The Most Common Environmental Risk Factors for Equine Asthma—A Narrative Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Description of Equine Asthma
3.1. Nomenclature of Equine Asthma and Its Symptoms
3.2. Methods of Diagnosing Equine Asthma
3.3. Selected Environmental Factors That Contribute to Equine Asthma
3.3.1. Temperature and Air Humidity
3.3.2. Air Pollutants
Harmful Gaseous Admixtures in Air
- 1.
- The main sources of harmful gaseous admixtures in air
- 2.
- The impact of gaseous admixtures on horse health
- 3.
- Methods of gaseous admixture mitigation
Microbial Air Contamination
- The main sources of microbial contamination of air
- 2.
- The impact of microbial contamination on the equine respiratory system
- 3.
- Methods of microbial contamination mitigation
Influence of Air Dust
- The main sources of aerial particulate matter
- 2.
- The impact of dust on the equine respiratory system
- 3.
- Dust mitigation methods
3.3.3. Housing System
3.3.4. Different Feeding Systems
3.3.5. Bedding Material as a Source of Stable Contaminants
4. Summary and Conclusions
5. Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sheats, M.K.; Davis, K.U.; Poole, J.A. Comparative review of asthma in farmers and horses. Curr. Allergy Asthma. Rep. 2019, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, N.; Wierzbicka, M.; Pawliński, B.; Domino, M. Co-Occurrence of Severe Equine Asthma and Palatal Disorders in Privately Owned Pleasure Horses. Animals 2023, 13, 1962. [Google Scholar] [CrossRef] [PubMed]
- Lange-Consiglio, A.; Stucchi, L.; Zucca, E.; Lavoie, J.P.; Cremonesi, F.; Ferrucci, F. Insights into animal models for cell-based therapies in translational studies of lung diseases: Is the horse with naturally occurring asthma the right choice? Cytotherapy 2019, 21, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Ivester, K.M.; Couëtil, L.L.; Moore, G.E. An observational study of environmental exposures, airway cytology, and performance in racing thoroughbreds. J. Vet. Intern. Med. 2018, 32, 1754–1762. [Google Scholar] [CrossRef] [PubMed]
- White, S.J.; Moore-Colyer, M.; Marti, E.; Hannant, D.; Gerber, V.; Coüetil, L.; Richard, E.A.; Alcocer, M. Antigen array for serological diagnosis and novel allergen identification in severe equine asthma. Sci. Rep. 2019, 9, 15170. [Google Scholar] [CrossRef] [PubMed]
- Bond, S.L.; Léguillette, R.; Richard, E.A.; Couetil, L.; Lavoie, J.P.; Martin, J.G.; Pirie, R.S. Equine asthma: Integrative biologic relevance of a recently proposed nomenclature. J. Vet. Intern. Med. 2018, 32, 2088–2098. [Google Scholar] [CrossRef]
- Bond, S.L.; Timsit, E.; Workentine, M.; Alexander, T.; Léguillette, R. Upper and lower respiratory tract microbiota in horses: Bacterial communities associated with health and mild asthma (inflammatory airway disease) and effects of dexamethasone. BMC Microbiol. 2017, 17, 184. [Google Scholar] [CrossRef]
- Ceriotti, S.; Bullone, M.; Leclere, M.; Ferrucci, F.; Lavoie, J.P. Severe asthma is associated with a remodeling of the pulmonary arteries in horses. PLoS ONE 2020, 15, e0239561. [Google Scholar] [CrossRef]
- Davis, K.U.; Sheats, M.K. Bronchoalveolar lavage cytology characteristics and seasonal changes in a herd of pastured teaching horses. Front. Vet. Sci. 2019, 6, 74. [Google Scholar] [CrossRef]
- Kinnison, T.; McGilvray, T.A.; Couëtil, L.L.; Smith, K.C.; Wylie, C.E.; Bacigalupo, S.A.; Gomez-Grau, E.; Cardwell, J.M. Mild-moderate equine asthma: A scoping review of evidence supporting the consensus definition. Vet. J. 2022, 286, 105865. [Google Scholar] [CrossRef]
- Borowska, A.; Wolska, D.; Niedzwiedz, A.; Borowicz, H.; Jaworski, Z.; Siemieniuch, M.; Szwaczkowski, T. Some genetic and environmental effects on equine asthma in polish konik horses. Animals 2021, 11, 2285. [Google Scholar] [CrossRef] [PubMed]
- Leclere, M.; Lavoie-Lamoureux, A.; Lavoie, J.P. Heaves, an asthma-like disease of horses. Respirology 2011, 16, 1027–1046. [Google Scholar] [CrossRef] [PubMed]
- Couëtil, L.L.; Ward, M.P. Analysis of risk factors for recurrent airway obstruction in North American horses: 1,444 cases (1990–1999). J. Am. Vet. Med. Assoc. 2003, 223, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Gerber, V.; De Feijter-Rupp, H.; Wagner, J.; Venta, P.; Harkema, J.R.; Robinson, N.E. Differential association of MUC5AC and CLCA1 expression in small cartilaginous airways of RAO-affected and control horses. Equine Vet. J. 2009, 41, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Gy, C.; Leclere, M.; Vargas, A.; Grimes, C.; Lavoie, J.P. Investigation of blood biomarkers for the diagnosis of mild to moderate asthma in horses. J. Vet. Intern. Med. 2019, 33, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Pirie, R.S. Recurrent airway obstruction: A review. Equine Vet. J. 2014, 46, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Simões, J.; Batista, M.; Tilley, P. The Immune Mechanisms of Severe Equine Asthma—Current Understanding and What Is Missing. Animals 2022, 12, 744. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.R.; Johnson, J.R.; Baur, M.E.; Beadle, R.E. Temporal clinical exacerbation of summer pasture-associated recurrent airway obstruction and relationship with climate and aeroallergens in horses. Am. J. Vet. Res. 2006, 67, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Bullone, M.; Murcia, R.Y.; Lavoie, J.P. Environmental heat and airborne pollen concentration are associated with increased asthma severity in horses. Equine Vet. J. 2016, 48, 479–484. [Google Scholar] [CrossRef]
