effect of genistein-enriched diets on the endocrine process of gametogenesis and on reproduction efficiency of the rainbow trout Oncorhynchus mykiss. Gen. Comp. Endocrinol. 2001, 121, 173–187. [Google Scholar] [CrossRef]
- Sreejith, P.; Oommen, O.V. Tri-iodothyronine alters superoxide dismutase expression in a teleost Anabas testudineus. Indian J. Biochem. Biophys. 2008, 45, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Sony, N.M.; Dawood, M.A.; Kader, M.A.; Bulbul, M.; Fujieda, T. Efficacy of nucleotide related products on growth, blood chemistry, oxidative stress and growth factor gene expression of juvenile red sea bream, Pagrus major. Aquaculture 2016, 464, 8–16. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, X.; Li, S.; Li, W.; Zhu, D. Effects of dietary lipid levels on growth, feed utilization, body composition, fatty acid profiles and antioxidant parameters of juvenile chu’s croaker Nibea coibor. Aquac. Int. 2016, 24, 1229–1245. [Google Scholar] [CrossRef]
- Larsona, S.; Lowryb, D.; Dulvyc, N.K.; Whartond, J.; Galván-Magañe, F.; Sianiparf, A.B.; Loweg, C.G.; Meyera, E. Current and future considerations for shark conservation in the Northeast and Eastern Central Pacific Ocean. Adv. Mar. Biol. 2021, 90, 33–39. [Google Scholar]
- Salze, G.P.; Davis, D.A.; Stuart, K.; Drawbridge, M. Effect of dietary taurine in the performance of broodstock and larvae of California yellowtail Seriola dorsalis. Aquaculture 2019, 511, 734262. [Google Scholar] [CrossRef]
- Zakeri, M.; Kochanian, P.; Marammazi, J.G.; Yavari, V.; Savari, A.; Haghi, M. Effects of dietary n-3 HUFA concentrations on spawning performance and fatty acids composition of broodstock, eggs and larvae in yellowfin sea bream, Acanthopagrus latus. Aquaculture 2011, 310, 388–394. [Google Scholar] [CrossRef]
- Fontagné-Dicharry, S.; Lataillade, E.; Surget, A.; Brèque, J.; Zambonino-Infante, J.L.; Kaushik, S.J. Effects of dietary vitamin A on broodstock performance, egg quality, early growth and retinoid nuclear receptor expression in rainbow trout (Oncorhynchus mykiss). Aquaculture 2010, 303, 40–49. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chen, W.Z.; Sun, Z.W.; Chen, J.H.; Wu, K.G. Effects of n-3 HUFA content in broodstock diet on spawning performance and fatty acid composition of eggs and larvae in Plectorhynchus cinctus. Aquaculture 2005, 245, 263–272. [Google Scholar] [CrossRef]
- Al-Feky, S.S.A.; El-Sayed, A.F.M.; Ezzat, A.A. Dietary taurine improves reproductive performance of Nile tilapia (Oreochromis niloticus) broodstock. Aquac. Nutr. 2016, 22, 392–399. [Google Scholar] [CrossRef]
- Nozu, R.; Murakumo, K.; Yano, N.; Furuyama, R.; Matsumoto, R.; Yanagisawa, M.; Sato, K. Changes in sex steroid hormone levels reflect the reproductive status of captive female zebra sharks (Stegostoma fasciatum). Gen. Comp. Endocrinol. 2018, 265, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Wyffels, J.T.; George, R.; Adams, L.; Adams, C.; Clauss, T.; Newton, A.; Hyatt, M.W.; Yach, C.; Penfold, L.M. Testosterone and semen seasonality for the sand tiger shark Carcharias taurus. Biol. Reprod. 