Effect of TiO2 Nanoparticle on Bioaccumulation of ndl-PCBs in Mediterranean Mussels (Mitilus galloprovincialis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Standards, Chemicals, and Reagents
2.2. TiO2NPs Dispersion Protocol
2.3. In Vivo Study Design
2.4. Determination of TiO2NPs in Mussels by spICP-MS
2.5. Determination of ndl-PCBs in Mussels by GC-MSMS
2.6. Histological Analysis of Mussels
2.7. Data Analysis
3. Results
3.1. Sp-ICPMS Characterization of TiO2NPs in Pristine Suspension Used in the In Vivo Study
3.2. Determination of TiO2NPs in Mussels by spICP-MS
3.3. GC-MSMS Determination of ndl-PCBs in Mussels
3.4. Histological Analysis of Mussels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA Scientific Committee. Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 2011, 9, 2140. [Google Scholar]
- EFSA Scientific Committee; Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018, 16, e05327. [Google Scholar]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, D.; Bharali, D.J. Oxidative Stress and Nanotechnology: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bystrzejewska-Piotrowska, G.; Golimowski, J.; Urban, P.L. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag. 2009, 29, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Lin, D.; Zhu, L.; Majumdar, S.; White, J.C.; Gardea-Torresdey, J.L.; Xing, B. Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk. Nanotoxicology 2017, 11, 591–612. [Google Scholar] [CrossRef]
- Gallocchio, F.; Biancotto, G.; Moressa, A.; Pascoli, F.; Pretto, T.; Toffan, A.; Arcangeli, G.; Montesi, F.; Peters, R.; Ricci, A. Bioaccumulation and in vivo formation of titanium dioxide nanoparticles in edible mussels. Food Chem. 2020, 323, 126841. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Balbi, T. Interactive effects of nanoparticles with other contaminants in aquatic organisms: Friend or foe? Mar. Environ. Res. 2015, 111, 128–134. [Google Scholar] [CrossRef]
- Besha, A.T.; Liu, Y.; Fang, C.; Bekele, D.N.; Naidu, R. Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments. Crit. Rev. Environ. Sci. Technol. 2020, 50, 135–215. [Google Scholar] [CrossRef]
- Wang, X.; Lu, J.; Xu, M.; Xing, B. Sorption of pyrene by regular and nanoscaled metal oxide particles: Influence of adsorbed organic matter. Environ. Sci. Technol. 2008, 42, 7267–7272. [Google Scholar] [CrossRef]
- Yang, K.; Xing, B. Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO. Environ. Sci. Technol. 2009, 43, 1845–1851. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, Y.; Song, C.; Zhu, X.; Xing, B. Bioaccumulation and biotransformation of polybrominated diphenyl ethers in the marine bivalve (Scapharca subcrenata): Influence of titanium dioxide nanoparticles. Mar. Pollut. Bull. 2015, 90, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Pulicharla, R.; Zolfaghari, M.; Brar, S.K.; Cledon, M.; Drogui, P.; Surampalli, R.Y. Cosmetic nanomaterials in wastewater: Titanium dioxide and fullerenes. J. Hazard. Toxic Radioact. Waste 2016, 20, B4014005. [Google Scholar] [CrossRef]
- Lan, Y.; Lu, Y.; Ren, Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2013, 2, 1031–1045. [Google Scholar] [CrossRef]
- Dreno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sungur, Ş.; Kaya, P.; Koroglu, M. Determination of titanium dioxide nanoparticles used in various foods. Food Addit. Contam. Part B 2020, 13, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, K.P.; Madhav, N.V.; Krishnan, A.; Malolan, R.; Rangarajan, G. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. J. Environ. Manag. 2020, 270, 110906. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Update of the monitoring of levels of dioxins and PCBs in food and feed. EFSA J. 2012, 10, 2832. [Google Scholar]
- Banni, M.; Sforzini, S.; Balbi, T.; Corsi, I.; Viarengo, A.; Canesi, L. Combined effects of n-TiO2 and 2, 3, 7, 8-TCDD in Mytilus galloprovincialis digestive gland: A transcriptomic and immunohistochemical study. Environ. Res. 2016, 145, 135–144. [Google Scholar] [CrossRef]
- Farkas, J.; Bergum, S.; Nilsen, E.W.; Olsen, A.J.; Salaberria, I.; Ciesielski, T.M.; Bączek, T.; Konieczna, L.; Salvenmoser, W.; Jenssen, B.M. The impact of TiO2 nanoparticles on uptake and toxicity of benzo (a) pyrene in the blue mussel (Mytilus edulis). Sci. Total Environ. 2015, 511, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Zhang, Y.; Song, C.; Zhu, X.; Xing, B. Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata). Environ. Pollut. 2014, 192, 59–64. [Google Scholar] [CrossRef]
- European Food Safety Authority. Results of the monitoring of non dioxin-like PCBs in food and feed. EFSA J. 2010, 8, 1701. [Google Scholar] [CrossRef] [Green Version]
- Warmuth, A.; Ohno, K. The PCBs elimination network: The information exchange platform created for the risk reduction of polychlorinated biphenyls (PCBs). J. Epidemiol. Commun. Health 2013, 67, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.V.B.; Moniruzzaman, M.; Aminabhavi, T.M. Polychlorinated biphenyls (PCBs) in the environment: Recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chem. Eng. J. 2019, 358, 1186–1207. [Google Scholar] [CrossRef]
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Higgins, C.P.; Ranville, J.F. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 9361–9369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, R.; Herrera-Rivera, Z.; Undas, A.; van der Lee, M.; Marvin, H.; Bouwmeester, H.; Weigel, S. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J. Anal. At. Spectrom. 2015, 30, 1274–1285. [Google Scholar] [CrossRef]
- REGULATION (EU) 2019/627 of 15 March 2019 Laying down Uniform Practical Arrangements for the Performance of Official Controls on Products of Animal Origin Intended for Human Consumption in Accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council and Amending Commission Regulation (EC) No 2074/2005 as Regards Official Controls. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32019R0627 (accessed on 1 December 2022).