- Bullone, M.; Lavoie, J.P. Recurrent Airway Obstruction and Summer Pasture-Associated Obstructive Pulmonary Disease. Equine Clinical. Immunol. 2016, 127–144. [Google Scholar] [CrossRef]
- Mair, T.S. Obstructive pulmonary disease in 18 horses at summer pasture. Vet. Rec. 1996, 138, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Eaton, S. Management of equine allergic airway disease: A review of conventional and complementary therapies. Am. J. Trad. Chin. Vet. Med. 2023, 18, 43–53. [Google Scholar] [CrossRef]
- Berndt, A.; Derksen, F.J.; Edward Robinson, N. Endotoxin concentrations within the breathing zone of horses are higher in stables than on pasture. Vet. J. 2010, 183, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Simões, J.; Sales Luís, J.P.; Tilley, P. Owner compliance to an environmental management protocol for severe equine asthma syndrome. J. Equine Vet. Sci. 2020, 87, 102937. [Google Scholar] [CrossRef] [PubMed]
- Bosshard, S.; Gerber, V. Evaluation of Coughing and Nasal Discharge as Early Indicators for An Increased Risk to Develop Equine Recurrent Airway Obstruction (RAO). JVIM 2014, 28, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Gehlen, H.; Oey, L.; Rohn, K.; Bilzer, T.; Stadler, P. Pulmonary Dysfunction and Skeletal Muscle Changes in Horses with RAO. JVIM 2008, 22, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Herszberg, B.; Ramos-Barbón, D.; Tamaoka, M.; Martin, J.G.; Lavoie, J.P. Heaves, an asthma-like equine disease, involves airway smooth muscle remodeling. J. Allergy Clin. Immunol. 2006, 118, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, J.W.; Reid, S.W.J.; Christley, R.M. A survey of horse owners in Great Britain regarding horses in their care. Part 1: Horse demographic characteristics and management. Equine Vet. J. 2007, 39, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Ramseyer, A.; Gaillard, C.; Burger, D.; Straub, R.; Jost, U.; Boog, C.; Marti, E.; Gerber, V. Effects of genetic and environmental factors on chronic lower airway disease in horses. J. Vet. Intern. Med. 2007, 21, 149–156. [Google Scholar] [CrossRef]
- Couëtil, L.L.; Cardwell, J.M.; Gerber, V.; Lavoie, J.P.; Leguillette, R.; Richard, E.A. Inflammatory airway disease of horses-revised consensus statement. J. Vet. Intern. Med. 2016, 30, 503–515. [Google Scholar] [CrossRef]
- Bullone, M.; Lavoie, J.P. Science-in-brief: Equine asthma diagnosis: Beyond bronchoalveolar lavage cytology. Equine Vet. J. 2017, 49, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Ter Woort, F.; Caswell, J.L.; Arroyo, L.G.; Viel, L. Histologic investigation of airway inflammation in postmortem lung samples from racehorses. Am. J. Vet. Res. 2018, 79, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Couëtil, L.L.; Ivester, K.; Barnum, S.; Pusterla, N. Equine respiratory viruses, airway inflammation and performance in thoroughbred racehorses. Vet. Microbiol. 2021, 257, 109070. [Google Scholar] [CrossRef] [PubMed]
- Stucchi, L.; Alberti, E.; Stancari, G.; Conturba, B.; Zucca, E.; Ferrucci, F. The relationship between lung inflammation and aerobic threshold in standardbred racehorses with mild-moderate equine asthma. Animals 2020, 10, 1278. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J.; Beausoleil, N.J. Equine welfare during exercise: An evaluation of breathing, breathlessness and bridles. Animals 2017, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Morini, M.; Gobbo, F.; Rinnovati, R.; Romagnoli, N.; Peli, A.; Massarenti, C.; Spadari, A.; Pietra, M. Bronchoalveolar Lavage Cytology in Severe Equine Asthma: Cytocentrifugated versus Sediment Smear Preparations. Vet. Sci. 2023, 10, 527. [Google Scholar] [CrossRef] [PubMed]
- Karagianni, A.E.; Eaton, S.L.; Kurian, D.; Cillán-Garcia, E.; Twynam-Perkins, J.; Raper, A.; Wishart, T.M.; Pirie, S.R. Application across species of a one health approach to liquid sample handling for respiratory based -omics analysis. Sci. Rep. 2021, 11, 14292. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, N.; Wierzbicka, M.; Jasiński, T.; Domino, M. Advances in the Diagnosis of Equine Respiratory Diseases: A Review of Novel Imaging and Functional Techniques. Animals 2022, 12, 381. [Google Scholar] [CrossRef] [PubMed]
- Lascola, K.M.; Joslyn, S. Diagnostic imaging of the lower respiratory tract in neonatal foals: Radiography and computed Tomography. Vet. Clin. N. Am. Equine Pract. 2015, 31, 497–514. [Google Scholar] [CrossRef]
- Smith, S. Interpretation of tracheal wash samples in horses. Practice 2019, 41, 220–226. [Google Scholar] [CrossRef]
