A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Avian Malaria Parasites
3. Molecular Xenomonitoring of Avian Plasmodium in Aedes albopictus
4. Experimental Studies on the Aedes albopictus Competence for Avian Plasmodium
Plasmodium Morphospecies | Most Advanced Developmental Stage Found | Efficient Transmission | References |
---|---|---|---|
P. gallinaceum | Sporozoite | Yes | [59,64,65,66,67,68,69,70,71,72,73] |
P. fallax | Sporozoite | Yes | [59,60,74] |
P. lophurae | Sporozoite | Yes | [59,75,76,77] |
P. cathemerium | No oocyst detected | No | [78] |
P. circumflexum | No oocyst detected | No | [59] |
P. vaughani | No oocyst detected | No | [59] |
P. hexamerium | No oocyst detected | No | [59] |
P. relictum | Sporozoite | No | [63] |
P. elongatum | No oocyst or sporozoites detected | No | [61] |
5. The Role of Other Invasive Aedes Mosquitoes as Avian Malaria Vectors
6. Conclusions
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, R.C.; Linton, Y.-M.; Strickman, D. Mosquitoes of the World; Johns Hopkins University Press: Baltimore, MD, USA, 2021; Volume 1, ISBN 1-4214-3814-3. [Google Scholar]
- Cunze, S.; Kochmann, J.; Koch, L.K.; Klimpel, S. Aedes albopictus and its environmental limits in Europe. PLoS ONE 2016, 11, e0162116. [Google Scholar] [CrossRef] [PubMed]
- Laporta, G.Z.; Potter, A.M.; Oliveira, J.F.A.; Bourke, B.P.; Pecor, D.B.; Linton, Y.-M. Global distribution of Aedes aegypti and Aedes albopictus in a climate change scenario of regional rivalry. Insects 2023, 14, 49. [Google Scholar] [CrossRef]
- Nentwig, W.; Bacher, S.; Kumschick, S.; Pyšek, P.; Vilà, M. More than “100 worst” alien species in Europe. Biol. Invasions 2018, 20, 1611–1621. [Google Scholar] [CrossRef]
- Roiz, D.; Pontifes, P.; Jourdain, F.; Diagne, C.; Leroy, B.; Vaissiere, A.-C.; Tolsá, M.J.; Salles, J.-M.; Simard, F.; Courchamp, F. The rising global economic costs of Aedes and Aedes-borne diseases. Sci. Total Environ. 2023, 933, 173054. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-López, R.; Bialosuknia, S.M.; Ciota, A.T.; Montalvo, T.; Martínez-de la Puente, J.; Gangoso, L.; Figuerola, J.; Kramer, L.D. Vector competence of Aedes caspius and Ae. albopictus mosquitoes for Zika virus, Spain. Emerg. Infect. Dis. 2019, 25, 346. [Google Scholar] [CrossRef]
- Gratz, N. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef]
- Cancrini, G.; Di Regalbono, A.F.; Ricci, I.; Tessarin, C.; Gabrielli, S.; Pietrobelli, M. Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Vet. Parasitol. 2003, 118, 195–202. [Google Scholar] [CrossRef]
- Näslund, J.; Ahlm, C.; Islam, K.; Evander, M.; Bucht, G.; Lwande, O.W. Emerging mosquito-borne viruses linked to Aedes aegypti and Aedes albopictus: Global status and preventive strategies. Vector-Borne Zoonotic Dis. 2021, 21, 731–746. [Google Scholar] [CrossRef]
- Pan American Health Organization. World Health Organization Health Information Platform for the Americas (PLISA). Available online: https://www3.paho.org/data/index.php/es/temas/indicadores-dengue.html (accessed on 19 June 2024).
