Evaluating the Effects of Replacing Alfalfa with Broussonetia papyrifera Branch/Leaf Powder on Growth and Serum Indicators in Dezhou Donkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Digestion Trial
2.2. Feeding Trial
2.2.1. Animals and Experimental Design
2.2.2. Animals Diet
2.3. Sampling and Measurements
2.3.1. Apparent Digestibility of BP Branch/Leaf Powder Measurement
nutrient − mass of a certain nutrient in feces)/intake of a certain nutrient.
2.3.2. Growth Performance Measurement
2.3.3. Collection and Measurement of Serum Samples
2.4. Statistical Analysis
3. Results
3.1. Nutrient Level and Apparent Digestibility of Broussonetia Papyrifera Branch/Leaf Powder
3.2. Growth Performance
3.3. Serum Biochemical, Immune, and Antioxidant Indicators
3.3.1. Serum Biochemical Indicators
3.3.2. Serum Immune Indicators
3.3.3. Serum Antioxidant Indicators
4. Discussion
4.1. Nutrient Level and Apparent Digestibility of Broussonetia Papyrifera Branch/Leaf Powder
4.2. Growth Performance
4.3. Serum Biochemical, Immune, and Antioxidant Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Ren, W.; Chai, W.; Zhu, M.; Man, L.; Zhan, Y.; Qin, H.; Sun, M.; Liu, J.; Zhang, D.; et al. Comparing the Profiles of Raw and Cooked Donkey Meat by Metabonomics and Lipidomics Assessment. Front. Nutr. 2022, 9, 851761. [Google Scholar] [CrossRef]
- Li, X.; Amadou, I.; Zhou, G.Y.; Qian, L.Y.; Zhang, J.L.; Wang, D.L.; Cheng, X.R. Flavor Components Comparison between the Neck Meat of Donkey, Swine, Bovine, and Sheep. Food Sci. Anim. Resour. 2020, 40, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Gastaldi, D.; Bertino, E.; Monti, G.; Baro, C.; Fabris, C.; Lezo, A.; Medana, C.; Baiocchi, C.; Mussap, M.; Galvano, F.; et al. Donkey’s milk detailed lipid composition. Front. Biosci. (Elite Ed.) 2010, 2, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, C.; Faraone, D.; Paolino, R.; Freschi, P.; Musto, M. Short communication: Sensory profile and acceptability of a cow milk cheese manufactured by adding jenny milk. J. Dairy Sci. 2016, 99, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Giovanna, T.; Gina, C.; Chiara, D.F.; Serena, A.; Marina, P.; Tai, C.J.; Eduardo, P.; Rossella, N.; Laura, M.; Andrea, D. Human Milk and Donkey Milk, Compared to Cow Milk, Reduce Inflammatory Mediators and Modulate Glucose and Lipid Metabolism, Acting on Mitochondrial Function and Oleylethanolamide Levels in Rat Skeletal Muscle. Front. Physiol. 2018, 9, 32. [Google Scholar]
- Aspri, M.; Economou, N.; Papademas, P. Donkey milk: An overview on functionality, technology, and future prospects. Food Rev. Int. 2016, 33, 316–333. [Google Scholar] [CrossRef]
