Evolutionary and Expression Analysis of the Pig MAGE Gene Family
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Validation of MAGE Family Members
2.2. Phylogenetic Trees and Collinearity Analysis
2.3. Analysis of Protein Physicochemical Properties
2.4. Motif and Gene Structure Analysis of MAGE Family Proteins
2.5. Expression Analysis of Pig MAGE Genes
3. Results
3.1. Validation Results of MAGE Family Members
3.2. Phylogenetic Analysis of the MAGE Family
3.3. Collinearity Analysis of the MAGE Family Genes between Pigs, Humans, and Mice
3.4. Analysis of the Protein Physicochemical Properties of Pig MAGE Genes
3.5. Gene Structure and Motif Analysis of Porcine MAGE Family Genes
3.6. Expression Profile of MAGE Family Genes in Porcine Tissues
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barker, P.A.; Salehi, A. The MAGE Proteins: Emerging Roles in Cell Cycle Progression, Apoptosis, and Neurogenetic Disease. J. Neurosci. Res. 2002, 67, 705–712. [Google Scholar] [CrossRef]
- van der Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van den Eynde, B.; Knuth, A.; Boon, T. A Gene Encoding an Antigen Recognized by Cytolytic T Lymphocytes on a Human Melanoma. Science 1991, 254, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Bischof, J.M.; Ekker, M.; Wevrick, R. A MAGE/NDN-like Gene in Zebrafish. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2003, 228, 475–479. [Google Scholar] [CrossRef] [PubMed]
- López-Sánchez, N.; González-Fernández, Z.; Niinobe, M.; Yoshikawa, K.; Frade, J.M. Single Mage Gene in the Chicken Genome Encodes CMage, a Protein with Functional Similarities to Mammalian Type II Mage Proteins. Physiol. Genom. 2007, 30, 156–171. [Google Scholar] [CrossRef]
- Põld, M.; Põld, A.; Ma, H.J.; Sjak-Shieb, N.N.; Vescio, R.A.; Berensonb, J.R. Cloning of the First Invertebrate MAGE Paralogue: An Epitope That Activates T-Cells in Humans Is Highly Conserved in Evolution. Dev. Comp. Immunol. 2000, 24, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Abera, B.; Dinka, H. MAGE Genes Encoding for Embryonic Development in Cattle Is Mainly Regulated by Zinc Finger Transcription Factor Family and Slightly by CpG Islands. BMC Genom. Data 2022, 23, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Caballero, O.L.; Simpson, A.J.; Strausberg, R.L. Differential evolution of MAGE genes based on expression pattern and selection pressure. PLoS ONE 2012, 7, e48240. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Hsu, W.-L.; Chiu, C.-Y.; Liao, J.-W.; Chang, C.-C.; Chang, S.-C. Expression of MAGE--A Restricted to Testis and Ovary or to Various Cancers in Dogs. Vet. Immunol. Immunopathol. 2013, 153, 26–34. [Google Scholar] [CrossRef] [PubMed]
- De Donato, M.; Peters, S.O.; Hussain, T.; Rodulfo, H.; Thomas, B.N.; Babar, M.E.; Imumorin, I.G. Molecular Evolution of Type II MAGE Genes from Ancestral MAGED2 Gene and Their Phylogenetic Resolution of Basal Mammalian Clades. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2017, 28, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.; Potts, P.R. A Comprehensive Guide to the MAGE Family of Ubiquitin Ligases. J. Mol. Biol. 2017, 429, 1114–1142. [Google Scholar] [CrossRef] [PubMed]
- Florke Gee, R.R.; Chen, H.; Lee, A.K.; Daly, C.A.; Wilander, B.A.; Fon Tacer, K.; Potts, P.R. Emerging Roles of the MAGE Protein Family in Stress Response Pathways. J. Biol. Chem. 2020, 295, 16121–16155. [Google Scholar] [CrossRef] [PubMed]
- Chomez, P.; Williams, R.; De Backer, O.; Boon, T.; Vennström, B. The SMAGE Gene Family Is Expressed in Post-Meiotic Spermatids during Mouse Germ Cell Differentiation. Immunogenetics 1996, 43, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Fon Tacer, K.; Montoya, M.C.; Oatley, M.J.; Lord, T.; Oatley, J.M.; Klein, J.; Ravichandran, R.; Tillman, H.; Kim, M.; Connelly, J.P.; et al. MAGE Cancer-Testis Antigens Protect the Mammalian Germline under Environmental Stress. Sci. Adv. 2019, 5, eaav4832. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Chen, H.-S. Biological Functions of Melanoma-Associated Antigens. World J. Gastroenterol. 2004, 10, 1849–1853. [Google Scholar] [CrossRef] [PubMed]
