Successful Emergency Management of a Dog with Ventilator-Dependent Acquired Myasthenia Gravis with Immunoadsorption
Abstract
Simple Summary
Abstract
1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shelton, G.D. Acquired myasthenia gravis: What we have learned from experimental and spontaneous animal models. Vet. Immunol. Immunopathol. 1999, 69, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Shelton, G.D. Myasthenia gravis and congenital myasthenic syndromes in dogs and cats: A history and mini-review. Neuromuscul. Disord. 2016, 26, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Forgash, J.T.; Chang, Y.; Mittelman, N.S.; Petesch, S.; Benedicenti, L.; Galban, E.; Hammond, J.J.; Glass, E.N.; Barker, J.R.; Shelton, G.D.; et al. Clinical features and outcome of acquired myasthenia gravis in 94 dogs. J. Vet. Intern. Med. 2021, 35, 2315–2326. [Google Scholar] [CrossRef] [PubMed]
- Huijbers, M.G.; Marx, A.; Plomp, J.J.; Le Panse, R.; Phillips, W.D. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022, 21, 163–175. [Google Scholar] [CrossRef]
- Spurlock, N.; Prittie, J. Use of Human Intravenous Immunoglobulin in Veterinary Clinical Practice. Vet. Clin. Small Anim. Pract. 2020, 50, 1371–1383. [Google Scholar] [CrossRef]
- Mignan, T.; Targett, M.; Lowrie, M. Classification of myasthenia gravis and congenital myasthenic syndromes in dogs and cats. J. Vet. Intern. Med. 2020, 34, 1707–1717. [Google Scholar] [CrossRef]
- Shelton, G.D. Routine and specialized laboratory testing for the diagnosis of neuromuscular diseases in dogs and cats. Vet. Clin. Pathol. 2010, 39, 278–295. [Google Scholar] [CrossRef]
- Shelton, G.D.; Skeie, G.O.; Kass, P.H.; Aarli, J.A. Titin and ryanodine receptor autoantibodies in dogs with thymoma and late-onset myasthenia gravis. Vet. Immunol. Immunopathol. 2001, 78, 97–105. [Google Scholar] [CrossRef]
- Shelton, G.D. Myasthenia gravis and disorders of neuromuscular transmission. Vet. Clin. Small Anim. Pract. 2002, 32, 189–206. [Google Scholar] [CrossRef]
- Khorzad, R.; Whelan, M.; Sisson, A.; Shelton, G.D. Myasthenia gravis in dogs with an emphasis on treatment and critical care management. J. Vet. Emerg. Crit. Care 2011, 21, 193–208. [Google Scholar] [CrossRef]
- Dickinson, P.J.; LeCouteur, R.A. Feline neuromuscular disorders. Vet. Clin. Small Anim. Pract. 2004, 34, 1307–1359. [Google Scholar] [CrossRef] [PubMed]
- Dewey, C.W.; Cerda-Gonzalez, S.; Fletcher, D.J.; Harb-Hauser, M.F.; Levine, J.M.; Badgley, B.L.; Olby, N.J.; Shelton, G.D. Mycophenolate mofetil treatment in dogs with serologically diagnosed acquired myasthenia gravis: 27 cases (1999–2008). J. Am. Vet. Med. Assoc. 2010, 236, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Whitley, N.T.; Day, M.J. Immunomodulatory drugs and their application to the management of canine immune-mediated disease. J. Small Anim. Pract. 2011, 52, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, H.J.; Denk, J. Corticosteroid Treatment-Resistance in Myasthenia Gravis. Front. Neurol. 2022, 13, 886625. [Google Scholar] [CrossRef]
- Rutter, C.R.; Rozanski, E.A.; Sharp, C.R.; Powell, L.L.; Kent, M. Outcome and medical management in dogs with lower motor neuron disease undergoing mechanical ventilation: 14 cases (2003–2009). J. Vet. Emerg. Crit. Care 2011, 21, 531–541. [Google Scholar] [CrossRef]
- Melzer, N.; Ruck, T.; Fuhr, P.; Gold, R.; Hohlfeld, R.; Marx, A.; Melms, A.; Tackenberg, B.; Schalke, B.; Schneider-Gold, C.; et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: A supplement to the Guidelines of the German Neurological Society. J. Neurol. 2016, 263, 1473–1494. [Google Scholar] [CrossRef]
- Bartges, J.W. Therapeutic plasmapheresis. Semin. Vet. Med. Surg. (Small Anim.) 1997, 12, 170–177. [Google Scholar] [CrossRef]