2020, 102, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Manire, C.A.; Rasmussen, L.E.L.; Gelsleichter, J.; Hess, D.L. Maternal serum and yolk hormone concentrations in the placental viviparous bonnethead shark, Sphyrna tiburo. Gen. Comp. Endocrinol. 2004, 136, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Gelsleichter, J.; Rasmussen, L.E.L.; Manire, C.A.; Tyminski, J.; Chang, B.; Lombardi-Carlson, L. Serum steroid concentrations and development of reproductive organs during puberty in male bonnethead sharks, Sphyrna tiburo. Fish Physiol. Biochem. 2002, 26, 389–401. [Google Scholar] [CrossRef]
- Qiang, J.; He, J.; Zhu, J.-H.; Tao, Y.-F.; Bao, J.-W.; Yan, Y.; Xu, P.; Zhu, X. Optimal combination of temperature and photoperiod for sex steroid hormone secretion and egg development of Oreochromis niloticus as determined by response surface methodology. J. Therm. Biol. 2021, 97, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Stacey, N.E.; Van der Kraak, G.J.; Olsen, K.H. Male primer endocrine responses to preovulatory female cyprinids under natural conditions in Sweden. J. Fish Biol. 2012, 80, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Hu, C.-B.; Zheng, Y.-J.; Xia, X.-A.; Xu, W.-J.; Wang, S.-Q.; Chen, W.-Z.; Sun, Z.-W.; Huang, J.-H. The effects of dietary fatty acids on liver fatty acid composition and Δ6-desaturase expression differ with ambient salinities in Siganus canaliculatus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 151, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cao, L.; Wei, Y.; Zhang, Y.; Liang, M. Effects of different dietary DHA: EPA ratios on gonadal steroidogenesis in the marine teleost, tongue sole (Cynoglossus semilaevis). Br. J. Nutr. 2017, 118, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Kader, M.A.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Bulbul, M. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture 2010, 308, 136–144. [Google Scholar] [CrossRef]
- Alexander, T.C.; Han, F.X.; Arslan, Z.; Tchounwou, P.B. Toxicity of As in Crassostrea virginica from the Northern Gulf of Mexico at the presence of Zn and its antioxidant defense mechanisms. Ecotoxicol. Environ. Saf. 2019, 172, 514–522. [Google Scholar] [CrossRef]
- Hokanson, J.E.; Austin, M.A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: A meta-analysis of population-based prospective studies. J. Cardiovasc. Risk 1996, 3, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Chen, Y.X.; Tzeng, H.P.; Chiang, M.T. Fish Oil Enriched n-3 Polyunsaturated Fatty Acids Improve Ketogenic Low-Carbohydrate/High-Fat Diet-Caused Dyslipidemia, Excessive Fat Accumulation, and Weight Control in Rats. Nutrients 2022, 14, 1796. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, C.; Ma, Y.; Ye, R.; Chen, H.; Xie, D.; Zhang, G.; Zhang, M.; Wang, M.; You, C.; et al. Effects of dietary n-3 highly unsaturated fatty acids levels on growth, lipid metabolism and innate immunity in juvenile golden pompano (Trachinotus ovatus). Fish Shellfish. Immunol. 2020, 105, 177–185. [Google Scholar] [CrossRef] [PubMed]
Items | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
D0 | D1 | D2 | D0 | D1 | D2 | |