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.D. Harnessing the Potential of Forage Legumes, Alfalfa, Soybean, and Cowpea for Sustainable Agriculture and Global Food Security. Front. Plant Sci. 2018, 9, 1314. [Google Scholar] [CrossRef]
- Yari, M.; Valizadeh, R.; Naserian, A.A.; Ghorbani, G.R.; Rezvani Moghaddam, P.; Jonker, A.; Yu, P. Botanical traits, protein and carbohydrate fractions, ruminal degradability and energy contents of alfalfa hay harvested at three stages of maturity and in the afternoon and morning. Anim. Feed. Sci. Technol. 2012, 172, 162–170. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Kong, F.; Wang, W.; Li, S. Comparison of Nutritional Components, Ruminal Degradation Characteristics and Feed Value from Different Cultivars of Alfalfa Hay. Animals 2023, 13, 734. [Google Scholar] [CrossRef]
- Hao, J.Y.; Wan, Y.; Yao, X.H.; Zhao, W.G.; Hu, R.Z.; Chen, C.; Li, L.; Zhang, D.Y.; Wu, G.H. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS ONE 2018, 13, e0198072. [Google Scholar] [CrossRef]
- Lamb, J.F.S.; Sheaffer, C.C.; Rhodes, L.H.; Sulc, R.M.; Undersander, D.J.; Brummer, E.C. Five Decades of Alfalfa Cultivar Improvement: Impact on Forage Yield, Persistence, and Nutritive Value. Crop Sci. 2006, 46, 902–909. [Google Scholar] [CrossRef]
- Zerega, N.J.; Clement, W.L.; Datwyler, S.L.; Weiblen, G.D. Biogeography and divergence times in the mulberry family (Moraceae). Mol. Phylogenet. Evol. 2005, 37, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Liu, H.; Chen, P.; Tang, F.; Hu, Y.; Wang, F.; Pi, Z.; Zhao, M.; Chen, N.; Chen, H.; et al. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage. Mol. Plant 2019, 12, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.-J.; Jin, J.-H.; Kwon, O.-S.; Kim, J.-T.; Son, K.-H.; Kim, H.-P. Inhibition of Experimental Lung Inflammation and Bronchitis by Phytoformula Containing Broussonetia papyrifera and Lonicera japonica. Biomol. Ther. 2011, 19, 324–330. [Google Scholar] [CrossRef]
- Lee, D.; Bhat, K.P.; Fong, H.H.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod. 2001, 64, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Shui, S.; Chai, M.; Wang, D.; Su, Y.; Wu, H.; Sui, X.; Yin, Y. Effects of Paper Mulberry (Broussonetia papyrifera) Leaf Extract on Growth Performance and Fecal Microflora of Weaned Piglets. Biomed. Res. Int. 2020, 2020, 6508494. [Google Scholar] [CrossRef]
- Li, R.; Zheng, M.; Jiang, D.; Tian, P.; Zheng, M.; Xu, C. Replacing Alfalfa with Paper Mulberry in Total Mixed Ration Silages: Effects on Ensiling Characteristics, Protein Degradation, and In Vitro Digestibility. Animals 2021, 11, 1273. [Google Scholar] [CrossRef]
- An, X.; Zhang, S.; Li, T.; Chen, N.; Wang, X.; Zhang, B.; Ma, Y. Transcriptomics analysis reveals the effect of Broussonetia papyrifera L. fermented feed on meat quality traits in fattening lamb. PeerJ 2021, 9, e11295. [Google Scholar] [CrossRef]