- Allen, A.E.; Bandt, C.; Bolfer, L. Concepts and clinical applications for therapeutic plasma exchange and plasmapheresis in small animal critical care medicine. In Proceedings of the Emergência e Intensivismo, Encontro Ventil De Residentes Em Medicina Veterinaria, Centro de Convenções Expo Dom Pedro, Campinas, SP, Brazil, 3–5 August 2015. [Google Scholar]
- Sinanović, O.; Zukić, S.; Burina, A.; Pirić, N.; Hodžić, R.; Atić, M.; Alečković-Halilović, M.; Mešić, E. Plasmapheresis in neurological disorders: Six years experience from University Clinical center Tuzla. F1000Research 2017, 6, 1234. [Google Scholar] [CrossRef]
- Dörfelt, S.; Fischer, A.; Meyer-Lindenberg, A.; Dörfelt, R. Feline acquired thymoma-associated myasthenia gravis managed with surgery and therapeutic plasma exchange. Vet. Rec. Case Rep. 2021, 9, e211. [Google Scholar] [CrossRef]
- Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J. Clin. Apher. 2019, 34, 171–354. [Google Scholar] [CrossRef]
- Bartges, J.W.; Klausner, J.S.; Bostwick, E.F.; E Hakala, J.; A Lennon, V. Clinical remission following plasmapheresis and corticosteroid treatment in a dog with acquired myasthenia gravis. J. Am. Vet. Med. Assoc. 1990, 196, 1276–1278. [Google Scholar] [PubMed]
- Vitalo, A.; Buckley, G.; Londoño, L. Concepts and clinical applications for therapeutic plasma exchange and plasmapheresis in small animal critical care medicine. J. Vet. Emerg. Crit. Care 2021, 31, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Galin, F.S.; Chrisman, C.L.; Cook, J.R.; Xu, L.; Jackson, P.L.; Noerager, B.D.; Weathington, N.M.; Blalock, J.E. Possible therapeutic vaccines for canine myasthenia gravis: Implications for the human disease and associated fatigue. Brain Behav. Immun. 2007, 21, 323–331. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Braun, N.; Bosch, T. Immunoadsorption, current status and future developments. Expert Opin. Investig. Drugs 2000, 9, 2017–2038. [Google Scholar] [CrossRef]
- Oji, S.; Nomura, K. Immunoadsorption in neurological disorders. Transfus. Apher. Sci. 2017, 56, 671–676. [Google Scholar] [CrossRef]
- Richter, P.; Fischer, H.; Dörfelt, R. Immunoadsorption in a dog with severe immune mediated hemolytic anemia. J. Clin. Apher. 2021, 36, 668–672. [Google Scholar] [CrossRef]
- Bauer, H.; Schmitz, A.; Fischer, A. Clinical validation of a new radioimmunoassay for the diagnosis of myasthenia gravis in dogs. In Proceedings of the ECVN Congress, Venice, Italy, 21–23 September 2023. [Google Scholar]
- Shelton, G.D.; Ho, M.; Kass, P.H. Risk factors for acquired myasthenia gravis in cats: 105 cases (1986–1998). J. Am. Vet. Med. Assoc. 2000, 216, 55–57. [Google Scholar] [CrossRef]
- McHardy, S.F.; Wang, H.-Y.L.; McCowen, S.V.; Valdez, M.C. Recent advances in acetylcholinesterase Inhibitors and Reactivators: An update on the patent literature (2012–2015). Expert Opin. Ther. Pat. 2017, 27, 455–476. [Google Scholar] [CrossRef]
- Richardson, D. Acquired myasthenia gravis in a poodle. Can. Vet. J. 2011, 52, 169–172. [Google Scholar]
- Sathasivam, S. Steroids and immunosuppressant drugs in myasthenia gravis. Nat. Clin. Pract. Neurol. 2008, 4, 317–327. [Google Scholar] [CrossRef]
- Dewey, C.W.; Bailey, C.S.; Shelton, G.D.; Kass, P.H. Clinical Forms of Acquired Myasthenia Gravis in Dogs: 25 Cases (1988–1995). J. Vet. Intern. Med. 1997, 11, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Rivner, M.H. Steroids are overutilized. Muscle Nerve 2002, 25, 115–117. [Google Scholar] [CrossRef]
