Role of Inflammation in Canine Primary Glaucoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pathophysiology of Canine Glaucoma and Inflammation
2.1. Compromised Blood–Aqueous Barrier
- Dilated pupil that is fixed or sluggish in response to light stimulus, either related to atrophy of the iris (sectorial or diffuse) and associated iris constrictor muscle [1], afferent pupillary defect, or other mechanisms that are poorly described.
- Alterations in aqueous humor biochemical composition, discussed in more detail in Section 2.3.
2.2. Compromised Blood–Retinal Barrier
2.3. Biochemical Changes in Ocular Fluids
2.4. Histopathological Changes
2.5. Genetic Markers of Inflammation
2.6. Ocular Surface and Systemic Inflammation
3. A Self-Perpetuating Vicious Cycle of Inflammation and Glaucoma
4. Anti-Inflammatory Therapy for Eyes Predisposed or Affected by Primary Glaucoma
4.1. Impact of Anti-Inflammatory Drugs on IOP
4.2. Anti-Inflammatory Therapy in Glaucomatous Dogs
4.3. Miscellaneous
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, P.E.; Bentley, E. Clinical signs and diagnosis of the canine primary glaucomas. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 1183–1212. [Google Scholar] [CrossRef] [PubMed]
- Sandmeyer, L. The clinical approach to canine glaucoma. Vet. Clin. N. Am. Small Anim. Pract. 2023, 53, 389–421. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.L.; Wyman, M. Glaucoma in the Basset Hound. J. Am. Vet. Med. Assoc. 1968, 153, 1320–1327. [Google Scholar] [PubMed]
- Yun, S.; Lee, D.; Kang, S.; Kim, D.W.; Kim, Y.; Cho, J.Y.; Seo, K. Proteomic analysis of aqueous humor in canine primary angle-closure glaucoma in American Cocker Spaniel dogs. Vet. Ophthalmol. 2021, 24, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.M.; Morris, R.; Dubielzig, R.R. Canine goniodysgenesis-related glaucoma: A morphologic review of 100 cases looking at inflammation and pigment dispersion. Vet. Ophthalmol. 2005, 8, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Harper, M.M.; Kecova, H.; Adamus, G.; Kardon, R.H.; Grozdanic, S.D.; Kuehn, M.H. Neuroinflammation in advanced canine glaucoma. Mol. Vis. 2010, 16, 2092–2108. [Google Scholar] [PubMed]
- Plummer, C.E.; Bras, D.; Grozdanic, S.; Komáromy, A.M.; McLellan, G.; Miller, P.; Sapienza, J.S.; Teixeira, L.; Webb, T. Prophylactic anti-glaucoma therapy in dogs with primary glaucoma: A practitioner survey of current medical protocols. Vet. Ophthalmol. 2021, 24 (Suppl. S1), 96–108. [Google Scholar] [CrossRef] [PubMed]
- White, C.N.; Downes, M.J.; Jones, G.; Wigfall, C.; Dean, R.S.; Brennan, M.L. Use of clinical vignette questionnaires to investigate the variation in management of keratoconjunctivitis sicca and acute glaucoma in dogs. Vet. Rec. 2018, 182, 21. [Google Scholar] [CrossRef]
- Smith, R.I.E.; Peiffer, R.L.; Wilcock, B.P. Some aspects of the pathology of canine glaucoma. Prog. Vet. Comp. Ophthalmol. 1993, 3, 16–28. [Google Scholar]
- Baudouin, C.; Kolko, M.; Melik-Parsadaniantz, S.; Messmer, E.M. Inflammation in glaucoma: From the back to the front of the eye, and beyond. Prog. Retin. Eye Res. 2021, 83, 100916. [Google Scholar] [CrossRef]
- Pytak, R.A.; Pirie, C.G.; Harman, C.D.; Anderson, A.L.; Yao, S.X.; Komáromy, A.M. Iris angiography in ADAMTS10 mutant dogs with open-angle glaucoma (ADAMTS10-OAG). Vet. Ophthalmol. 2023; online ahead of print. [Google Scholar]