- Tang, T.; Bai, J.; Ao, Z.; Wei, Z.; Hu, Y.; Liu, S. Effects of Dietary Paper Mulberry (Broussonetia papyrifera) on Growth Performance and Muscle Quality of Grass Carp (Ctenopharyngodon idella). Animals 2021, 11, 1655. [Google Scholar] [CrossRef]
- Tian, H.; Chen, Y.; Zhu, N.; Guo, Y.; Deng, M.; Liu, G.; Li, Y.; Liu, D.; Sun, B. Effect of Broussonetia papyrifera silage on the serum indicators, hindgut parameters and fecal bacterial community of Holstein heifers. AMB Express 2020, 10, 197. [Google Scholar] [CrossRef]
- Tao, H.; Si, B.; Xu, W.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Zhou, X.L.; Yang, H.J.; Chen, R. Effect of Dietary Forage/Concentrate Ratio on Nutrient Digestion and Energy and Protein Metabolism in Adult Donkeys. Animals 2020, 10, 1025. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Chen, Z.; Xie, Q.; Zhai, S.; Wang, H.; Zhong, S.; Zhu, Y.; Wang, W.; Yang, L. Determination of Nutrients and Metabolic Energy of Geese in Broussonetia papyrifera Leaves Powder and Broussonetia papyrifera Twig Leaves Powder from Different Areas. Chin. J. Anim. Nutr. 2018, 30, 2823–2830. [Google Scholar]
- Liu, X.; Wang, L.; Ning, L.; Feng, B.; Lin, M.; Zhao, G. Comparison of Rumen Degradation Characteristics among Different Parts of Paper Mulberry and Commonly Used Roughages for Dairy Cows. Chin. J. Anim. Nutr. 2019, 31, 3612–3620. [Google Scholar]
- Wu, X.; Zhang, Z.; Guo, C.; Li, X.; Liu, S. In vitro digestion characteristics and combined effects of different ratios. China Feed 2020, 1, 29–35+40. [Google Scholar] [CrossRef]
- Wu, X.Z.; Yang, P.L.; Gao, X.H.; Wen, Z.G.; Dai, S.F.; Zhu, M.X.; Wang, L.X. Effects of replacement of alfalfa by big-leaf mulberry on growth performance, digestion and meat quality in growing rabbits. World Rabbit. Sci. 2019, 27, 199–205. [Google Scholar] [CrossRef]
- Tu, Y.; Diao, Q.Y.; Zhang, R.; Yan, G.L.; Xiong, W. Analysis on the feed nutritive value of hybrid Broussonetia papyrifera leaf. Pratacult. Sci. 2009, 26, 136–139. [Google Scholar]
- Gao, R.; Luo, Y.; Xu, S.; Wang, M.; Sun, Z.; Wang, L.; Yu, Z. Effects of Replacing Ensiled-Alfalfa with Fresh-Alfalfa on Dynamic Fermentation Characteristics, Chemical Compositions, and Protein Fractions in Fermented Total Mixed Ration with Different Additives. Animals 2021, 11, 572. [Google Scholar] [CrossRef]
- Si, B.; Tao, H.; Zhang, X.; Guo, J.; Cui, K.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian-Australas. J. Anim. Sci. 2018, 31, 1259–1266. [Google Scholar] [CrossRef]
- Chorfi, Y.; Lanevschi-Pietersma, A.; Girard, V.; Tremblay, A. Evaluation of variation in serum globulin concentrations in dairy cattle. Vet. Clin. Pathol. 2004, 33, 122–127. [Google Scholar] [CrossRef]