- Weon, J.L.; Potts, P.R. The MAGE Protein Family and Cancer. Curr. Opin. Cell Biol. 2015, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.-H.; Doyle, J.M.; Ramanathan, S.; Gomez, T.S.; Jia, D.; Xu, M.; Chen, Z.J.; Billadeau, D.D.; Rosen, M.K.; Potts, P.R. Regulation of WASH-Dependent Actin Polymerization and Protein Trafficking by Ubiquitination. Cell 2013, 152, 1051–1064. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Srivastava, S.; Sun, Y.; Li, Z.; Wu, H.; Zuvela-Jelaska, L.; Li, J.; Salamon, R.S.; Backer, J.M.; Skolnik, E.Y. Tripartite Motif Containing Protein 27 Negatively Regulates CD4 T Cells by Ubiquitinating and Inhibiting the Class II PI3K-C2β. Proc. Natl. Acad. Sci. USA 2011, 108, 20072–20077. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.; Achuthan, P.; Akanni, W.; Allen, J.; Amode, M.R.; Armean, I.M.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; et al. Ensembl 2019. Nucleic Acids Res. 2019, 47, D745–D751. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.D.; Tomii, K.; Katoh, K. Application of the MAFFT Sequence Alignment Program to Large Data-Reexamination of the Usefulness of Chained Guide Trees. Bioinformatics 2016, 32, 3246–3251. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An Upgraded Gene Feature Visualization Server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zheng, X.; Feng, W.; Wang, H.; Kang, H.; Ning, C.; Du, H.; Yu, Y.; Li, B.; Zhao, Y.; et al. Profiling Long Noncoding RNA of Multi-Tissue Transcriptome Enhances Porcine Noncoding Genome Annotation. Epigenomics 2018, 10, 301–320. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Tang, Q.; Hu, S.; Chen, Z.; Zhou, X.; Zeng, B.; Wang, Y.; He, M.; Li, Y.; Gui, L. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat. Commun. 2021, 12, 3715. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Yanai, I.; Benjamin, H.; Shmoish, M.; Chalifa-Caspi, V.; Shklar, M.; Ophir, R.; Bar-Even, A.; Horn-Saban, S.; Safran, M.; Domany, E.; et al. Genome-Wide Midrange Transcription Profiles Reveal Expression Level Relationships in Human Tissue Specification. Bioinformatics 2005, 21, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Holub, E.B. The Arms Race Is Ancient History in Arabidopsis, the Wildflower. Nat. Rev. Genet. 2001, 2, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Christensen, O.F.; Ostersen, T.; Wang, Y.; Lund, M.S.; Su, G. Genomic prediction using models with dominance and imprinting effects for backfat thickness and average daily gain in Danish Duroc pigs. Genet. Sel Evol. 2016, 48, 67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, J.; Olasege, B.S.; Ma, P.; Qiu, X.; Gao, H.; Wang, C.; Wang, Y.; Zhang, Q.; Yang, H. Estimation of genetic parameters for reproductive traits in connectedness groups of Duroc, Landrace and Yorkshire pigs in China. J. Anim. Breed. Genet. 2020, 137, 211–222. [Google Scholar] [CrossRef] [PubMed]
- National Germplasm Center of Domestic Animal Resources. Introduction to Domestic Animal Germplasm Resources [DB/OL]; National Germplasm Center of Domestic Animal Resources: Beijing, China, 2020. [Google Scholar]
- Wu, P.X.; Chen, L.; Long, X.; Chai, J.; Zhang, T.H.; Xu, S.L.; Guo, Z.Y.; Wang, J.Y. Genome-wide Association Studies for Reproductive Traits at First Farrowing in Rongchang Pigs. Acta Vet. Zootech. Sin. 2023, 54, 103–112. [Google Scholar]