- Rossi, H.; Virtala, A.M.; Raekallio, M.; Rahkonen, E.; Rajamaki, M.M.; Mykkanen, A. Comparison of tracheal wash and bronchoalveolar lavage cytology in 154 horses with and without respiratory signs in a referral hospital over 2009–2015. Front. Vet. Sci. 2018, 5, 61. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam-Dhingra, A.; Bedenice, D.; Mazan, M.R. Bronchoalveolar lavage hemosiderosis in lightly active or sedentary horses. J. Vet. Intern. Med. 2023, 37, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Lo Feudo, C.M.; Stucchi, L.; Alberti, E.; Stancari, G.; Conturba, B.; Zucca, E.; Ferrucci, F. The role of thoracic ultrasonography and airway endoscopy in the diagnosis of equine asthma and exercise-induced pulmonary hemorrhage. Vet. Sci. 2021, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Bullone, M.; Lavoie, J.P. The equine asthma model of airway remodeling: From a veterinary to a human perspective. Cell Tissue Res. 2020, 380, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Secombe, C.J. Diagnosis of Mild to Moderate Equine Asthma in Australian Horses: Investigation of the Diagnostic Confirmatory Tests of Bronchoalveolar Lavage Cytology and Pulmonary Function Testing. Doctoral Dissertation, Murdoch University, Perth, Australia, 2023. [Google Scholar]
- Słowikowska, M.; Bajzert, J.; Miller, J.; Stefaniak, T.; Niedzwiedz, A. The dynamics of circulating immune complexes in horses with severe equine asthma. Animals 2021, 11, 1001. [Google Scholar] [CrossRef] [PubMed]
- Simões, J.; Luís, J.S.; Tilley, P. Contribution of lung function tests to the staging of severe equine asthma syndrome in the field. Res. Vet. Sci. 2019, 123, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Decloedt, A.; Borowicz, H.; Slowikowska, M.; Chiers, K.; van Loon, G.; Niedzwiedz, A. Right ventricular function during acute exacerbation of severe equine asthma. Equine Vet. J. 2017, 49, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Laumen, E.; Doherr, M.G.; Gerber, V. Relationship of horse owner assessed respiratory signs index to characteristics of recurrent airway obstruction in two Warmblood families. Equine Vet. J. 2010, 42, 142–148. [Google Scholar] [CrossRef]
- Gressler, A.E.; Lübke, S.; Wagner, B.; Arnold, C.; Lohmann, K.L.; Schnabel, C.L. Comprehensive Flow Cytometric Characterization of Bronchoalveolar Lavage Cells Indicates Comparable Phenotypes between Asthmatic and Healthy Horses But Functional Lymphocyte Differences. Front. Immunol. 2022, 13, 896255. [Google Scholar] [CrossRef]
- Wyler, M.; Sage, S.E.; Marti, E.; White, S.; Gerber, V. Protein microarray allergen profiling in bronchoalveolar lavage fluid and serum of horses with asthma. J. Vet. Intern. Med. 2023, 37, 328–337. [Google Scholar] [CrossRef]
- Sperl, C.; Gerber, V.; Drießlein, D.; Klima, A.; Becher, A.M. Are respiratory clinical signs in horses associated with Strongyle egg shedding rates on farmfs with varying egg shedding levels? J. Equine Vet. Sci. 2019, 75, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Herteman, N.; Mosing, M.; Waldmann, A.D.; Gerber, V.; Schoster, A. Exercise-induced airflow changes in horses with asthma measured by electrical impedance tomography. J. Vet. Intern. Med. 2021, 35, 2500–2510. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska-Stenzel, A. The Effect of Different Bedding Materials Used in Stable on Elected Equine Welfare Indicators. Doctoral Dissertation, University of Warmia and Mazury, Olsztyn, Poland, 2014. [Google Scholar]
- Bright, L.A.; Dittmar, W.; Nanduri, B.; McCarthy, F.M.; Mujahid, N.; Costa, L.R.R.; Burgess, S.C.; Swiderski, C.E. Modeling the pasture-associated severe equine asthma bronchoalveolar lavage fluid proteome identifies molecular events mediating neutrophilic airway inflammation. Vet. Med. 2019, 10, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Swiderski, C.E.; Hunter, C.L.; Bowser, J.E.; Costa, L.R.; Cooley, A.J.; Claude, A.; Eddy, A.L.; Bright, L.A. Deciphering the Role of Bronchial Hyper-Responsiveness in Equine Pasture Asthma. JEVS 2017, 52, 29–35. [Google Scholar] [CrossRef]
- Secombe, C.J.; Lester, G.D.; Robertson, I.D.; Cullimore, A.M. Retrospective survey of bronchoalveolar lavage fluid cytology in Western Australian horses presented for evaluation of the respiratory tract: Effect of season on relative cell percentages. Aust. Vet. J. 2015, 93, 152156. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.S.; Malayer, J.R.; Vandeventer, L.; Royer, C.M.; McKenzie, E.C.; Williamson, K.K. Cold weather exercise and airway cytokine expression. J. Appl. Physiol. 2005, 98, 2132–2136. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Honoré, M.L.; Riihimaki, M.; Pringle, J.; Ammentorp, A.H.; Fjeldborg, J. Seasonal Variation in Tracheal Mucous and Bronchoalveolar Lavage Cytology for Adult Clinically Healthy Stabled Horses. JEVS 2018, 71, 1–5. [Google Scholar] [CrossRef]
- Pirie, R.S.; Collie, D.D.; Dixon, P.M.; McGorum, B.C. Evaluation of nebulised hay dust suspensions (HDS) for the diagnosis and investigation of heaves. 2: Effects of inhaled HDS on control and heaves horses. Equine Vet. J. 2002, 34, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.P.; Couetil, L.L. Climatic and aeroallergen risk factors for chronic obstructive pulmonary disease in horses. Am. J. Vet. Res. 2005, 66, 818–824. [Google Scholar] [CrossRef]
- Araneda, O.F.; Cavada, G. Atmospheric Pollutants Affect Physical Performance: A Natural Experiment in Horse Racing Studied by Principal Component Analysis. Biology 2022, 11, 687. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, C.; Lei, L.; Fu, P.; Sun, Y. Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015–2019 in China. Environ. Pollut. 2021, 272, 116031. [Google Scholar] [CrossRef] [PubMed]