- Kong, X.; Liu, X.; Huang, X.; Mao, Z.; Zhong, Y.; Chi, W. Damage to the blood-aqueous barrier in eyes with primary angle closure glaucoma. Mol. Vis. 2010, 16, 2026–2032. [Google Scholar] [PubMed]
- Beamer, G.; Reilly, C.M.; Pizzirani, S. Microscopic lesions in canine eyes with primary glaucoma. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 1213–1233. [Google Scholar] [CrossRef] [PubMed]
- Bedford, P.G. The aetiology of primary glaucoma in the dog. J. Small Anim. Pract. 1975, 16, 217–239. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, C.A.; Herring, I.P.; Huckle, W.R.; LeRoith, T.; Pickett, J.P.; Rossmeisl, J.H. Aqueous humor vascular endothelial growth factor in dogs: Association with intraocular disease and the development of pre-iridal fibrovascular membrane. Vet. Ophthalmol. 2012, 15 (Suppl. S1), 21–30. [Google Scholar] [CrossRef] [PubMed]
- Grahn, B.; Peiffer, R.; Wilcock, B. Histologic basis of glaucoma. In Histologic Basis of Ocular Disease in Animals; Wiley-Blackwell: Hoboken, NJ, USA, 2018; pp. 255–287. [Google Scholar]
- Cela, D.; Brignole-Baudouin, F.; Labbé, A.; Baudouin, C. The trabecular meshwork in glaucoma: An inflammatory trabeculopathy? J. Fr. Ophtalmol. 2021, 44, e497–e517. [Google Scholar] [CrossRef] [PubMed]
- Mangan, B.G.; Al-Yahya, K.; Chen, C.T.; Gionfriddo, J.R.; Powell, C.C.; Dubielzig, R.R.; Ehrhart, E.J.; Madl, J.E. Retinal pigment epithelial damage, breakdown of the blood-retinal barrier, and retinal inflammation in dogs with primary glaucoma. Vet. Ophthalmol. 2007, 10 (Suppl. S1), 117–124. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.M.; Boursiquot, N.; Beltran, W.A.; Dubielzig, R.R. Early histopathologic changes in the retina and optic nerve in canine primary angle-closure glaucoma. Vet. Ophthalmol. 2013, 16 (Suppl. S1), 79–86. [Google Scholar] [CrossRef]
- Wang, L.; Wei, X. T cell-mediated autoimmunity in glaucoma neurodegeneration. Front. Immunol. 2021, 12, 803485. [Google Scholar] [CrossRef]
- Terhaar, H.M.; Henriksen, M.L.; Uhl, L.K.; Boeckling, C.; Mehaffy, C.; Hess, A.; Lappin, M.R. Pro-inflammatory cytokines in aqueous humor from dogs with anterior uveitis and post-operative ocular hypertension following phacoemulsification, primary glaucoma, and normal healthy eyes. PLoS ONE 2022, 17, e0273449. [Google Scholar] [CrossRef]
- Sathiyanathan, P.; Tay, C.Y.; Stanton, L.W. Transcriptome analysis for the identification of cellular markers related to trabecular meshwork differentiation. BMC Genom. 2017, 18, 383. [Google Scholar] [CrossRef]
- Graham, K.L.; McCowan, C.; White, A. Genetic and biochemical biomarkers in canine glaucoma. Vet. Pathol. 2017, 54, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Durieux, P.; Etchepareborde, S.; Fritz, D.; Rosolen, S.G. Tumor necrosis factor-alpha concentration in the aqueous humor of healthy and diseased dogs: A preliminary pilot study. J. Fr. Ophtalmol. 2015, 38, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, W.L.; Dietrich, U.M.; Sapienza, J.S.; Carmichael, K.P.; Moore, P.A.; Krunkosky, T.M. Identification of ocular matrix metalloproteinases present within the aqueous humor and iridocorneal drainage angle tissue of normal and glaucomatous canine eyes. Vet. Ophthalmol. 2007, 10 (Suppl. S1), 108–116. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.L.; Diefenbach, E.; McCowan, C.I.; White, A.J.R. A technique for shotgun proteomic analysis of the precorneal tear film in dogs with naturally occurring primary glaucoma. Vet. Ophthalmol. 2021, 24 (Suppl. S1), 131–145. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Blasco, B.; Vidal-Villegas, B.; Saenz-Frances, F.; Morales-Fernandez, L.; Perucho-Gonzalez, L.; Garcia-Feijoo, J.; Martinez-de-la-Casa, J.M. Tear and aqueous humour cytokine profile in primary open-angle glaucoma. Acta Ophthalmol. 2020, 98, e768–e772. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Blasco, B.; Vidal-Villegas, B.; Saenz-Frances, F.; Fernandez-Vigo, J.I.; Andres-Guerrero, V.; Espino, L.; Garcia-Feijoo, J.; Martinez-de-la-Casa, J.M. Cytokine profile in tear and aqueous humor of primary open-angle patients as a prognostic factor for trabeculectomy outcome. Eur. J. Ophthalmol. 2022, 32, 2994–3004. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.A.C.; Ricketts, S.L.; Kuehn, M.H.; Mellersh, C.S. Primary closed angle glaucoma in the Basset Hound: Genetic investigations using genome-wide association and RNA sequencing strategies. Mol. Vis. 2019, 25, 93–105. [Google Scholar] [PubMed]
- Ruiz-Lozano, R.E.; Azar, N.S.; Mousa, H.M.; Quiroga-Garza, M.E.; Komai, S.; Wheelock-Gutierrez, L.; Cartes, C.; Perez, V.L. Ocular surface disease: A known yet overlooked side effect of topical glaucoma therapy. Front. Toxicol. 2023, 5, 1067942. [Google Scholar] [CrossRef]
- Beckwith-Cohen, B.; Bentley, E.; Gasper, D.J.; McLellan, G.J.; Dubielzig, R.R. Keratitis in six dogs after topical treatment with carbonic anhydrase inhibitors for glaucoma. J. Am. Vet. Med. Assoc. 2015, 247, 1419–1426. [Google Scholar] [CrossRef]
- Stavinohova, R.; Newton, J.R.; Busse, C. The effect of prophylactic topical carbonic anhydrase inhibitors in canine primary closed-angle glaucoma. J. Small Anim. Pract. 2015, 56, 662–666. [Google Scholar] [CrossRef]
- Sebbag, L.; Crabtree, E.E.; Sapienza, J.S.; Kim, K.; Rodriguez, E. Corneal hypoesthesia, aqueous tear deficiency, and neurotrophic keratopathy following micropulse transscleral cyclophotocoagulation in dogs. Vet. Ophthalmol. 2020, 23, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Hardman, C.; Stanley, R.G. Diode laser transscleral cyclophotocoagulation for the treatment of primary glaucoma in 18 dogs: A retrospective study. Vet. Ophthalmol. 2001, 4, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cao, W.; Han, J.; Tang, B.; Sun, X. The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma. Oncotarget 2017, 8, 68984–68995. [Google Scholar] [CrossRef] [PubMed]
- Karahan, M.; Kilic, D.; Guven, S. Systemic inflammation in both open-angle and angle-closure glaucoma: Role of platelet-to-lymphocyte ratio. Bratisl. Lek. Listy 2021, 122, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Qiu, Y.; Yu, J.; Shao, M.; Li, Y.; Cao, W.; Sun, X. Association of systemic inflammation indices with visual field loss progression in patients with primary angle-closure glaucoma: Potential biomarkers for 3P medical approaches. EPMA J. 2021, 12, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Boillot, T.; Rosolen, S.G.; Dulaurent, T.; Goulle, F.; Thomas, P.; Isard, P.F.; Azoulay, T.; Lafarge-Beurlet, S.; Woods, M.; Lavillegrand, S.; et al. Determination of morphological, biometric and biochemical susceptibilities in healthy Eurasier dogs with suspected inherited glaucoma. PLoS ONE 2014, 9, e111873. [Google Scholar] [CrossRef] [PubMed]