- Katsura, Y.; Satta, Y. Evolutionary History of the Cancer Immunity Antigen MAGE Gene Family. PLoS ONE 2011, 6, e20365. [Google Scholar] [CrossRef] [PubMed]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene Duplication as a Major Force in Evolution. J. Genet. 2013, 92, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, E.; Taylor, J.S.; Boone, C. Retention of Duplicated Genes in Evolution. Trends Genet. 2022, 38, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Gu, X. A Simple Evolutionary Model of Genetic Robustness After Gene Duplication. J. Mol. Evol. 2022, 90, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Chomez, P.; De Backer, O.; Bertrand, M.; De Plaen, E.; Boon, T.; Lucas, S. An Overview of the MAGE Gene Family with the Identification of All Human Members of the Family. Cancer Res. 2001, 61, 5544–5551. [Google Scholar] [PubMed]
- Taylor, E.M.; Copsey, A.C.; Hudson, J.J.R.; Vidot, S.; Lehmann, A.R. Identification of the Proteins, Including MAGEG1, That Make up the Human SMC5-6 Protein Complex. Mol. Cell. Biol. 2008, 28, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.L.; Skaletsky, H.; Brown, L.G.; Zaghlul, S.; Rock, S.; Graves, T.; Auger, K.; Warren, W.C.; Wilson, R.K.; Page, D.C. Independent Specialization of the Human and Mouse X Chromosomes for the Male Germ Line. Nat. Genet. 2013, 45, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhou, H.; Xue, X. Complex Roles of NRAGE on Tumor. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016, 37, 11535–11540. [Google Scholar] [CrossRef] [PubMed]
- Clotman, F.; De Backer, O.; De Plaen, E.; Boon, T.; Picard, J. Cell- and Stage-Specific Expression of Mage Genes during Mouse Spermatogenesis. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2000, 11, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Xian, L.; Shi, P.; Li, C.; Lin, Z.; Gao, X. The Magea Gene Cluster Regulates Male Germ Cell Apoptosis without Affecting the Fertility in Mice. Sci. Rep. 2016, 6, 26735. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, M.; Huijbers, I.; Chomez, P.; De Backer, O. Comparative Expression Analysis of the MAGED Genes during Embryogenesis and Brain Development. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2004, 230, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-R.; Chong, I.-W.; Chen, Y.-H.; Yang, M.-J.; Sheu, C.-C.; Chang, H.-C.; Hwang, J.-J.; Hung, J.-Y.; Lin, S.-R. Differential Expression Profile of MAGE Family in Non-Small-Cell Lung Cancer. Lung Cancer 2007, 56, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Cheong, S.C.; Chandramouli, G.V.R.; Saleh, A.; Zain, R.B.; Lau, S.H.; Sivakumaren, S.; Pathmanathan, R.; Prime, S.S.; Teo, S.H.; Patel, V.; et al. Gene Expression in Human Oral Squamous Cell Carcinoma Is Influenced by Risk Factor Exposure. Oral Oncol. 2009, 45, 712–719. [Google Scholar] [CrossRef] [PubMed]
- GTEx Consortium Human Genomics. The Genotype-Tissue Expression (GTEx) Pilot Analysis: Multitissue Gene Regulation in Humans. Science 2015, 348, 648–660. [Google Scholar] [CrossRef]
- Stone, B.; Schummer, M.; Paley, P.J.; Crawford, M.; Ford, M.; Urban, N.; Nelson, B.H. MAGE-F1, a Novel Ubiquitously Expressed Member of the MAGE Superfamily. Gene 2001, 267, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Chang, C. Preliminary Study on the Effect of MageH1 and Its Structural Domains on the Cell Cycle; Academy of Military Medical Sciences: Beijing, China, 2008. [Google Scholar]
- Muscatelli, F.; Abrous, D.N.; Massacrier, A.; Boccaccio, I.; Le Moal, M.; Cau, P.; Cremer, H. Disruption of the Mouse Necdin Gene Results in Hypothalamic and Behavioral Alterations Reminiscent of the Human Prader-Willi Syndrome. Hum. Mol. Genet. 2000, 9, 3101–3110. [Google Scholar] [CrossRef] [PubMed]
- Niinobe, M.; Koyama, K.; Yoshikawa, K. Cellular and Subcellular Localization of Necdin in Fetal and Adult Mouse Brain. Dev. Neurosci. 2000, 22, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Chelly, J.; Mandel, J.L. Monogenic Causes of X-Linked Mental Retardation. Nat. Rev. Genet. 2001, 2, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Tacer, K.F.; Potts, P.R. Cellular and Disease Functions of the Prader-Willi Syndrome Gene MAGEL2. Biochem. J. 2017, 474, 2177–2190. [Google Scholar] [CrossRef] [PubMed]