- Fleming, K.; Hessel, E.F.; Van den Weghe, H.F.A. Generation of airborne particles from different bedding materials used for horse keeping. JEVS 2008, 28, 408–418. [Google Scholar] [CrossRef]
- Kwiatkowska-Stenzel, A.; Sowińska, J.; Witkowska, D. Analysis of noxious gas pollution in horse stable air. JEVS 2014, 34, 249–256. [Google Scholar] [CrossRef]
- Tainio, M.; Jovanovic Andersen, Z.; Nieuwenhuijsen, M.J.; Hu, L.; de Nazelle, A.; An, R.; Garcia, L.M.T.; Goenka, S.; Zapata-Diomedi, B.; Bull, F.; et al. Air pollution, physical activity and health: A mapping review of the evidence. Environ. Int. 2021, 147, 105954. [Google Scholar] [CrossRef] [PubMed]
- Daigle, C.C.; Chalupa, D.C.; Gibb, F.R.; Morrow, P.E.; Oberdörster, G.; Utell, M.J.; Frampton, M.W. Ultrafine Particle Deposition in Humans during Rest and Exercise. Inhal. Toxicol. 2003, 15, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, D.; Sowinska, J. Identification of microbial and gaseous contaminants in poultry farms and developing methods for contamination prevention at the source. In Poultry Science; Manafi, M., Ed.; Intech Open: Rijeka, Croatia, 2017; pp. 51–72. [Google Scholar]
- Lawrence, L.; Bicudo, J.R.; Wheeler, E. Horse manure characteristics literature and data base review. In Proceedings of the 9th International Symposium on Animal, Agricultural and Food Processing Wastes, Raleigh, NC, USA, 12–15 October 2003. [Google Scholar]
- Hesterberg, T.W.; Bunn, W.B.; McClellan, R.O.; Hamade, A.K.; Long, C.M.; Valberg, P.A. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: Evidence for NO2 no-effect levels. Crit. Rev. Toxicol. 2009, 39, 743–781. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, C.A. Carbon monoxide poisoning. N. Engl. J. Med. 2002, 347, 1054–1055. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Rastelli, G.; Meschi, T.; Borghi, L.; Cervellin, G. Pathophysiology, clinics, diagnosis and treatment of heart involvement in carbon monoxide poisoning. Clin. Biochem. 2012, 45, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, R.; Yan, X. Airway hyperresponsiveness development and the toxicity of PM2.5. Environ. Sci. Pollut. Res. Int. 2021, 28, 6374–6391. [Google Scholar] [CrossRef]
- Hernandez, J.; Hawkins, D.L. Race-start characteristics and risk of catastrophic musculoskeletal injury in Thoroughbred racehorses. J. Am. Vet. Med. Ass. 2001, 218, 83–86. [Google Scholar] [CrossRef]
- Elfman, L.; Riihimäki, M.; Pringle, J.; Wålinder, R. Influence of horse stable environment on human airways. J. Occup. Med. Toxicol. 2009, 4, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Seedorf, J.; Schröder, M.; Kohler, L.; Hartung, L. Sustability of biocompost as bedding material for stabled horses: Respiratory hygiene and management practicalities. Equine Vet. J. 2007, 39, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Fleming, K.; Hessel, E.F.; Van den Weghe, H. Evaluation of factor influencing the generation of ammonia in different bedding materials used for horse keeping. J. Equine Vet. Sci. 2008, 28, 223–231. [Google Scholar] [CrossRef]
- Elfman, L.; Wålinder, R.; Riihimäki, M.; Pringle, J. Air Quality in Horse Stables. In Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality; Intech Open: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Samadi, S.; Wouters, I.M.; Wouters, I.; Houben, R.; Jamshidifard, A.; Eerdenburg, F.; Heederik, D.J.J. Exposure to inhalable dust, endotoxins, beta(1-3)-glucans, and airborne microorganisms in horse stables. Ann. Occup. Hyg. 2009, 53, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Wickens, C.; Weir, J.; Li, H. Strategies for Reducing Ammonia in Horse Barns. South. Equine Consort. 2016, 1, 1–2. [Google Scholar]
- Saastamoinen, M.; Särkijärvi, S.; Hyyppä, S. Reducing respiratory health risks to horses and workers: A comparison of two stall bedding materials. Animals 2015, 5, 965–977. [Google Scholar] [CrossRef]
- Witkowska, D.; Kwiatkowska-Stenzel, A.; Jóźwiak, A.; Chorąży, Ł.; Wójcik, A. Microbiological Contamination of Air Inside and Around Stables during Different Seasons of the Year. Pol. J. Environ. Stud. 2012, 21, 1061–1066. [Google Scholar]
- Dutkiewicz, J.; Pomorski, Z.J.H.; Sitkowska, J.; Krysińska-Traczyk, E.; Skórska, C.; Prażmo, Z.; Cholewa, G.; Wójtowicz, H. Airborne microorganisms and endotoxin in animal houses. Grana 1994, 33, 85–90. [Google Scholar] [CrossRef]
- Nardoni, S.; Mancianti, F.; Sgorbini, M.; Taccini, F.; Corazza, M. Identification and seasonal distribution of airborne fungi in three horse stables in Italy. Mycopathologia 2005, 160, 29–34. [Google Scholar] [CrossRef]
- Wolny-Koładka, K. Microbiological quality of air in free-range and box-stall stable horse keeping systems. Environ. Monit. Assess 2018, 190, 269. [Google Scholar] [CrossRef]
- Mostafa, E.; Szabo, E.; Gates, R.S.; Buescher, W. Identification of airborne particles and fungus spores concentrations within horses stables. Atmos. Pollut. Res. 2021, 12, 93–103. [Google Scholar] [CrossRef]