- Tang, Z.R.; Yin, Y.L.; Nyachoti, C.M.; Huang, R.L.; Li, T.J.; Yang, C.; Yang, X.J.; Gong, J.; Peng, J.; Qi, D.S.; et al. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol. 2005, 28, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Hester, P.Y.; Hu, J.Y.; Yan, F.F.; Dennis, R.L.; Cheng, H.W. Effect of perches on liver health of hens. Poult. Sci. 2014, 93, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Chen, L.; Huang, D.; Peng, Z.; Zhao, C.; Zhang, Y.; Zhu, Y.; Wang, Z.; Li, X.; Liu, G. Elevated Apoptosis in the Liver of Dairy Cows with Ketosis. Cell Physiol. Biochem. 2017, 43, 568–578. [Google Scholar] [CrossRef]
- Bertoni, G.; Trevisi, E.; Han, X.; Bionaz, M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 2008, 91, 3300–3310. [Google Scholar] [CrossRef] [PubMed]
- Maan, M.; Peters, J.M.; Dutta, M.; Patterson, A.D. Lipid metabolism and lipophagy in cancer. Biochem. Biophys. Res. Commun. 2018, 504, 582–589. [Google Scholar] [CrossRef]
- Abdel-Sala, A.M.; Zeitoun, M.M.; Abdelsalam, M.M. Effect of Synbiotic Supplementation on Growth Performance, Blood Metabolites, Insulin and Testosterone and Wool Traits of Growing Lambs. J. Biol. Sci. 2014, 14, 292–298. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Victor, J.; Thannickal, B.L.F. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, 1005–1028. [Google Scholar] [CrossRef]
- Prokic, M.D.; Petrovic, T.G.; Gavric, J.P.; Despotovic, S.G.; Gavrilovic, B.R.; Radovanovic, T.B.; Faggio, C.; Saicic, Z.S. Comparative assessment of the antioxidative defense system in subadult and adult anurans: A lesson from the Bufotes viridis toad. Zoology 2018, 130, 30–37. [Google Scholar] [CrossRef]
- Olsvik, P.A.; Kristensen, T.; Waagbo, R.; Rosseland, B.O.; Tollefsen, K.E.; Baeverfjord, G.; Berntssen, M.H. mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2005, 141, 314–323. [Google Scholar] [CrossRef]
- Castillo, C.; Hernandez, J.; Valverde, I.; Pereira, V.; Sotillo, J.; Alonso, M.L.; Benedito, J.L. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status critical view and experimental data. Free. Radic. Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Huang, S.; Si, J.; Zhang, J.; Gaowa, N.; Sun, X.; Lv, J.; Liu, G.; He, Y.; Wang, W.; et al. Effects of Paper Mulberry Silage on the Milk Production, Apparent Digestibility, Antioxidant Capacity, and Fecal Bacteria Composition in Holstein Dairy Cows. Animals 2020, 10, 1152. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, S.F.; Zhang, C.S.; Yu, L.N.; Bi, J.; Zhu, F.; Yang, Q.L. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits. PLoS ONE 2012, 7, e32021. [Google Scholar] [CrossRef]
- Yang, C.; Li, F.; Du, B.; Chen, B.; Wang, F.; Wang, M. Isolation and characterization of new phenolic compounds with estrogen biosynthesis-inhibiting and antioxidation activities from Broussonetia papyrifera leaves. PLoS ONE 2014, 9, e94198. [Google Scholar] [CrossRef]