Type | Class | Fishs | Aves | Mammalia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Osteicht-Hyes | Gallifor-Mes | Artiodactyla | Perissod-Actyla | Carnivora | Rodents | Primates | |||||||
Species | Zebrafish | Chicken | Pig | Cattle | Goat | Sheep | Horse | Tiger | Cat | Dog | Mouse | Rat | Human | |
I | MAGEA | 0 | 0 | 3 | 5 | 4 | 4 | 3 | 3 | 3 | 5 | 10 | 4 | 10 |
I | MAGEB | 0 | 0 | 7 | 9 | 10 | 9 | 8 | 9 | 8 | 8 | 7 | 8 | 10 |
I | MAGEC | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
II | MAGED | 0 | 0 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 3 |
II | MAGEE | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
II | MAGEF | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
II | MAGEG | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
II | MAGEH | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
II | MAGEL | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
II | NDN | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
II | TROP | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Total | 1 | 1 | 18 | 24 | 23 | 22 | 20 | 21 | 20 | 21 | 25 | 20 | 33 |
Type | Gene Name | Chromosomal Localization (Mb) | Number of Amino Acid | Molecular Weight | Theoretical pI | Aliphatic Index | Grand Average of Hydropathicity | Subcellular Localization | |
---|---|---|---|---|---|---|---|---|---|
Type I | SscMAGEA8 | chrX: 123.87 | 328 | 35,958.88 | 4.35 | 85.27 | −0.404 | plas: 21.5 | |
SscMAGEA10 | chrX: 123.40 | 368 | 40,252.98 | 4.56 | 69.7 | −0.329 | plas: 22.5 | ||
SscMAGEA13 | chrX: 113.34 | 338 | 37,045.1 | 4.89 | 83.05 | −0.264 | cyto: 23.5 | ||
SscMAGEB1 | chrX: 26.07–26.08 | 351 | 38,918.6 | 10.01 | 74.56 | −0.64 | nucl: 25.5 | ||
SscMAGEB3 | chrX: 26.04–26.06 | 348 | 39,098.26 | 10.24 | 70.66 | −0.577 | nucl: 24 | ||
SscMAGEB4 | chrX: 22.17 | 350 | 38,414.62 | 9.67 | 69.83 | −0.678 | nucl: 26 | ||
SscMAGEB5 | chrX: 22.17–22.18 | 311 | 34,925.09 | 7.09 | 82.15 | −0.424 | nucl: 15.5 | ||
SscMAGEB10 | chrX: 23.62 | 348 | 39,330.61 | 9.08 | 73.79 | −0.63 | cyto: 14 | ||
SscMAGEB16 | chrX: 31.57–31.58 | 347 | 38,612 | 5.71 | 78.96 | −0.382 | cyto: 18.5 | ||
SscMAGEB18 | chrX: 22.08 | 342 | 38,407.67 | 7.7 | 72.84 | −0.611 | nucl: 13 | ||
Type II | SscMAGED1 | chrX: 45.32–45.33 | 784 | 86,532.53 | 5.41 | 68.1 | −0.554 | cyto: 13.5 | |
SscMAGED4 | chrX: 0.03–0.04 | 742 | 81,377.52 | 6.52 | 64.66 | −0.559 | nucl: 23 | ||
SscMAGEE2 | chrX: 60.71 | 523 | 60,076.19 | 4.84 | 87.5 | −0.411 | nucl: 12 | ||
SscMAGEF1 | chr13: 122.60 | 315 | 36,006.57 | 9.33 | 83.05 | −0.589 | cyto: 24.5 | ||
SscMAGEH1 | chr1: 48.08 | 219 | 24,338.44 | 9.36 | 65.48 | −0.66 | nucl: 25 | ||
SscMAGEL2 | chr1: 142.45–142.46 | 1193 | 127,265.69 | 9.34 | 65.67 | −0.461 | nucl: 15 | ||
SscTROP | chrX: 47.76–47.77 | 1258 | 129,718.17 | 8.55 | 64.49 | −0.188 | nucl: 20 | ||
SscNDN | chrX: 142.41 | 325 | 36,381.87 | 9.05 | 81.11 | −0.381 | cyto: 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tang, J.; Zheng, Y.; Guo, W.; Guo, Y.; Chang, M.; Wang, H.; Li, Y.; Chang, Z.; Xu, Y.; et al. Evolutionary and Expression Analysis of the Pig MAGE Gene Family. Animals 2024, 14, 2095. https://doi.org/10.3390/ani14142095
Zhang Y, Tang J, Zheng Y, Guo W, Guo Y, Chang M, Wang H, Li Y, Chang Z, Xu Y, et al. Evolutionary and Expression Analysis of the Pig MAGE Gene Family. Animals. 2024; 14(14):2095. https://doi.org/10.3390/ani14142095
Chicago/Turabian StyleZhang, Yu, Jian Tang, Yiwen Zheng, Wanshu Guo, Yuanyuan Guo, Minghang Chang, Hui Wang, Yanyan Li, Zhaoyue Chang, Yuan Xu, and et al. 2024. "Evolutionary and Expression Analysis of the Pig MAGE Gene Family" Animals 14, no. 14: 2095. https://doi.org/10.3390/ani14142095
APA StyleZhang, Y., Tang, J., Zheng, Y., Guo, W., Guo, Y., Chang, M., Wang, H., Li, Y., Chang, Z., Xu, Y., & Wang, Z. (2024). Evolutionary and Expression Analysis of the Pig MAGE Gene Family. Animals, 14(14), 2095. https://doi.org/10.3390/ani14142095