- Abelson, A.L.; Shelton, G.D.; Whelan, M.F.; Cornejo, L.; Shaw, S.; O’Toole, T.E. Use of mycophenolate mofetil as a rescue agent in the treatment of severe generalized myasthenia gravis in three dogs. J. Vet. Emerg. Crit. Care 2009, 19, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Dewey, C.; Coates, J.R.; Ducote, J.; Meeks, J.; Fradkin, J. Azathioprine therapy for acquired myasthenia gravis in five dogs. J. Am. Anim. Hosp. Assoc. 1999, 35, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Bexfield, N.H.; Watson, P.J.; Herrtage, M.E. Management of Myasthenia Gravis Using Cyclosporine in 2 Dogs. J. Vet. Intern. Med. 2006, 20, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.C. A review of immunologic diseases of the dog. Vet. Immunol. Immunopathol. 1999, 69, 251–342. [Google Scholar] [CrossRef] [PubMed]
- Ipe, T.S.; Davis, A.R.; Raval, J.S. Therapeutic Plasma Exchange in Myasthenia Gravis: A Systematic Literature Review and Meta-Analysis of Comparative Evidence. Front. Neurol. 2021, 12, 662856. [Google Scholar] [CrossRef] [PubMed]
- Alipour-Faz, A.; Shojaei, M.; Peyvandi, H.; Ramzi, D.; Oroei, M.; Ghadiri, F.; Peyvandi, M. A comparison between IVIG and plasma exchange as preparations before thymectomy in myasthenia gravis patients. Acta Neurol. Belg. 2017, 117, 245–249. [Google Scholar] [CrossRef]
- Nagayasu, T.; Yamayoshi, T.; Matsumoto, K.; Ide, N.; Hashizume, S.; Nomura, M.; Muraoka, M.; Tagawa, T.; Akamine, S.; Oka, T. Beneficial effects of plasmapheresis before thymectomy on the outcome in myasthenia gravis. Jpn. J. Thorac. Cardiovasc. Surg. 2005, 53, 2–7. [Google Scholar] [CrossRef]
- Guptill, J.T.; Juel, V.C.; Massey, J.M.; Anderson, A.C.; Chopra, M.; Yi, J.S.; Esfandiari, E.; Buchanan, T.; Smith, B.; Atherfold, P.; et al. Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity 2016, 49, 472–479. [Google Scholar] [CrossRef]
- Reeves, H.M.; Winters, J.L. The mechanisms of action of plasma exchange. Br. J. Haematol. 2014, 164, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.B.; Sanders, D.B.; Wolfe, G.; Benatar, M.; Cea, G.; Evoli, A.; Verschuuren, J. International consensus guidance for management of myasthenia gravis. Exec. Summ. 2016, 87, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A.; Arakaki, R.; Saito, M.; Kudo, Y.; Ishimaru, N. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance. Front. Immunol. 2017, 8, 403. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.N.; da Silva Duarte, A.J.E. IgG Anti-IgA Subclasses in Common Variable Immunodeficiency and Association with Severe Adverse Reactions to Intravenous Immunoglobulin Therapy. J. Clin. Immunol. 2000, 20, 77–82. [Google Scholar] [CrossRef]
- Foster, R.; Suri, A.; Filate, W.; Hallett, D.; Meyer, J.; Ruijs, T.; Callum, J.L.; Sutton, D.; Mehta, S. Use of intravenous immune globulin in the ICU: A retrospective review of prescribing practices and patient outcomes. Transfus. Med. 2010, 20, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Ballow, M. The IgG molecule as a biological immune response modifier: Mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J. Allergy Clin. Immunol. 2011, 127, 315–323. [Google Scholar] [CrossRef]
- Chen, C.; Danekas, L.H.; Ratko, T.A.; Vlasses, P.H.; Matuszewski, K.A. A Multicenter Drug Use Surveillance of Intravenous Immunoglobulin Utilization in US Academic Health Centers. Ann. Pharmacother. 2000, 34, 295–299. [Google Scholar] [CrossRef]
- Kellerman, D.L.; Bruyette, D.S. Intravenous human immunoglobulin for the treatment of immune-mediated hemolytic anemia in 13 dogs. J. Vet. Intern. Med. 1997, 11, 327–332. [Google Scholar] [CrossRef]
- Yasuma, R.; Cicatiello, V.; Mizutani, T.; Tudisco, L.; Kim, Y.; Tarallo, V.; Bogdanovich, S.; Hirano, Y.; Kerur, N.; Li, S.; et al. Intravenous immune globulin suppresses angiogenesis in mice and humans. Signal Transduct. Target. Ther. 2016, 1, 15002. [Google Scholar] [CrossRef]
- Scott-Moncrieff, J.C.; Reagan, W.J.; Glickman, L.T.; DeNicola, D.B.; Harrington, D. Treatment of nonregenerative anemia with human gamma-globulin in dogs. J. Am. Vet. Med. Assoc. 1995, 206, 1895–1900. [Google Scholar]