- Buchs, A.; Conde, A.; Frank, A.; Gottet, C.; Hedrich, N.; Lovey, T.; Shindleman, H.; Schlagenhauf, P. The threat of dengue in Europe. New Microbes New Infect. 2022, 49–50, 101061. [Google Scholar] [CrossRef] [PubMed]
- Aranda, C.; Martínez, M.J.; Montalvo, T.; Eritja, R.; Navero-Castillejos, J.; Herreros, E.; Marqués, E.; Escosa, R.; Corbella, I.; Bigas, E.; et al. Arbovirus surveillance: First dengue virus detection in local Aedes albopictus mosquitoes in Europe, Catalonia, Spain, 2015. Eurosurveillance 2018, 23, 1700837. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.C.; Diamond, M.S. The emergence of Zika virus and its new clinical syndromes. Nature 2018, 560, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef]
- Giron, S.; Franke, F.; Decoppet, A.; Cadiou, B.; Travaglini, T.; Thirion, L.; Durand, G.; Jeannin, C.; L’Ambert, G.; Grard, G.; et al. Vector-borne transmission of Zika virus in Europe, Southern France, August 2019. Eurosurveillance 2019, 24, 1900655. [Google Scholar] [CrossRef] [PubMed]
- Genchi, C.; Kramer, L.H. The prevalence of Dirofilaria immitis and D. repens in the Old World. Vet. Parasitol. 2020, 280, 108995. [Google Scholar] [CrossRef] [PubMed]
- Turell, M.J.; O’Guinn, M.L.; Dohm, D.J.; Jones, J.W. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J. Med. Entomol. 2001, 38, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Martínez-de la Puente, J.; Ferraguti, M.; Ruiz, S.; Roiz, D.; Llorente, F.; Pérez-Ramírez, E.; Jiménez-Clavero, M.Á.; Soriguer, R.; Figuerola, J. Mosquito community influences West Nile virus seroprevalence in wild birds: Implications for the risk of spillover into human populations. Sci. Rep. 2018, 8, 2599. [Google Scholar] [CrossRef]
- Marzal, A.; de Lope, F.; Navarro, C.; Møller, A.P. Malarial parasites decrease reproductive success: An experimental study in a passerine bird. Oecologia 2005, 142, 541–545. [Google Scholar] [CrossRef]
- Asghar, M.; Hasselquist, D.; Hansson, B.; Zehtindjiev, P.; Westerdahl, H.; Bensch, S. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science 2015, 347, 436–438. [Google Scholar] [CrossRef]
- Paxton, E.H.; Camp, R.J.; Gorresen, P.M.; Crampton, L.H.; Leonard, D.L.; VanderWerf, E.A. Collapsing avian community on a Hawaiian island. Sci. Adv. 2016, 2, e1600029. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.T.; LaPointe, D.A. Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J. Avian Med. Surg. 2009, 23, 53–63. [Google Scholar] [CrossRef]
- Dadam, D.; Robinson, R.A.; Clements, A.; Peach, W.J.; Bennett, M.; Rowcliffe, J.M.; Cunningham, A.A. Avian malaria-mediated population decline of a widespread iconic bird species. R. Soc. Open Sci. 2019, 6, 182197. [Google Scholar] [CrossRef] [PubMed]
- Valkiūnas, G.; Iezhova, T.A. Keys to the avian malaria parasites. Malar. J. 2018, 17, 212. [Google Scholar] [CrossRef]
- Bensch, S.; Hellgren, O.; Pérez-Tris, J. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef]
- Hellgren, O.; Atkinson, C.T.; Bensch, S.; Albayrak, T.; Dimitrov, D.; Ewen, J.G.; Kim, K.S.; Lima, M.R.; Martin, L.; Palinauskas, V.; et al. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity. Ecography 2015, 38, 842–850. [Google Scholar] [CrossRef]
- Valkiunas, G. Avian Malaria Parasites and Other Haemosporidia; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0-429-21242-9. [Google Scholar]
- Santiago-Alarcon, D.; Palinauskas, V.; Schaefer, H.M. Diptera vectors of avian haemosporidian parasites: Untangling parasite life cycles and their taxonomy. Biol. Rev. 2012, 87, 928–964. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-López, R.; Martínez-de la Puente, J.; Gangoso, L.; Soriguer, R.; Figuerola, J. Plasmodium transmission differs between mosquito species and parasite lineages. Parasitology 2020, 147, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-López, R.; Martínez-de la Puente, J.; Gangoso, L.; Yan, J.; Soriguer, R.; Figuerola, J. Experimental reduction of host Plasmodium infection load affects mosquito survival. Sci. Rep. 2019, 9, 8782. [Google Scholar] [CrossRef]