- Lenart-Boroń, A.; Bajor, A.; Tischner, M.; Kulik, K.; Kabacińska, J. Particulate matter concentrations and fungal aerosol in horse stables as potential causal agents in recurrent airway disease in horses and human asthma and allergies. Appl. Sci. 2022, 12, 9375. [Google Scholar] [CrossRef]
- Dauvillier, J.; ter Woort, F.; van Erck-Westergren, E. Fungi in respiratory samples of horses with inflammatory airway disease. JVIM 2019, 33, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Houtsma, A.; Bedenice, D.; Pusterla, N.; Pugliese, B.; Mapes, S.; Hoffman, A.M.; Paxson, J.; Rozanski, E.; Mukherjee, J.; Wigley, M.; et al. Association between inflammatory airway disease of horses and exposure to respiratory viruses: A case control study. Multidiscip. Respir. Med. 2015, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Bond, S.L.; McMullen, C.; Timsit, E.; Léguillette, R. Topography of the respiratory, oral, and guttural pouch bacterial and fungal microbiotas in horses. J. Vet. Intern. Med. 2023, 37, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.L.; Newton, J.R.; Chanter, N.; Mumford, J.A. Association between respiratory disease and bacterial and viral infections in British racehorses. J. Clin. Microbiol. 2005, 43, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Mete, A.; Özgür, N.Y. Investigation of the presence of Mycoplasma as an etiologic agent of inflammatory airway diseases in thoroughbred racehorses in İstanbul Province. Turk. J. Vet. Anim. Sci. 2017, 41, 365–371. [Google Scholar] [CrossRef]
- Fillion-Bertrand, G.; Dickson, R.P.; Boivin, R.; Lavoie, J.P.; Huffnagle, G.B.; Leclere, M. Lung microbiome is influenced by the environment and asthmatic status in an equine model of asthma. Am. J. Respir. Cell Mol. Biol. 2019, 60, 189197. [Google Scholar] [CrossRef]
- Xavier, M.O.; Nogueira, C.E.W.; Meirelles, M.; Fernandes, W.R.; Andreolla, H.; Severo, L.C.; Pasqualotto, A.C.; Meireles, M.C.A. Fungi in the respiratory tract of horses with recurrent airway obstruction. Arq. Bras. Med. Vet. Zootec. 2014, 66, 1457–1463. [Google Scholar] [CrossRef]
- Houben, R. Ventilation and Air Hygiene Parameters in Horse Stables. Ph.D. Thesis, Utrecht University, Utrecht, the Netherlands, 2008. [Google Scholar]
- Lühe, T.; Volkmann, N.; Probst, J.; Dreyer-Rendelsmann, C.; Schulz, J.; Kemper, N. Bacterial Burden in the Air of Indoor Riding Arenas. Agriculture 2022, 12, 2111. [Google Scholar] [CrossRef]
- Glatter, M.; Bochnia, M.; Wensch-Dorendorf, M.; Greef, J.M.; Zeyner, A. Feed Intake Parameters of Horses Fed Soaked or Steamed Hay and Hygienic Quality of Hay Stored Following Treatment. Animals 2021, 11, 2729. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D., Jr.; Collins, P.B.; Khosravi, M.; Lin, R.L.; Lee, L.Y. Bronchoconstriction triggered by breathing hot humid air in patients with asthma: Role of cholinergic reflex. Am. J. Respir. Crit. Care Med. 2012, 185, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Lin, R.L.; Lin, Y.S.; Lee, L.Y. Bronchoconstriction induced by increasing airway temperature in ovalbumin-sensitized rats: Role of tachykinins. J. Appl. Physiol. 2013, 115, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Gu, Q.; Kou, Y.R.; Lee, L.Y. Hyperthermia increases sensitivity of pulmonary C-fibre afferents in rats. J. Physiol. 2005, 565, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Ivester, K.M.; Couëtil, L.L. Management of chronic airway inflammation in the horse: A systematic review. Equine Vet. Educ. 2014, 26, 647–656. [Google Scholar] [CrossRef]
- Claußen, G.; Hessel, E.F. Particulate Matter in Equestrian Stables and Riding Arenas. JEVS 2017, 55, 60–70. [Google Scholar] [CrossRef]
- Vincent, J.H. Aerosol exposure: Concepts, criteria, standards and applications. J. Phys. Conf. Ser. 2009, 151, 012003. [Google Scholar] [CrossRef]
- Brankston, G.; Greer, A.L.; Marshall, Q.; Lang, B.; Moore, K.; Hodgins, D.; Hennessey, J.T.G.; Beeler-Marfisi, J. Increased weekly mean PM2. 5, and no2 are associated with increased proportions of lower airway granulocytes in Ontario horses. Front. Vet. Sci. 2020, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Bond, S.L.; Workentine, M.; Hundt, J.; UCVM Class of 2019; Gilkerson, J.R.; Léguillette, R. Effects of nebulized dexamethasone on the respiratory microbiota and mycobiota and relative equine herpesvirus-1, 2, 4, 5 in an equine model of asthma. J. Vet. Intern. Med. 2020, 34, 307–321. [Google Scholar] [CrossRef]
- Simões, J.D.S.A. Contribution to the Discriminant Power of Some of the Variables Involved in the Staging of Severe Equine Asthma Syndrome. Doctoral Dissertation, Universidade de Lisboa, Lisboa, Portugal, 2020. [Google Scholar]
- Siegers, E.W.; Anthonisse, M.; van Eerdenburg, F.J.; van den Broek, J.; Wouters, I.M.; Westermann, C.M. Effect of ionization, bedding, and feeding on air quality in a horse stable. J. Vet. Intern. Med. 2018, 32, 1234–1240. [Google Scholar] [CrossRef]
- Grzyb, J.; Podstawski, Z.; Bulski, K. Bacterial aerosol, particulate matter, and microclimatic parameters in the horse stables in Poland. Environ. Sci. Pollut. Res. Int. 2022, 29, 26992–27006. [Google Scholar] [CrossRef] [PubMed]
- Woods, P.S.; Robinson, N.E.; Swanson, M.C.; Reed, C.E.; Broadstone, R.V.; Derksen, F.J. Airborne dust and aeroallergen concentration in a horse stable under two different management systems. Equine Vet. J. 1993, 25, 208–213. [Google Scholar] [CrossRef]