- Wu, W.T. Evaluation of anti-inflammatory effects of Broussonetia papyrifera stem bark. Indian J. Pharmacol. 2012, 44, 26–30. [Google Scholar] [CrossRef]
- Selim, A.S.M.; Bostami, A.; Rahman, M.Z.; Siddiky, M.N.A.; Khatun, A.; Siddiqui, M.N.; Islam, M.R. Dietary effect of Mulberry leaf (Morus alba) meal on growth performance and serum cholesterol level of broiler chickens. SAARC J. Agric. 2015, 12, 79–89. [Google Scholar] [CrossRef]
Item | Control Group | 10% Group | 20% Group | 30% Group |
---|---|---|---|---|
Corn | 20.0 | 20.0 | 20.0 | 20.0 |
Cottonseed meal | 2.0 | 2.0 | 2.0 | 2.0 |
Peanut meal | 4.0 | 4.0 | 4.0 | 4.0 |
Wheat bran | 5.0 | 5.0 | 5.0 | 5.0 |
Corn DDGS | 10.0 | 10.0 | 10.0 | 10.0 |
Corn germ meal | 5.0 | 5.0 | 5.0 | 5.0 |
Limestone | 1.5 | 1.5 | 1.5 | 1.5 |
Premix 1 | 2.5 | 2.5 | 2.5 | 2.5 |
Rice straw | 20.0 | 20.0 | 20.0 | 20.0 |
Alfalfa hay | 30.0 | 20.0 | 10.0 | 0.0 |
Broussonetia papyrifera branch/leaf powder | 0.0 | 10.0 | 20.0 | 30.0 |
Total | 100.0 | 100.0 | 100.0 | 100.0 |
Nutrient levels 2 | ||||
DM (%) | 87.62 | 87.42 | 87.21 | 87.01 |
GE (MJ/kg) | 15.16 | 15.19 | 15.21 | 15.23 |
CP (%) | 14.24 | 14.13 | 14.02 | 13.91 |
CF (%) | 16.35 | 17.94 | 19.53 | 21.11 |
NDF (%) | 41.14 | 39.71 | 38.29 | 36.86 |
ADF (%) | 27.94 | 26.78 | 25.62 | 24.46 |
Item | Nutrient Level (%) | Apparent Digestibility (%) |
---|---|---|
DM | 90.05 | 51.88 |
CP | 18.68 | 67.27 |
CF | 45.45 | 64.86 |
NDF | 41.75 | 49.59 |
ADF | 41.06 | 54.73 |
GE (MJ/kg) | 15.58 | 40.87 |
DE (MJ/kg) | 6.37 | - |
Item | Control Group | 10% Group | 20% Group | 30% Group | p-Value |
---|---|---|---|---|---|
IBW (kg) | 196.20 ± 10.23 | 193.00 ± 8.28 | 193.60 ± 8.23 | 192.00 ± 8.51 | 0.891 |
EBW (kg) | 209.20 ± 11.86 | 206.80 ± 9.63 | 209.40 ± 8.35 | 204.60 ± 9.34 | 0.851 |
ADG (g/d) | 361.11 ± 51.97 b | 383.33 ± 63.34 ab | 438.89 ± 30.43 a | 350.00 ± 31.67 b | 0.036 |
FCR | 12.33 ± 1.73 | 11.66 ± 2.00 | 9.97 ± 0.68 | 12.52 ± 1.17 | 0.059 |
Item | Control Group | 10% Group | 20% Group | 30% Group | p-Value |
---|---|---|---|---|---|
TP (g/L) | 71.16 ± 3.06 a | 66.54 ± 1.80 b | 69.44 ± 1.59 ab | 72.68 ± 4.77 a | 0.035 |
ALB (g/L) | 34.36 ± 0.70 a | 34.42 ± 1.15 a | 31.66 ± 0.91 b | 32.54 ± 1.48 b | 0.002 |
GLB (g/L) | 36.80 ± 3.23 a | 32.12 ± 2.41 b | 37.78 ± 1.35 a | 40.14 ± 3.45 a | 0.002 |
A/G | 0.94 ± 0.09 b | 1.08 ± 0.11 a | 0.84 ± 0.04 bc | 0.81 ± 0.05 c | <0.001 |
TG (mmol/L) | 1.61 ± 0.08 a | 1.69 ± 0.14 a | 1.52 ± 0.06 b | 1.73 ± 0.04 a | 0.009 |
TC (mmol/L) | 0.74 ± 0.34 a | 0.60 ± 0.14 ab | 0.41 ± 0.12 b | 0.39 ± 0.12 b | 0.047 |
ALT (U/L) | 3.82 ± 0.57 b | 4.26 ± 0.77 b | 5.28 ± 0.61 a | 5.36 ± 0.66 a | 0.004 |