Lecithal ggs | 55 | 73 | 78 | 107 | 128 | 120 |
Alecithal eggs | 12 | 8 | 10 | 4 | 2 | 2 |
Total eggs | 67 | 81 | 88 | 111 | 130 | 122 |
Increase in lecithal eggs (%) | / | 32.73 | 41.82 | / | 19.63 | 12.15 |
Increase in total eggs (%) | / | 20.90 | 31.34 | / | 17.12 | 9.91 |
Items | D0 | D1 | D2 |
---|---|---|---|
Total eggs | 111 | 130 | 122 |
Residual lecithal eggs | 60 | 87 | 80 |
Proportion of residual lecithal eggs (%) | 54.05 | 66.92 | 65.57 |
Increase in the proportion of residual lecithal eggs (%) | / | 23.81 | 21.31 |
Fertilized eggs | 31 | 52 | 49 |
Fertility rate (%) | 27.92 | 40.00 | 40.16 |
Increase in fertility rate (%) | / | 43.37 | 43.94 |
Hatchability rate (%) | 54.55 | 67.61 | 66.67 |
Increase in hatchability rate (%) | / | 23.94 | 22.22 |
Survival rate of fry (%) | 10.00 | 16.67 | 10.87 |
Increase in the survival rate of fry (%) | / | 66.70 | 8.70 |
Items | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
D0 | D1 | D2 | D0 | D1 | D2 | |
Dry matter | 83.53 ± 0.35 b | 82.72 ± 0.28 a | 83.53 ± 0.35 b | 80.06 ± 0.11 b | 77.64 ± 0.11 a | 77.62 ± 0.12 a |
Crude protein | 18.89 ± 0.10 a | 19.41 ± 0.26 b | 18.89 ± 0.10 a | 15.15 ± 0.05 a | 18.24 ± 0.04 b | 18.16 ± 0.05 b |
Crude lipid | 5.62 ± 0.22 a | 6.51 ± 0.21 b | 5.62 ± 0.22 a | 3.24 ± 0.07 | 3.26 ± 0.06 | 3.14 ± 0.06 |
Ash | 0.93 ± 0.12 | 0.80 ± 0.18 | 0.93 ± 0.12 | 0.83 ± 0.01 | 0.81 ± 0.01 | 0.83 ± 0.02 |
Fatty Acids (Total %) | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
D0 | D1 | D2 | D0 | D1 | D2 | |
12:0 | 1.33 ± 0.05 | 1.49 ± 0.14 | 1.71 ± 0.09 | 1.52 ± 0.02 | 1.45 ± 0.11 | 1.58 ± 0.05 |
14:0 | 4.96 ± 0.08 | 5.33 ± 0.76 | 4.58 ± 0.66 | 4.85 ± 0.12 | 4.73 ± 0.21 | 4.45 ± 0.23 |
16:0 | 27.73 ± 0.12 | 29.05 ± 0.18 | 30.1 ± 0.11 | 29.81 ± 0.22 | 29.11 ± 0.24 | 29.82± 0.22 |
18:0 | 6.75 ± 0.26 | 6.54 ± 0.71 | 6.46 ± 0.9 | 6.18 ± 0.19 | 6.74 ± 0.33 | 6.35 ± 0.41 |
SFA | 41.58 ± 0.7 | 44.2 ± 1.03 | 44.61 ± 0.26 | 42.91 ± 0.24 | 42.92 ± 0.23 | 43.11 ± 0.16 |
16:1 | 2.58 ± 0.09 | 2.56 ± 0.11 | 2.52 ± 0.16 | 2.42 ± 0.04 | 2.39 ± 0.06 | 2.46 ± 0.08 |
18:1n-9 | 32.87 ± 0.79 | 32.81 ± 1.63 | 33.64 ± 0.68 | 33.07 ± 0.72 | 32.91 ± 0.63 | 33.41 ± 0.42 |
24:1n-9 | 0.89 ± 0.03 | 0.61 ± 0.06 | 0.91 ± 0.18 | 0.85 ± 0.06 | 0.91 ± 0.06 | 0.83 ± 0.08 |
MUFA | 39.53 ± 0.7 | 41.42 ± 1.03 | 40.24 ± 0.26 | 39.92 ± 0.52 | 39.98 ± 0.61 | 40.04 ± 0.45 |
18:2n-6 (LA) | 8.55 ± 0.37 | 9.44 ± 0.43 | 8.97 ± 0.85 | 9.05 ± 0.57 | 9.13 ± 0.87 | 8.89 ± 0.95 |
20:4n-6 (ARA) | 2.11 ± 0.06 a | 4.68 ± 0.12 b | 4.85 ± 0.1 b | 2.03 ± 0.05 a | 4.45 ± 0.12 b | 4.32 ± 0.08 b |
n-6 PUFA | 11.09 ± 0.06 a | 14.67 ± 0.22 b | 14.77 ± 0.05 b | 11.7 ± 0.05 a | 14.57 ± 0.09 b | 14.24 ± 0.05 b |
18:3n-3 (ALA) | 3.34 ± 0.09 | 2.94 ± 0.22 | 2.96 ± 0.16 | 3.14 ± 0.05 | 3.22 ± 0.12 | 2.96 ± 0.11 |
20:5n-3 (EPA) | 3.30 ± 0.01 a | 6.22 ± 0.09 b | 7.26 ± 0.11 b | 3.76 ± 0.03 a | 6.51 ± 0.08 b | 6.82 ± 0.06 b |
22:6n-3 (DHA) | 4.45 ± 0.18 a | 6.53 ± 0.04 b | 6.78 ± 0.26 b | 4.33 ± 0.28 a | 6.86 ± 0.23 b | 6.97 ± 0.22 b |
n-3 PUFA | 11.37 ± 0.2 a | 16.04 ± 0.24 b | 17.53 ± 0.37 b | 11.59 ± 0.16 a | 17.02 ± 0.22 b | 17.14 ± 0.16 b |
n-3/n-6 | 1.02 ± 0.06 | 1.09 ± 0.08 | 1.18 ± 0.07 | 0.99 ± 0.03 | 1.16 ± 0.05 | 1.20 ± 0.09 |