- Auger, E.J.; Moore-Colyer, M.J.S. The effect of management regime on airborne respirable dust concentrations in two different types of horse stable design. JEVS 2017, 51, 105–109. [Google Scholar] [CrossRef]
- Mönki, J.; Saastamoinen, M.; Karikoski, N.; Norring, M.; Rajamäki, M.; Mykkänen, A. Effects of Bedding Material on Equine Lower Airway Inflammation: A Comparison of Two Peat Beddings, Wood Pellet, and Straw Pellet. Front. Vet. Sci. 2021, 8, 799645. [Google Scholar] [CrossRef] [PubMed]
- Olave, C.J.; Ivester, K.M.; Couetil, L.L.; Kritchevsky, J.E.; Tinkler, S.H.; Mukhopadhyay, A. Dust exposure and pulmonary inflammation in Standardbred racehorses fed dry hay or haylage: A pilot study. Vet. J. 2021, 271, 105654. [Google Scholar] [CrossRef]
- Clements, J.M.; Pirie, R.S. Respirable dust concentrations in equine stables. Part 2: The benefits of soaking hay and optimising the environment in a neighbouring stable. Res. Vet. Sci. 2007, 83, 263–268. [Google Scholar] [CrossRef]
- Hunt, M.A. Assessment of Dust, Endotoxin, and Fungal Exposures in Horse Confinement Rooms. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2000. [Google Scholar]
- Hessel, E.F.; Garlipp, F.; Van den Weghe, H.F.A. Generation of airborne particles from horse feeds depending on type and processing. JEVS 2009, 29, 665–674. [Google Scholar] [CrossRef]
- Sowińska, J.; Witkowska, D.; Bursztynowicz, K.; Kwiatkowska-Stenzel, A.; Mituniewicz, T.; Wojcik, A. Relationship between environmental conditions and physiological indicators of horses’ welfare. Med. Weter 2015, 71, 486–492. [Google Scholar]
- McGorum, B.C.; Ellison, J.; Cullen, R.T. Total and respirable airborne dust endotoxin concentrations in three equine management systems. Equine Vet. J. 1998, 30, 430–434. [Google Scholar] [CrossRef]
- Barton, A.K.; Shety, T.; Bondzio, A.; Einspanier, R.; Gehlen, H. Metalloproteinases and their inhibitors are influenced by inhalative glucocorticoid therapy in combination with environmental dust reduction in equine recurrent airway obstruction. BMC Vet. Res. 2016, 12, 282. [Google Scholar] [CrossRef]
- Piecuch, A.; Cywińska, A. The role of nutrition in prevention and supportive therapy of equine asthma. Med. Weter 2022, 78, 263–271. [Google Scholar] [CrossRef]
- Séguin, V.; Lemauviel-Lavenant, S.; Garon, D.; Bouchart, V.; Gallard, Y.; Blanchet, B.; Diquélou, S.; Personeni, E.; Gauduchon, P.; Ourry, A. Effect of agricultural and environmental factors on the hay characteristics involved in equine respiratory disease. Agric. Ecosyst. Environ. 2010, 135, 206–215. [Google Scholar] [CrossRef]
- Intemann, S.; Reckels, B.; Schubert, D.; Wolf, P.; Kamphues, J.; Visscher, C. The Hygienic Status of Different Forage Types for Horses—A Retrospective Study on Influencing Factors and Associations with Anamnestic Reports. Vet. Sci. 2022, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Beeler-Marfisi, J.; Clark, M.E.; Wen, X.; Sears, W.; Huber, L.; Ackerley, C.; Viel, L.; Bienzle, D. Experimental induction of recurrent airway obstruction with inhaled fungal spores, lipopolysaccharide, and silica microspheres in horses. Am. J. Vet. Res. 2010, 71, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Ferro, E.; Ferrucci, F.; Salimei, E.; Antoni, M.; Codazza, D.; Caniatti, M. Relationship between the conditions of lower airways in healthy horses, environmental factors and air quality in stables. Pferdeheilkunde 2000, 16, 579–586. [Google Scholar] [CrossRef]
- Orard, M.; Hue, E.; Couroucé, A.; Bizon-Mercier, C.; Toquet, M.P.; Moore-Colyer, M.; Couëtil, L.; Pronost, S.; Paillot, R.; Demoor, M.; et al. The influence of hay steaming on clinical signs and airway immune response in severe asthmatic horses. BMC Vet. Res. 2018, 14, 345. [Google Scholar] [CrossRef] [PubMed]
- Moore-Colyer, M.J.S.; Lumbis, K.; Longland, A.; Harris, P. The effect of five different wetting treatments on the nutrient content and microbial concentration in hay for horses. PLoS ONE 2014, 9, e114079. [Google Scholar] [CrossRef] [PubMed]
- Moore-Colyer, M.J.S.; Taylor, J.L.E.; James, R. The effect of steaming and soaking on the respirable particle, bacteria, mould, and nutrient content in hay for horses. JEVS 2016, 39, 62–68. [Google Scholar] [CrossRef]
- Pisch, C.; Wensch-Dorendorf, M.; Schwarzenbolz, U.; Henle, T.; Greef, J.M.; Zeyner, A. Effect of Hay Steaming on the Estimated Precaecal Digestibility of Crude Protein and Selected Amino Acids in Horses. Animals 2022, 12, 3092. [Google Scholar] [CrossRef]
- Larson, J.L. The Comparison of Airway Responses of Normal Horses Fed Round Bale versus Square Bale Hay. Doctoral Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2012. [Google Scholar]
- Vandenput, S.; Istasse, L.; Nicks, B.; Lekeux, P. Airborne dust and aeroallergen concentrations in different sources of feed and bedding for horses. Vet. Q. 1997, 19, 154–158. [Google Scholar] [CrossRef]