- Sebbag, L.; Mochel, J.P. An eye on the dog as the scientist’s best friend for translational research in ophthalmology: Focus on the ocular surface. Med. Res. Rev. 2020, 40, 2566–2604. [Google Scholar] [CrossRef]
- Sebbag, L.; Allbaugh, R.A.; Weaver, A.; Seo, Y.J.; Mochel, J.P. Histamine-induced conjunctivitis and breakdown of blood-tear barrier in dogs: A model for ocular pharmacology and therapeutics. Front. Pharmacol. 2019, 10, 752. [Google Scholar] [CrossRef]
- Sebbag, L.; Broadbent, V.L.; Kenne, D.E.; Perrin, A.L.; Mochel, J.P. Albumin in tears modulates bacterial susceptibility to topical antibiotics in ophthalmology. Front. Med. 2021, 8, 663212. [Google Scholar] [CrossRef]
- Sebbag, L.; Moody, L.M.; Mochel, J.P. Albumin levels in tear film modulate the bioavailability of medically-relevant topical drugs. Front. Pharmacol. 2019, 10, 1560. [Google Scholar] [CrossRef]
- Baudouin, C.; Denoyer, A.; Desbenoit, N.; Hamm, G.; Grise, A. In vitro and in vivo experimental studies on trabecular meshwork degeneration induced by benzalkonium chloride. Trans. Am. Ophthalmol. Soc. 2012, 110, 40–63. [Google Scholar] [PubMed]
- Wang, C.; Dang, Y.; Loewen, R.T.; Waxman, S.; Shah, P.; Xia, X.; Loewen, N.A. Impact of pigment dispersion on trabecular meshwork cells. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Prendes, M.A.; Harris, A.; Wirostko, B.M.; Gerber, A.L.; Siesky, B. The role of transforming growth factor β in glaucoma and the therapeutic implications. Br. J. Ophthalmol. 2013, 97, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Gionfriddo, J.R.; Tai, P.Y.; Novakowski, A.N.; Alyahya, K.; Madl, J.E. Oxidative stress increases in retinas of dogs in acute glaucoma but not in chronic glaucoma. Vet. Ophthalmol. 2015, 18, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.; Gramlich, O.W.; Von Thun Und Hohenstein-Blaul, N.; Beck, S.; Funke, S.; Wilding, C.; Pfeiffer, N.; Grus, F.H. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog. Retin. Eye Res. 2013, 36, 199–216. [Google Scholar] [CrossRef]
- Maggio, F.; Bras, D. Surgical treatment of canine glaucoma: Filtering and end-stage glaucoma procedures. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 1261–1282. [Google Scholar] [CrossRef]
- Saito, A.; Iwashita, H.; Kazama, Y.; Wakaiki, S. Long-term vision outcomes and breed differences of Ahmed Glaucoma Valve implantation in 132 eyes of 122 dogs. Vet. Ophthalmol. 2022, 25, 118–127. [Google Scholar] [CrossRef]
- Shao, C.G.; Sinha, N.R.; Mohan, R.R.; Webel, A.D. Novel therapies for the prevention of fibrosis in glaucoma filtration surgery. Biomedicines 2023, 11, 657. [Google Scholar] [CrossRef]
- Kersey, J.P.; Broadway, D.C. Corticosteroid-induced glaucoma: A review of the literature. Eye 2006, 20, 407–416. [Google Scholar] [CrossRef]
- Herring, I.P.; Herring, E.S.; Ward, D.L. Effect of orally administered hydrocortisone on intraocular pressure in nonglaucomatous dogs. Vet. Ophthalmol. 2004, 7, 381–384. [Google Scholar] [CrossRef]