- Barnett, C.; Wilson, G.; Barth, D.; Katzberg, H.D.; Bril, V. Changes in quality of life scores with intravenous immunoglobulin or plasmapheresis in patients with myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2013, 84, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Barth, D.; Nabavi Nouri, M.; Ng, E.; New, P.; Bril, V. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology 2011, 76, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, P.; Chevret, S.; Clair, B.; Tranchant, C.; Chastang, C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Ann. Neurol. 1997, 41, 789–796. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Choudhry, M.; Akbar, M.; Mohammad, Y.; Chua, H.; Yahia, A.; Ulatowski, J.; Krendel, D.; Leshner, R. Plasma exchange versus intravenous immunoglobulin treatment in myasthenic crisis. Neurology 1999, 52, 629. [Google Scholar] [CrossRef] [PubMed]
- Mandawat, A.; Kaminski, H.J.; Cutter, G.; Katirji, B.; Alshekhlee, A. Comparative analysis of therapeutic options used for myasthenia gravis. Ann. Neurol. 2010, 68, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Shelton, G.; Schule, A.; Kass, P. Risk factors for acquired myasthenia gravis in dogs: 1154 cases (1991–1995). J. Am. Vet. Med. Assoc. 1997, 211, 1428–1431. [Google Scholar] [PubMed]
- Berrih-Aknin, S.; Frenkian-Cuvelier, M.; Eymard, B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J. Autoimmun. 2014, 48–49, 143–148. [Google Scholar] [CrossRef]
- Gilhus, N.E.; Verschuuren, J.J. Myasthenia gravis: Subgroup classification and therapeutic strategies. Lancet Neurol. 2015, 14, 1023–1036. [Google Scholar] [CrossRef]
- Wendell, L.C.; Levine, J.M. Myasthenic Crisis. Neurohospitalist 2011, 1, 16–22. [Google Scholar] [CrossRef]
- Grob, D.; Simpson, D.; Mitsumoto, H.; Hoch, B.; Mokhtarian, F.; Bender, A.; Greenberg, M.; Koo, A.; Nakayama, S. Treatment of myasthenia gravis by immunoadsorption of plasma. Neurology 1995, 45, 338–344. [Google Scholar] [CrossRef]
- Shibuya, N.; Sato, T.; Osame, M.; Takegami, T.; Doi, S.; Kawanami, S. Immunoadsorption therapy for myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 1994, 57, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Gold, C.; Krenzer, M.; Klinker, E.; Mansouri-Thalegani, B.; Müllges, W.; Toyka, K.V.; Gold, R. Immunoadsorption versus plasma exchange versus combination for treatment of myasthenic deterioration. Ther. Adv. Neurol. Disord. 2016, 9, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Köhler, W.; Bucka, C.; Klingel, R. A randomized and controlled study comparing immunoadsorption and plasma exchange in myasthenic crisis. J. Clin. Apher. 2011, 26, 347–355. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sänger, F.; Dörfelt, S.; Giani, B.; Buhmann, G.; Fischer, A.; Dörfelt, R. Successful Emergency Management of a Dog with Ventilator-Dependent Acquired Myasthenia Gravis with Immunoadsorption. Animals 2024, 14, 33. https://doi.org/10.3390/ani14010033
Sänger F, Dörfelt S, Giani B, Buhmann G, Fischer A, Dörfelt R. Successful Emergency Management of a Dog with Ventilator-Dependent Acquired Myasthenia Gravis with Immunoadsorption. Animals. 2024; 14(1):33. https://doi.org/10.3390/ani14010033
Chicago/Turabian StyleSänger, Florian, Stefanie Dörfelt, Bettina Giani, Gesine Buhmann, Andrea Fischer, and René Dörfelt. 2024. "Successful Emergency Management of a Dog with Ventilator-Dependent Acquired Myasthenia Gravis with Immunoadsorption" Animals 14, no. 1: 33. https://doi.org/10.3390/ani14010033
APA StyleSänger, F., Dörfelt, S., Giani, B., Buhmann, G., Fischer, A., & Dörfelt, R. (2024). Successful Emergency Management of a Dog with Ventilator-Dependent Acquired Myasthenia Gravis with Immunoadsorption. Animals, 14(1), 33. https://doi.org/10.3390/ani14010033