- Jochmans-Lemoine, A.; Picotte, K.; Beauchamp, G.; Vargas, A.; Lavoie, J.P. Effects of a propriety oiled mixed hay feeding system on lung function, neutrophilic airway inflammation and oxidative stress in severe asthmatic horses. Equine Vet. J. 2020, 52, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Intemann, S.; Reckels, B.; Schubert, D.C.; Wolf, P.; Kamphues, J.; Visscher, C. The Microbiological Quality of Concentrates for Horses—A Retrospective Study on Influencing Factors and Associations with Clinical Symptoms Reported by Owners or Referring Vets. Vet. Sci. 2022, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Nogradi, N.; Couetil, L.; Messick, J.; Stochelski, M.A.; Burgess, J.R. Omega-3 Fatty Acid Supplementation Provides an Additional Benefit to a Low-Dust Diet in the Management of Horses with Chronic Lower Airway Inflammatory Disease. JVIM 2015, 29, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska-Stenzel, A.; Witkowska, D.; Sowińska, J.; Stopyra, A. The effect of stable bedding materials on dust levels, microbial air contamination and equine respiratory health. Res. Vet. Sci. 2017, 115, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Werhahn, H.; Hessel, E.F.; Bachhausen, I.; Van den Weghe, H.F. Effects of different bedding materials on the behavior of horses housed in single stalls. JEVS 2010, 30, 425–431. [Google Scholar] [CrossRef]
- Greening, L.; Shenton, V.; Wilcockson, K.; Swanson, J. Investigating duration of nocturnal ingestive and sleep behaviors of horses bedded on straw versus shavings. J. Vet. Behav. 2013, 8, 82–86. [Google Scholar] [CrossRef]
- Greening, L.; Downing, J.; Amiouny, D.; Lekang, L.; Mcbride, S. The effect of altering routine husbandry factors on sleep duration and memory consolidation in the horse. Appl. Anim. Behav. Sci. 2021, 236, 105229. [Google Scholar] [CrossRef]
- Burla, J.B.; Rufener, C.; Bachmann, I.; Gygax, L.; Patt, A.; Hillmann, E. Space allowance of the littered area affects lying behavior in group-housed horses. Front. Vet. Sci. 2017, 4, 23. [Google Scholar] [CrossRef]
- Prišenk, J.; Turk, J.; Rozman, Č.; Pažek, K.; Janžekovič, M. Feasibility analysis of different bedding materials for horses. J. Appl. Anim. Res. 2018, 46, 798–803. [Google Scholar] [CrossRef]
- Keskinen, R.; Saastamoinen, M.; Nikama, J.; Särkijärvi, S.; Myllymäki, M.; Salo, T.; Uusi-Kämppä, J. Recycling nutrients from horse manure: Effects of bedding type and its compostability. Agric. Food Sci. 2017, 26, 68–79. [Google Scholar] [CrossRef]
- Bambi, G.; Rossi, G.; Barbari, M. Comparison between different types of bedding materials for horses. Agron. Res. 2018, 16, 646–655. [Google Scholar] [CrossRef]
- Yarnell, K.; Le Bon, M.; Turton, N.; Savova, M.; McGlennon, A.; Forsythe, S. Reducing exposure to pathogens in the horse: A preliminary study into the survival of bacteria on a range of equine bedding types. J. Appl. Microbiol. 2017, 122, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Airaksinen, S.; Heinonen-Tanski, H.; Heiskanen, M.L. Quality of different bedding materials and their influence on the compostability of horse manure. JEVS 2001, 21, 125–130. [Google Scholar] [CrossRef]
- Mönki, J.; Saastamoinen, M.; Karikoski, N.; Rajamäki, M.; Raekallio, M.; Junnila, J.; Särkijärvi, S.; Norring, M.; Valros, A.; Oranen Ben Fatma, S.; et al. Effects of bedding material on equine lower airway inflammation: A crossover study comparing peat and wood shavings. Front. Vet. Sci. 2021, 8, 656814. [Google Scholar] [CrossRef]
- Ward, P.L.; Wohlt, J.E.; Katz, S.E. Chemical, physical, and environmental properties of pelleted newspaper compared to wheat straw and wood shavings as bedding for horses. J. Anim. Sci. 2001, 79, 1359–1369. [Google Scholar] [CrossRef]
Potential Factor | Conclusion | Equine Asthma Subtype of Horses Participating in the Research to Which the Conclusions Refer | References |
---|---|---|---|
Temperature and humidity | Low temperatures help reduce the severity of asthma symptoms | SEA | [19] |
Exercising horses in cold air has a positive effect on their respiratory health | Clinically healthy | [58] | |
Season | Asthma symptoms may become more severe in the winter, depending on additional factors related to how the horses are kept | SEA + MEA | [9] |
BALF cytology results vary across seasons | MEA | [57] | |
Keeping horses stabled in winter contributes to changes in BALF cytology results and mucus secretion | Clinically healthy | [59] |
Potential Factor | Conclusion | Equine Asthma Subtype of Horses Participating in the Research/to Which the Conclusions Refer | References |
---|---|---|---|
Gases | Selected harmful gases commonly found in stable air negatively affect the health of horses. The highest concentrations of naturally occurring gaseous compounds were noted in early morning (4.00 a.m.) | Not mentioned | [65,70,71,72,73] |
Microorganisms | Airborne microorganisms, including Penicillium spp. and Fusarium spp., and G- bacteria produce toxins that are dangerous to animals’ health, including their respiratory health | Not mentioned | [81,82] |
Dusts | Keeping horses in winter involves feeding them hay and bedding, which increases their exposure to dust | SEA | [60] |
Horses’ athletic performance is correlated with pollutants in the air they breathe | Not mentioned | [62] | |
PM10 | Large particles of organic dust from hay and straw are usually retained in the upper respiratory tract and are less likely to penetrate the lower respiratory tract | MEA + SEA | [100] |