- Fusco, M.A.; Telhado, J.; da Silva Pereira, J.; Januzzi, F.G.; Botteon, P.d.T.L. Meloxicam e prednisona: Efeitos do tratamento oral de curto prazo sobre os níveis de pressão intra-ocular em cães. Braz. J. Vet. Res. Anim. Sci. 2009, 46, 363–369. [Google Scholar] [CrossRef]
- Kahane, N.; Bdolah-Abram, T.; Raskansky, H.; Ofri, R. The effects of 1% prednisolone acetate on pupil diameter and intraocular pressure in healthy dogs treated with 0.005% latanoprost. Vet. Ophthalmol. 2016, 19, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Molleda, J.M.; Tardón, R.H.; Gallardo, J.M.; Martín-Suárez, E.M. The ocular effects of intravitreal triamcinolone acetonide in dogs. Vet. J. 2008, 176, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Quantz, K.; Anderson, A.L.; Harman, C.D.; Noland, E.L.; Del Valle, J.M.; Occelli, L.M.; Burn, J.B.; Petersen-Jones, S.M.; Langlois, D.K.; Pirie, C.G.; et al. Localized alopecia and suppression of hypothalamic-pituitary-adrenal (HPA) axis in dogs following treatment with difluprednate 0.05% ophthalmic emulsion (Durezol®). BMC Vet. Res. 2021, 17, 366. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.S.; Bokaie, S.; Maadi Rodsari, A. The effect of intravenous administration of dexamethasone on intraocular pressure in clinically normal dogs. Comp. Clin. Pathol. 2009, 18, 361–363. [Google Scholar] [CrossRef]
- Gelatt, K.N.; Mackay, E.O. The ocular hypertensive effects of topical 0.1% dexamethasone in beagles with inherited glaucoma. J. Ocul. Pharmacol. Ther. 1998, 14, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Meekins, J.M.; Overton, T.L.; Rankin, A.J.; Roush, J.K. Effect of oral administration of carprofen on intraocular pressure in normal dogs. J. Vet. Pharmacol. Ther. 2016, 39, 344–349. [Google Scholar] [CrossRef]
- Pirie, C.G.; Maranda, L.S.; Pizzirani, S. Effect of topical 0.03% flurbiprofen and 0.005% latanoprost, alone and in combination, on normal canine eyes. Vet. Ophthalmol. 2011, 14, 71–79. [Google Scholar] [CrossRef]
- Millichamp, N.J.; Dziezyc, J.; Olsen, J.W. Effect of flurbiprofen on facility of aqueous outflow in the eyes of dogs. Am. J. Vet. Res. 1991, 52, 1448–1451. [Google Scholar]
- Kang, S.; Shim, J.; Seo, K. The association of topical flurbiprofen with the incidence of postoperative glaucoma after phacoemulsification in dogs. Vet. Ophthalmol. 2021, 24, 460–468. [Google Scholar] [CrossRef]
- Clark-Price, S. Nonsteroidal anti-inflammatory drugs and corticosteroids. In Pain. Management in Veterinary Practice; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 69–84. [Google Scholar]
- Pirie, C.; Maggio, F.; Maranda, L.; Pizzirani, S. Combined effect of topical prednisolone and latanoprost on normal canine eyes. A controlled study. Vet. Ophthalmol. 2006, 9, 415. [Google Scholar]
- Miller, P.E.; Schmidt, G.M.; Vainisi, S.J.; Swanson, J.F.; Herrmann, M.K. The efficacy of topical prophylactic antiglaucoma therapy in primary closed angle glaucoma in dogs: A multicenter clinical trial. J. Am. Anim. Hosp. Assoc. 2000, 36, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Dees, D.D.; Fritz, K.J.; Maclaren, N.E.; Esson, D.W.; Sheehan Gaerig, A.M.; Atkins, R.M.; Knollinger, A.M. Efficacy of prophylactic antiglaucoma and anti-inflammatory medications in canine primary angle-closure glaucoma: A multicenter retrospective study (2004–2012). Vet. Ophthalmol. 2014, 17, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Kang, S.; Shim, J.; Jeong, Y.; Lee, S.; Lee, E.; Seo, K. Prophylactic effect of topical betaxolol and dorzolamide on the fellow eye in unilateral canine primary angle closure glaucoma: 60 cases (2016.1–2021.5). Korean J. Vet. Res. 2022, 62, 23–29. [Google Scholar] [CrossRef]