Fatty Acids (Total %) | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
D0 | D1 | D2 | D0 | D1 | D2 | |
12:0 | 1.5 ± 0.05 | 1.49 ± 0.14 | 1.71 ± 0.09 | 1.55 ± 0.03 | 1.59 ± 0.11 | 1.62 ± 0.06 |
14:0 | 4.96 ± 0.08 | 5.33 ± 0.76 | 4.38 ± 0.66 | 4.86 ± 0.15 | 4.97 ± 0.11 | 4.82 ± 0.16 |
16:0 | 24.73 ± 0.2 a | 33.05 ± 0.88 b | 34.1 ± 0.59 b | 32.6 ± 0.17 | 33.42 ± 0.22 | 33.13 ± 0.23 |
18:0 | 6.75 ± 0.26 a | 8.84 ± 0.71 b | 9.06 ± 0.7 b | 8.85 ± 0.09 | 8.78 ± 0.17 | 9.10 ± 0.15 |
SFA | 38.53 ± 0.7 a | 51.2 ± 1.03 b | 51.29 ± 0.26 b | 48.3 ± 0.33 | 49.37 ± 0.41 | 49.37 ± 0.22 |
16:1 | 2.58 ± 0.09 | 2.56 ± 0.11 | 2.52 ± 0.16 | 2.65 ± 0.09 | 2.51 ± 0.05 | 2.59 ± 0.06 |
18:1n-9 | 35.87 ± 0.79 | 31.81 ± 1.63 | 32.64 ± 0.68 | 33.42 ± 0.29 | 32.84 ± 0.22 | 32.92 ± 0.18 |
24:1n-9 | 0.89 ± 0.03 | 0.61 ± 0.06 | 0.91 ± 0.18 | 0.90 ± 0.05 | 0.85 ± 0.06 | 0.83 ± 0.08 |
MUFA | 40.25 ± 0.84 | 36.78 ± 1.12 | 36.78 ± 0.39 | 36.78 ± 0.42 | 36.53 ± 0.72 | 36.53 ± 0.51 |
18:2n-6 (LA) | 8.55 ± 0.37 | 8.44 ± 0.23 | 8.67 ± 0.25 | 8.23 ± 0.22 | 8.54 ± 0.33 | 8.17 ± 0.25 |
20:4n-6 (ARA) | 0.51 ± 0.06 a | 0.88 ± 0.02 b | 0.86 ± 0.03 b | 0.55 ± 0.06 a | 0.89 ± 0.05 b | 0.86 ± 0.03 b |
n-6 PUFA | 9.49 ± 0.06 | 9.57 ± 0.42 | 9.81 ± 0.05 | 9.06 ± 0.15 | 9.81 ± 0.12 | 9.31 ± 0.05 |
18:3n-3 (ALA) | 3.04 ± 0.09 | 2.94 ± 0.22 | 2.76 ± 0.16 | 3.32 ± 0.05 | 3.02 ± 0.09 | 3.15 ± 0.11 |
20:5n-3 (EPA) | 2.32 ± 0.01 | 2.17 ± 0.09 | 2.36 ± 0.11 | 2.36 ± 0.03 | 2.29 ± 0.09 | 2.31 ± 0.01 |
22:6n-3 (DHA) | 3.15 ± 0.28 a | 5.03 ± 0.24 b | 5.14 ± 0.46 b | 3.21 ± 0.11 a | 5.63 ± 0.14 b | 5.45 ± 0.26 b |
n-3 PUFA | 8.89 ± 0.2 a | 10.69 ± 0.24 b | 10.99 ± 0.37 b | 9.08 ± 0.22 a | 11.26 ± 0.24 b | 11.29 ± 0.15 b |
n-3/n-6 | 0.93 ± 0.06 | 1.11 ± 0.08 | 1.12 ± 0.07 | 1.00 ± 0.02 | 1.14 ± 0.05 | 1.21 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xu, C.; Zhang, Y.; Zhong, Y.; Xie, D.; Zhang, P.; Li, Y. The Improvement Effects of a Nutritional Fortifier on the Reproductive Performance, Sex Steroid Hormone Production, and Health of the Striped Bamboo Shark Chiloscyllium plagiosum. Animals 2024, 14, 2112. https://doi.org/10.3390/ani14142112
Zhang J, Xu C, Zhang Y, Zhong Y, Xie D, Zhang P, Li Y. The Improvement Effects of a Nutritional Fortifier on the Reproductive Performance, Sex Steroid Hormone Production, and Health of the Striped Bamboo Shark Chiloscyllium plagiosum. Animals. 2024; 14(14):2112. https://doi.org/10.3390/ani14142112
Chicago/Turabian StyleZhang, Junjie, Chao Xu, Yifan Zhang, Yifu Zhong, Dizhi Xie, Peng Zhang, and Yuanyou Li. 2024. "The Improvement Effects of a Nutritional Fortifier on the Reproductive Performance, Sex Steroid Hormone Production, and Health of the Striped Bamboo Shark Chiloscyllium plagiosum" Animals 14, no. 14: 2112. https://doi.org/10.3390/ani14142112
APA StyleZhang, J., Xu, C., Zhang, Y., Zhong, Y., Xie, D., Zhang, P., & Li, Y. (2024). The Improvement Effects of a Nutritional Fortifier on the Reproductive Performance, Sex Steroid Hormone Production, and Health of the Striped Bamboo Shark Chiloscyllium plagiosum. Animals, 14(14), 2112. https://doi.org/10.3390/ani14142112