- Martínez-de la Puente, J.; Gutiérrez-López, R.; Figuerola, J. Do avian malaria parasites reduce vector longevity? Curr. Opin. Insect Sci. 2018, 28, 113–117. [Google Scholar] [CrossRef]
- Atkinson, C.T. Avian Malaria. In Parasitic Diseases of Wild Birds; Wiley-Blackwell, Ltd.: Ames, IA, USA, 2008; pp. 35–53. ISBN 978-0-8138-0462-0. [Google Scholar]
- Mlinarić, A.; Horvat, M.; Šupak Smolčić, V. Dealing with the positive publication bias: Why you should really publish your negative results. Biochem. Medica 2017, 27, 030201. [Google Scholar] [CrossRef]
- Valkiūnas, G. Haemosporidian vector research: Marriage of molecular and microscopical approaches is essential. Mol. Ecol. 2011, 20, 3084–3086. [Google Scholar] [CrossRef] [PubMed]
- Valkiūnas, G.; Kazlauskienė, R.; Bernotienė, R.; Palinauskas, V.; Iezhova, T.A. Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. Parasitol. Res. 2013, 112, 2159–2169. [Google Scholar] [CrossRef] [PubMed]
- Bernotienė, R.; Valkiūnas, G. PCR detection of malaria parasites and related haemosporidians: The sensitive methodology in determining bird-biting insects. Malar. J. 2016, 15, 283. [Google Scholar] [CrossRef] [PubMed]
- Ejiri, H.; Sato, Y.; Sasaki, E.; Sumiyama, D.; Tsuda, Y.; Sawabe, K.; Matsui, S.; Horie, S.; Akatani, K.; Takagi, M. Detection of avian Plasmodium spp. DNA sequences from mosquitoes captured in Minami Daito Island of Japan. J. Vet. Med. Sci. 2008, 70, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Tanigawa, M.; Sato, Y.; Ejiri, H.; Imura, T.; Chiba, R.; Yamamoto, H.; Kawaguchi, M.; Tsuda, Y.; Murata, K.; Yukawa, M. Molecular identification of avian haemosporidia in wild birds and mosquitoes on Tsushima Island, Japan. J. Vet. Med. Sci. 2013, 75, 319–326. [Google Scholar] [CrossRef]
- Ejiri, H.; Sato, Y.; Sawai, R.; Sasaki, E.; Matsumoto, R.; Ueda, M.; Higa, Y.; Tsuda, Y.; Omori, S.; Murata, K. Prevalence of avian malaria parasite in mosquitoes collected at a zoological garden in Japan. Parasitol. Res. 2009, 105, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Tsuda, Y.; Yamada, A. Bloodmeal identification and detection of avian malaria parasite from mosquitoes (Diptera: Culicidae) inhabiting coastal areas of Tokyo Bay, Japan. J. Med. Entomol. 2009, 46, 1230–1234. [Google Scholar] [CrossRef] [PubMed]
- Inumaru, M.; Yamada, A.; Shimizu, M.; Ono, A.; Horinouchi, M.; Shimamoto, T.; Tsuda, Y.; Murata, K.; Sato, Y. Vector incrimination and transmission of avian malaria at an aquarium in Japan: Mismatch in parasite composition between mosquitoes and penguins. Malar. J. 2021, 20, 136. [Google Scholar] [CrossRef]
- Odagawa, T.; Inumaru, M.; Sato, Y.; Murata, K.; Higa, Y.; Tsuda, Y. A long-term field study on mosquito vectors of avian malaria parasites in Japan. J. Vet. Med. Sci. 2022, 84, 1391–1398. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; Kelly, P.; Li, J.; Li, M.; Wang, J.; Huang, K.; Qiu, H.; You, J.; Zhang, R.; et al. First molecular detection of Plasmodium relictum in Anopheles sinensis and Armigeres subalbatus. Open Vet. J. 2020, 10, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Martínez-de la Puente, J.; Díez-Fernández, A.; Montalvo, T.; Bueno-Marí, R.; Pangrani, Q.; Soriguer, R.C.; Senar, J.C.; Figuerola, J. Do invasive mosquito and bird species alter avian malaria parasite transmission? Diversity 2020, 12, 111. [Google Scholar] [CrossRef]