- Park, Y.-W.; Jeong, M.-B.; Park, S.; Kim, W.-T.; Kim, S.-E.; Ahn, J.-S.; Seo, K.-M. A retrospective study of primary glaucoma in dogs: 43 cases (2006~2009). J. Vet. Clin. 2012, 29, 38–42. [Google Scholar]
- Slater, M.R.; Erb, H.N. Effects of risk factors and prophylactic treatment on primary glaucoma in the dog. J. Am. Vet. Med. Assoc. 1986, 188, 1028–1030. [Google Scholar]
- Strom, A.R.; Hässig, M.; Iburg, T.M.; Spiess, B.M. Epidemiology of canine glaucoma presented to University of Zurich from 1995 to 2009. Part 1: Congenital and primary glaucoma (4 and 123 cases). Vet. Ophthalmol. 2011, 14, 121–126. [Google Scholar] [CrossRef]
- Maggio, F. Glaucomas. Top. Companion Anim. Med. 2015, 30, 86–96. [Google Scholar] [CrossRef]
- Huang, W.; Li, X.; Gao, K.; Zhang, X. Combined subconjunctival injection of dexamethasone for the management of acute primary angle closure: A randomised controlled trial. Br. J. Ophthalmol. 2020, 104, 87–91. [Google Scholar] [CrossRef]
- Hogewind, B.F.; Pijl, B.; Hoyng, C.B.; Theelen, T. Purified triamcinolone acetonide as antifibrotic adjunct in glaucoma filtering surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 1213–1218. [Google Scholar] [CrossRef]
- Vohra, R.; Tsai, J.C.; Kolko, M. The role of inflammation in the pathogenesis of glaucoma. Surv. Ophthalmol. 2013, 58, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Sebbag, L.; Kirner, N.S.; Wulf, L.W.; Mochel, J.P. Tear film pharmacokinetics and systemic absorption following topical administration of 1% prednisolone acetate ophthalmic suspension in dogs. Front. Vet. Sci. 2020, 7, 571350. [Google Scholar] [CrossRef] [PubMed]
- Ewald, M.M.; Rankin, A.J.; Meekins, J.M.; Magnin, G.; KuKanich, B. Prednisolone and dexamethasone are systemically absorbed after topical application of ophthalmic suspensions in healthy dogs. Am. J. Vet. Res. 2022, 83, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Kline, K.E.; Walton, S.A.; Specht, A.J.; Santoro, D.; Watson, T.J.; Eide, M.L.; Opgenorth, T.A.; Plummer, C.E. Comparison of ophthalmic loteprednol etabonate and prednisolone acetate effects on adrenocortical response to ACTH in dogs. Vet. Ophthalmol. 2022, 25, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Roh, M.; Zhang, Y.; Murakami, Y.; Thanos, A.; Lee, S.C.; Vavvas, D.G.; Benowitz, L.I.; Miller, J.W. Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE 2012, 7, e40065. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, Y.; Luo, L. Effect of myricetin on primary open-angle glaucoma. Transl. Neurosci. 2018, 9, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Galbis-Estrada, C.; Pinazo-Durán, M.D.; Cantú-Dibildox, J.; Marco-Ramírez, C.; Díaz-Llópis, M.; Benítez-del-Castillo, J. Patients undergoing long-term treatment with antihypertensive eye drops responded positively with respect to their ocular surface disorder to oral supplementation with antioxidants and essential fatty acids. Clin. Interv. Aging 2013, 8, 711–719. [Google Scholar] [PubMed]