PM2.5 | The presence of PM2.5 particles affects BALF cytology results | MEA | [103] |
Fine dust particles reduce the efficiency of the respiratory system and consequently worsen horses’ performance in sports | MEA | [104] |
Potential Factor | Conclusion | Equine Asthma Subtype of Horses Participating in the Research to Which the Conclusions Refer | References |
---|---|---|---|
Housing | Pastures located next to busy streets expose horses to high concentrations of dust in the air they inhale. | Not mentioned | [9] |
The concentrations of airborne microorganisms vary across housing systems. | Clinically healthy | [85] | |
Asthmatic horses should be kept outdoors and freely graze year round. | MEA + SEA | [119] | |
Access to pasture improves horse welfare. | Clinically healthy | [116] | |
Changes in daily housing habits can significantly improve respiratory health in horses. | SEA | [106] | |
Keeping horses in outdoor paddocks has a positive impact on the health of their respiratory system. | Not mentioned | [107] | |
Bacterial aerosol concentrations are several times higher inside stables than in outdoor runs. | Not mentioned | [108] | |
Stable breeding increases the exposure of horses to airborne irritants. | Not mentioned | [117] |
Potential Factor | Conclusion | Equine Asthma Subtype of Horses Participating in the Research to Which the Conclusions Refer | References |
---|---|---|---|
Dry hay | Dry hay is not recommended for stabled horses. | Not mentioned | [110] |
Native hay has high counts of typical bacterial, fungal, and yeast species. | Not mentioned/Clinically healthy | [97,107] | |
Dry hay containing mold and Aspergillus spp. is potentially more dangerous to horse health than silage. | Not mentioned | [121] | |
Feeding horses dry hay causes changes in BALF cytology results. | MEA | [112] | |
Feeding horses baled hay triggers an increased respiratory defense response, compared with hay cubes of the same quality. | Clinically healthy | [128] | |
Dust content differs in hay from subsequent cuttings. | MEA + SEA | [119] | |
The timing of grass mowing affects the levels of fungal and dust contamination in the hay. | SEA | [120] | |
Oil-treated hay and alfalfa pelleted hay | The addition of soybean oil has a positive effect on the equine respiratory system and reduces the severity of asthma symptoms. | SEA | [130] |
Steamed hay | Steaming hay improves feed hygiene. | MEA + SEA | [127] |
Hay steaming reduces up to 95% of respirable dust in the horse’s breathing zone during consumption compared with dry hay. | SEA | [110,124] | |
Hay steaming effectively reduced and stabilized yeast and mold counts during storage, unlike dry hay. | SEA | [97,124] | |
Soaked hay | Soaked hay should be administered directly after treatment due to increasing levels of microbiological contamination. | Clinically healthy | [97] |
Haylage | Haylage is least likely to produce airborne particles compared with dry hay. | SEA | [120] |
Concentrates | Oats may be contaminated with molds which provoke coughing in horses. | Not mentioned | [131] |
PUFA | Omega-3 polyunsaturated fatty acid (PUFA) supplementation alleviates the symptoms of respiratory disorders. | MEA + SEA | [132] |
Potential Factor | Conclusion | Equine Asthma Subtype of Horses Participating in the Research to Which the Conclusions Refer | References |
---|---|---|---|
Straw (native) | Straw stored under inadequate conditions may be a source of microbial contamination. | Clinically healthy | [133] |
Wheat straw is characterized by higher dusting than oat straw. | MEA + SEA | [119] | |
Straw contains significantly more dust, endotoxins, and fungi than wood shavings. | Clinically healthy | [107] | |
Straw pellets | Horses kept on straw pellets show higher numbers of neutrophils in BALF cytology than those kept on peat. | Clinically healthy | [111] |
Wood shavings | Wood shavings decrease the content of dust in stable air. | Not mentioned | [110] |
Peat | Peat is less likely to cause lower airway neutrophilia in horses. | Clinically healthy | [143] |
Peat stored loosely produces more dust than when pressed, which is confirmed by BALF cytology results. | Clinically healthy | [111] | |
The addition of selected essential oils to peat facilitates breathing in horses and limits the development of microorganisms in the bedding. | MEA + SEA | [119] | |
Peat reduces ammonia concentration in the stable environment and further improves the well-being of horses. | MEA + SEA | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mańkowska, A.; Witkowska, D. The Most Common Environmental Risk Factors for Equine Asthma—A Narrative Review. Animals 2024, 14, 2062. https://doi.org/10.3390/ani14142062
Mańkowska A, Witkowska D. The Most Common Environmental Risk Factors for Equine Asthma—A Narrative Review. Animals. 2024; 14(14):2062. https://doi.org/10.3390/ani14142062
Chicago/Turabian StyleMańkowska, Anna, and Dorota Witkowska. 2024. "The Most Common Environmental Risk Factors for Equine Asthma—A Narrative Review" Animals 14, no. 14: 2062. https://doi.org/10.3390/ani14142062
APA StyleMańkowska, A., & Witkowska, D. (2024). The Most Common Environmental Risk Factors for Equine Asthma—A Narrative Review. Animals, 14(14), 2062. https://doi.org/10.3390/ani14142062