- Garrigós, M.; Veiga, J.; Garrido, M.; Marín, C.; Recuero, J.; Rosales, M.J.; Morales-Yuste, M.; Martínez-de la Puente, J. Avian Plasmodium in invasive and native mosquitoes from southern Spain. Parasit. Vectors 2024, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Iurescia, M.; Romiti, F.; Cocumelli, C.; Diaconu, E.L.; Stravino, F.; Onorati, R.; Alba, P.; Friedrich, K.G.; Maggi, F.; Magliano, A. Plasmodium matutinum transmitted by Culex pipiens as a cause of avian malaria in captive African penguins (Spheniscus demersus) in Italy. Front. Vet. Sci. 2021, 8, 621974. [Google Scholar] [CrossRef]
- Noden, B.H.; Bradt, D.L.; Sanders, J.D. Mosquito-borne parasites in the Great Plains: Searching for vectors of nematodes and avian malaria parasites. Acta Trop. 2021, 213, 105735. [Google Scholar] [CrossRef] [PubMed]
- Fryxell, R.T.T.; Lewis, T.T.; Peace, H.; Hendricks, B.B.; Paulsen, D. Identification of avian malaria (Plasmodium sp.) and canine heartworm (Dirofilaria immitis) in the mosquitoes of Tennessee. J. Parasitol. 2014, 100, 455–462. [Google Scholar] [CrossRef]
- Guimarães, L.d.O.; Simões, R.F.; Chagas, C.R.F.; de Menezes, R.M.T.; Silva, F.S.; Monteiro, E.F.; Holcman, M.M.; Bajay, M.M.; Pinter, A.; de Camargo-Neves, V.L.F.; et al. Assessing diversity, Plasmodium infection and blood meal sources in mosquitoes (Diptera: Culicidae) from a Brazilian zoological park with avian malaria transmission. Insects 2021, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.G.; Lopez, R.P.G.; Menezes, R.M.T.d.; Costa-Nascimento, M.d.J.; Lima, G.F.M.d.C.; Araújo, R.A.d.S.; Guida, F.J.V.; Kirchgatter, K. Identification of Plasmodium relictum causing mortality in penguins (Spheniscus magellanicus) from São Paulo Zoo, Brazil. Vet. Parasitol. 2010, 173, 123–127. [Google Scholar] [CrossRef]
- Martínez-de la Puente, J.; Muñoz, J.; Capelli, G.; Montarsi, F.; Soriguer, R.; Arnoldi, D.; Rizzoli, A.; Figuerola, J. Avian malaria parasites in the last supper: Identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy. Malar. J. 2015, 14, 32. [Google Scholar] [CrossRef]
- Ferraguti, M.; Martínez-de la Puente, J.; Muñoz, J.; Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. Avian Plasmodium in Culex and Ochlerotatus mosquitoes from Southern Spain: Effects of season and host-feeding source on parasite dynamics. PLoS ONE 2013, 8, e66237. [Google Scholar] [CrossRef]
- Cebrián-Camisón, S.; Martínez-de la Puente, J.; Figuerola, J. A literature review of host feeding patterns of invasive Aedes mosquitoes in Europe. Insects 2020, 11, 848. [Google Scholar] [CrossRef]
- Martínez-de la Puente, J.; Soriguer, R.; Senar, J.C.; Figuerola, J.; Bueno-Mari, R.; Montalvo, T. Mosquitoes in an urban zoo: Identification of blood meals, flight distances of engorged females, and avian malaria infections. Front. Vet. Sci. 2020, 7, 460. [Google Scholar] [CrossRef] [PubMed]
- van Tol, S.; Dimopoulos, G. Chapter nine—Influences of the mosquito microbiota on vector competence. In Advances in Insect Physiology; Raikhel, A.S., Ed.; Progress in Mosquito Research; Elsevier: London, UK, 2016; Volume 51, pp. 243–291. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Ilgūnas, M.; Bukauskaitė, D.; Žiegytė, R.; Bernotienė, R.; Jusys, V.; Eigirdas, V.; Fragner, K.; Weissenböck, H.; Iezhova, T.A. Plasmodium delichoni n. sp.: Description, molecular characterisation and remarks on the exoerythrocytic merogony, persistence, vectors and transmission. Parasitol. Res. 2016, 115, 2625–2636. [Google Scholar] [CrossRef] [PubMed]
- Huff, C.G. Susceptibility of mosquitoes to avian malaria. Exp. Parasitol. 1965, 16, 107–132. [Google Scholar] [CrossRef]
- Weathersby, A.B. Further studies on exogenous development of malaria in the haemocoels of mosquitoes. Exp. Parasitol. 1960, 10, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Nayar, J.K.; Knight, J.W.; Telford, S.R. Vector ability of mosquitoes for isolates of Plasmodium elongatum from raptors in Florida. J. Parasitol. 1998, 84, 542–546. [Google Scholar] [CrossRef]
- van Riper, C., III; van Riper, S.G.; Goff, M.L.; Laird, M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 1986, 56, 327–344. [Google Scholar] [CrossRef]