AST (U/L) | 349.22 ± 53.06 | 298.58 ± 16.41 | 302.80 ± 30.11 | 284.42 ± 34.93 | 0.060 |
LDH (U/L) | 439.88 ± 33.75 a | 365.50 ± 37.86 b | 463.34 ± 43.75 a | 446.08 ± 43.69 a | 0.007 |
γ-GT (U/L) | 18.33 ± 2.95 | 20.20 ± 2.54 | 21.39 ± 0.57 | 20.83 ± 2.55 | 0.227 |
UA (μmol/L) | 9.40 ± 2.88 | 5.80 ± 0.84 | 8.60 ± 3.05 | 8.40 ± 2.51 | 0.157 |
UREA (mmol/L) | 8.82 ± 0.93 | 9.68 ± 0.94 | 9.40 ± 0.43 | 9.54 ± 0.71 | 0.357 |
Ca (mmol/L) | 3.63 ± 0.12 | 3.44 ± 0.86 | 3.45 ± 0.64 | 3.69 ± 0.38 | 0.862 |
P (mmol/L) | 2.65 ± 0.10 | 2.74 ± 0.07 | 2.65 ± 0.03 | 2.68 ± 0.06 | 0.162 |
Serum ammonia (μmol/L) | 115.02 ± 13.73 | 145.24 ± 26.71 | 124.27 ± 19.34 | 108.85 ± 18.59 | 0.055 |
Item | Control Group | 10% Group | 20% Group | 30% Group | p-Value |
---|---|---|---|---|---|
IgA (g/L) | 0.93 ± 0.11 b | 0.94 ± 0.09 b | 0.91 ± 0.07 b | 1.16 ± 0.10 a | 0.002 |
IgG (g/L) | 8.27 ± 0.67 | 8.77 ± 0.82 | 8.04 ± 0.63 | 8.72 ± 0.92 | 0.390 |
IgM (g/L) | 0.87 ± 0.08 | 0.86 ± 0.06 | 0.80 ± 0.06 | 0.84 ± 0.04 | 0.340 |
TNF-α (pg/mL) | 27.23 ± 3.73 a | 23.43 ± 2.57 b | 22.35 ± 3.14 b | 21.84 ± 2.14 b | 0.043 |
Item | Control Group | 10% Group | 20% Group | 30% Group | p-Value |
---|---|---|---|---|---|
SOD (U/mL) | 78.54 ± 11.28 | 70.63 ± 5.81 | 80.26 ± 1.71 | 76.27 ± 3.34 | 0.153 |
CAT (U/mL) | 4.29 ± 0.52 | 4.83 ± 0.63 | 4.23 ± 0.34 | 4.71 ± 0.77 | 0.305 |
GSH-Px (U/mL) | 110.75 ± 26.81 | 89.51 ± 9.46 | 88.13 ± 8.90 | 110.56 ± 16.95 | 0.080 |
T-AOC (mmol/L) | 0.20 ± 0.03 b | 0.22 ± 0.02 ab | 0.23 ± 0.02 ab | 0.25 ± 0.02 a | 0.046 |
MDA (nmol/mL) | 4.30 ± 0.94 | 4.18 ± 0.28 | 4.39 ± 0.35 | 4.13 ± 0.81 | 0.922 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Dong, B.; Qu, H.; Cheng, J.; Feng, Y.; Liu, L.; Ma, Q. Evaluating the Effects of Replacing Alfalfa with Broussonetia papyrifera Branch/Leaf Powder on Growth and Serum Indicators in Dezhou Donkeys. Animals 2024, 14, 123. https://doi.org/10.3390/ani14010123
Chen Y, Dong B, Qu H, Cheng J, Feng Y, Liu L, Ma Q. Evaluating the Effects of Replacing Alfalfa with Broussonetia papyrifera Branch/Leaf Powder on Growth and Serum Indicators in Dezhou Donkeys. Animals. 2024; 14(1):123. https://doi.org/10.3390/ani14010123
Chicago/Turabian StyleChen, Yongguang, Boying Dong, Honglei Qu, Jie Cheng, Yulong Feng, Lilin Liu, and Qiugang Ma. 2024. "Evaluating the Effects of Replacing Alfalfa with Broussonetia papyrifera Branch/Leaf Powder on Growth and Serum Indicators in Dezhou Donkeys" Animals 14, no. 1: 123. https://doi.org/10.3390/ani14010123
APA StyleChen, Y., Dong, B., Qu, H., Cheng, J., Feng, Y., Liu, L., & Ma, Q. (2024). Evaluating the Effects of Replacing Alfalfa with Broussonetia papyrifera Branch/Leaf Powder on Growth and Serum Indicators in Dezhou Donkeys. Animals, 14(1), 123. https://doi.org/10.3390/ani14010123