- Tellez-Vazquez, J. Omega-3 fatty acid supplementation improves dry eye symptoms in patients with glaucoma: Results of a prospective multicenter study. Clin. Ophthalmol. 2016, 10, 617–626. [Google Scholar] [CrossRef]
- Hopper, R.G.; Montiani-Ferreira, F.; da Silva Pereira, J.; Fritz, M.C.; Ruggiero, V.J.; Sapienza, J.S.; Kato, K.; Komáromy, A.M. Presumed neuroprotective therapies prescribed by veterinary ophthalmologists for canine degenerative retinal and optic nerve diseases. Vet. Ophthalmol. 2021, 24, 229–239. [Google Scholar] [CrossRef]
- Scuteri, D.; Rombolà, L.; Watanabe, C.; Sakurada, S.; Corasaniti, M.T.; Bagetta, G.; Tonin, P.; Russo, R.; Nucci, C.; Morrone, L.A. Impact of nutraceuticals on glaucoma: A systematic review. Prog. Brain Res. 2020, 257, 141–154. [Google Scholar]
Ocular Fluid | Disease Characteristics | Compounds | Reference |
---|---|---|---|
Aqueous humor (cytokines) | Early and end-stage primary angle-closure glaucoma, various breeds | IL-4, IL-8, IL-18, TNF-α | [21] |
Aqueous humor (proteomics) | End-stage primary angle-closure glaucoma, American Cocker Spaniels | SPP-1, PGLYRP2, YWHAE, CPN1, MGAM, APOC2, VIM, LOC476104, PON1, CCL23, CrybA3, CPN2, CHI3L1, ANGPTL3, MMP19, APOE, LOC100684663, PIGR, MFAP4, AHSG, TF, APOA1, CCL14, GPLD1, C9, SERPINC1, ITIH2, ACTB, F12, CD14, SMPDL3A, AGT, C3, C4BPA, CLU, IGFALS, AFM, C1QC, ACTR3B, ACTR3C, C2, TIMP1, HABP2, F2, FETUB, F9, F10, PEPD, SERPINF2, HPX, GC, VTN, C7, SHBG, APOD, ITIH1, KLKB1, HGFAC, CFI, CTSC, FN1, LCP1, ALB | [4] |
Tear film (proteomics) | Early and chronic primary glaucoma (open-angle and angle-closure), various breeds | Complement C3, Cytosol aminopeptidase, Cytosolic non-specific dipeptidase, Debrin-like protein, GTP-binding nuclear protein Ran, Poly(rC)-binding protein 1, Heterogenous nuclear ribonucleoprotein, Histine triad nucleotide-binding protein, Nicotinate phosphoribosyl-transferase, Osteoclast-stimulating factor 1, Protein ABHD14B, Protein-L-isoaspartate(D-aspartate) O-methyltransferase, Tumor protein D52, V-type proton ATPase catalytic subunit A, Apolipoprotein, Transforming protein RhoA, Nucleoside disphosphate kinase, Retinol binding protein, NSFL1 cofactor p47, Thymosin beta-4, Nucleoside disphosphate kinase, WD repeat-containing protein 1 | [26] |
Authors (Year) | No Therapy | Antiglaucoma | Antiglaucoma + Anti-inflammatory | Reference |
---|---|---|---|---|
Slater and Herb, 1986 | 5 months | 10 months | – | [69] |
Miller et al., 2000 | 8 months | 30.7 months | 31 months | [65] |
Strom et al., 2011 | – | 19.2 months | – | [70] |
Park et al., 2012 | 14 months (mean 17.5 months) | [68] | ||
Dees et al., 2014 | – | 195 days | 324 days | [66] |
Stavinohova et al., 2015 | – | 9.2 months | – | [32] |
Ahn et al., 2022 | – | 20.3 months | – | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebbag, L.; Pe’er, O. Role of Inflammation in Canine Primary Glaucoma. Animals 2024, 14, 110. https://doi.org/10.3390/ani14010110
Sebbag L, Pe’er O. Role of Inflammation in Canine Primary Glaucoma. Animals. 2024; 14(1):110. https://doi.org/10.3390/ani14010110
Chicago/Turabian StyleSebbag, Lionel, and Oren Pe’er. 2024. "Role of Inflammation in Canine Primary Glaucoma" Animals 14, no. 1: 110. https://doi.org/10.3390/ani14010110
APA StyleSebbag, L., & Pe’er, O. (2024). Role of Inflammation in Canine Primary Glaucoma. Animals, 14(1), 110. https://doi.org/10.3390/ani14010110