- LaPointe, D.A.; Goff, M.L.; Atkinson, C.T. Comparative susceptibility of introduced forest-dwelling mosquitoes in Hawai’i to avian malaria, Plasmodium relictum. J. Parasitol. 2005, 91, 843–849. [Google Scholar] [CrossRef]
- O’Donnell, D.; Armbruster, P. Inbreeding depression affects life-history traits but not infection by Plasmodium gallinaceum in the Asian tiger mosquito, Aedes Albopictus. Infect. Genet. Evol. 2010, 10, 669–677. [Google Scholar] [CrossRef]
- Yurayart, N.; Kaewthamasorn, M.; Tiawsirisup, S. Vector competence of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) for Plasmodium gallinaceum infection and transmission. Vet. Parasitol. 2017, 241, 20–25. [Google Scholar] [CrossRef]
- Brumpt, É. Réceptivité de divers oiseaux domestiques et sauvages au parasite (Plasmodium gallinaceum) du paludisme de la poule domestique. Transmission de cet hématozoaire par le moustique Stegomyia fasciata. Comptes Rendus Hebd. Séances Académie Sci. 1936; 203, 750–752. [Google Scholar]
- Brumpt, E. Etude expérimentale du Plasmodium gallinaceum parasite de la poule domestique. Transmission de ce germe par Stegomyia fasciata et Stegomyia albopicta. Ann. Parasitol. Hum. Comparée 1936, 14, 597–620. [Google Scholar] [CrossRef]
- Russell, P.F.; Mohan, B.N. Some mosquito hosts to avian plasmodia with special reference to Plasmodium gallinaceum. J. Parasitol. 1942, 28, 127–129. [Google Scholar] [CrossRef]
- Russell, P.F.; Menon, P.B. On the Transmission of Plasmodium gallinaceum to mosquitoes. Am. J. Trop. Med. 1942, 22, 559–563. [Google Scholar] [CrossRef]
- Cantrell, W.; Jordan, H.B. Relative susceptibility of Aedes aegypti, Aedes albopictus, Aedes canadensis and Anopheles quadrimaculatus to Plasmodium gallinaceum. J. Infect. Dis. 1949, 85, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, B.; Ray, H. Aedes albopictus as a vector of Plasmodium gallinaceum. Bull. Calcutta Sch. Trop. Med. 1956, 4, 63. [Google Scholar]
- Mohan, B. Comparative susceptibility of some Aedes mosquitoes to Plasmodium gallinaceum. Indian J. Malariol. 1955, 9, 75–79. [Google Scholar] [PubMed]
- Weathersby, A.B. Susceptibility of certain Japanese mosquitoes to Plasmodium gallinaceum and Plasmodium berghei. J. Parasitol. 1962, 48, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Huff, C.G.; Marchbank, D.F.; Saroff, A.H.; Scrimshaw, P.W.; Shiroishi, T. Experimental Infections with Plasmodium fallax Schwetz isolated from the Uganda Tufted Guinea Fowl Numida meleagris major Hartlaub. J. Natl. Malar. Soc. 1950, 9, 307–319. [Google Scholar]
- Laird, R.L. Observations on mosquito transmission of Plasmodium lophurae. Am. J. Epidemiol. 1941, 34C, 163–167. [Google Scholar] [CrossRef]
- Jeffery, G.M. Investigations on the mosquito transmission of Plasmodium lophurae Coggeshall, 1938. Am. J. Epidemiol. 1944, 40, 251–263. [Google Scholar] [CrossRef]
- Huff, C.; Coulston, F.; Laird, R.; Porter, R. Pre-erythrocytic development of Plasmodium lophurae in various hosts. J. Infect. Dis. 1947, 81, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, B. Two new Japanese species of mosquitoes as hosts of avian malaria. Jpn. J. Clin. Exp. Med. 1946, 23, 420–422. [Google Scholar]
- Rossan, R.N. The effect of antimalarial drugs on the exoerythrocytic and erythrocytic stages of blood-induced infections of Plasmodium fallax in the Turkey. Exp. Parasitol. 1957, 6, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Hepler, P.K.; Huff, C.G.; Sprinz, H. The fine structure of the exoerythrocytic stages of Plasmodium fallax. J. Cell Biol. 1966, 30, 333–358. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.A.; Stauber, L.A.; Palczuk, N.C.; Barnes, W.D. Immunity to exoerythrocytic forms of malaria. I. Course of infection of Plasmodium fallax in Turkeys. Exp. Parasitol. 1973, 34, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Hille, S.M.; Nash, J.P.; Krone, O. Hematozoa in endemic subspecies of Common Kestrel in the Cape Verde Islands. J. Wildl. Dis. 2007, 43, 752–757. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Ilgūnas, M.; Bukauskaitė, D.; Fragner, K.; Weissenböck, H.; Atkinson, C.T.; Iezhova, T.A. Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria. Malar. J. 2018, 17, 184. [Google Scholar] [CrossRef]
- Martínez-de la Puente, J.; Santiago-Alarcon, D.; Palinauskas, V.; Bensch, S. Plasmodium relictum. Trends Parasitol. 2021, 37, 355–356. [Google Scholar] [CrossRef]
- Ciocchetta, S.; Prow, N.A.; Darbro, J.M.; Frentiu, F.D.; Savino, S.; Montarsi, F.; Capelli, G.; Aaskov, J.G.; Devine, G.J. The new European invader Aedes (Finlaya) koreicus: A potential vector of chikungunya virus. Pathog. Glob. Health 2018, 112, 107–114. [Google Scholar] [CrossRef]
- Köchling, K.; Schaub, G.A.; Werner, D.; Kampen, H. Avian Plasmodium spp. and Haemoproteus spp. parasites in mosquitoes in Germany. Parasit. Vectors 2023, 16, 369. [Google Scholar] [CrossRef]
- Schoener, E.; Uebleis, S.S.; Butter, J.; Nawratil, M.; Cuk, C.; Flechl, E.; Kothmayer, M.; Obwaller, A.G.; Zechmeister, T.; Rubel, F.; et al. Avian Plasmodium in Eastern Austrian mosquitoes. Malar. J. 2017, 16, 389. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, K.; Kepner, A.; Krtinic, B.; Hederics, D.; Foldes, F.; Brigetta, Z.; Jakab, F.; Kemenesi, G. Blood-meal analysis and avian malaria screening of mosquitoes collected from human-inhabited areas in Hungary and Serbia. J. Eur. Mosq. Control Assoc. 2018, 36, 3–13. [Google Scholar]
- Schoener, E.R.; Tompkins, D.M.; Howe, L.; Castro, I.C. New insight into avian malaria vectors in New Zealand. Parasit. Vectors 2024, 17, 150. [Google Scholar] [CrossRef]
- Alavi, Y.; Arai, M.; Mendoza, J.; Tufet-Bayona, M.; Sinha, R.; Fowler, K.; Billker, O.; Franke-Fayard, B.; Janse, C.J.; Waters, A.; et al. The dynamics of interactions between Plasmodium and the mosquito: A study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Int. J. Parasitol. 2003, 33, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Ishtiaq, F.; Guillaumot, L.; Clegg, S.M.; Phillimore, A.B.; Black, R.A.; Owens, I.P.F.; Mundy, N.I.; Sheldon, B.C. Avian haematozoan parasites and their associations with mosquitoes across Southwest Pacific Islands. Mol. Ecol. 2008, 17, 4545–4555. [Google Scholar] [CrossRef] [PubMed]
- Cansado-Utrilla, C.; Zhao, S.Y.; McCall, P.J.; Coon, K.L.; Hughes, G.L. The microbiome and mosquito vectorial capacity: Rich potential for discovery and translation. Microbiome 2021, 9, 111. [Google Scholar] [CrossRef]
- Garrido, M.; Veiga, J.; Garrigós, M.; Martínez-de la Puente, J. The interplay between vector microbial community and pathogen transmission on the invasive Asian tiger mosquito, Aedes albopictus: Current knowledge and future directions. Front. Microbiol. 2023, 14, 1208633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga, J.; Garrido, M.; Garrigós, M.; Chagas, C.R.F.; Martínez-de la Puente, J. A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites. Animals 2024, 14, 2019. https://doi.org/10.3390/ani14142019
Veiga J, Garrido M, Garrigós M, Chagas CRF, Martínez-de la Puente J. A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites. Animals. 2024; 14(14):2019. https://doi.org/10.3390/ani14142019
Chicago/Turabian StyleVeiga, Jesús, Mario Garrido, Marta Garrigós, Carolina R. F. Chagas, and Josué Martínez-de la Puente. 2024. "A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites" Animals 14, no. 14: 2019. https://doi.org/10.3390/ani14142019
APA StyleVeiga, J., Garrido, M., Garrigós, M., Chagas, C. R. F., & Martínez-de la Puente, J. (2024). A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites. Animals, 14(14), 2019. https://doi.org/10.3390/ani14142019