- Balamurugan, S.; Subramanian, P. Histopathology of the Foot, Gill and Digestive Gland Tissues of Freshwater Mussel, Lamellidens marginalis Exposed to Oil Effluent. Austin J. Environ. Toxicol. 2021, 7, 1033. [Google Scholar]
- Doyle, J.J.; Ward, J.E.; Mason, R. An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Mar. Environ. Res. 2015, 110, 45–52. [Google Scholar] [CrossRef]
- Hull, M.S.; Vikesland, P.J.; Schultz, I.R. Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis). Aquat. Toxicol. 2013, 140–141, 89–97. [Google Scholar] [CrossRef]
- Gatidou, G.; Vassalou, E.; Thomaidis, N.S. Bioconcentration of selected endocrine disrupting compounds in the Mediterranean mussel, Mytilus galloprovincialis. Mar. Pollut. Bull. 2010, 60, 2111–2116. [Google Scholar] [CrossRef]
- Martinez-Albores, A.; Lopez-Santamarina, A.; Rodriguez, J.A.; Ibarra, I.S.; Mondragón, A.d.C.; Miranda, J.M.; Lamas, A.; Cepeda, A. Complementary methods to improve the depuration of bivalves: A review. Foods 2020, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | spICP-MS Analysis | |
---|---|---|
Mass-Based Concentration of TiO2NPs in μg Ti/kg (N = 5) (Average ± SE) Ti48 | Average Diameter of TiO2NPs in nm (N = 5) (Average ± SE) | |
Group 1 (control) | <LoQ = 50 | <LoDsize = 40 |
Group 2 (control) | <LoQ = 50 | <LoDsize = 40 |
Group 3 (ndl-PCBs 20 µg/mL) | <LoQ = 50 | <LoDsize = 40 |
Group 4 (ndl-PCBs 20 µg/mL) | <LoQ = 50 | <LoDsize = 40 |
Group 5 (ndl-PCBs 20 µg/mL + TiO2NPs 100 µg/mL) | 3247 ± 567 | 132 ± 15 |
Group 6 (ndl-PCBs 20 µg/mL + TiO2NPs 100 µg/mL) | 1620 ± 223 | 123 ± 20 |
QC- | <LOQ | na |
QCM- | <LOQ | na |
QCM+ (TiO2NPs 100 μg/kg) | 101 ± 10 | 115 ± 10 |
QCM+ (TiO2NPs 100 μg/kg) | 98 ± 9 | 121 ± 17 |
Sample | GC-MSMS Analysis | |||||
---|---|---|---|---|---|---|
PCB-28 µg/kg (N = 5) (Average ± SE) | PCB-52 µg/kg (N = 5) (Average ± SE) | PCB-101 µg/kg (N = 5) (Average ± SE) | PCB-153 µg/kg (N = 5) (Average ± SE) | PCB-138 µg/kg (N = 5) (Average ± SE) | PCB-180 µg/kg (N = 5) (Average ± SE) | |
Group 1 (control) | <LOQ = 6.25 | <LoQ = 6.25 | <LoQ = 6.25 | <LoQ = 6.25 | <LoQ = 6.25 | <LoQ = 6.25 |
Group 2 (control) | <LoQ = 6.25 | <LoQ = 6.25 | <LoQ = 6.25 | <LoQ = 6.25 | <LoQ = 6.25 | <LoQ = 6.25 |
Group 3 (ndl-PCBs 20 µg/mL) | 3818.4 ± 166.0 | 8078.2 ± 293.5 | 10,176.3 ± 664.3 | 11,127.5 ± 36.0 | 9594.3 ± 308.0 | 5377.8 ± 698.1 |
Group 4 (ndl-PCBs 20 µg/mL) | 2712.7 ± 36.1 | 6439.6 ± 175.2 | 8518.5 ± 119.2 | 9498.0 ± 794.1 | 8332.3 ± 10.6 | 4959.4± 60.9 |
Group 5 (ndl-PCBs 20 µg/mL + TiO2NPs 100 µg/mL) | 3048.6 ± 24.0 | 7448.0 ± 350.3 | 11,560.5 ± 319.8 | 14,635.9 ± 1029.3 | 12,086.1 ± 403.4 | 6540.3 ± 282.3 |
Group 6 (ndl-PCBs 20 µg/mL + TiO2NPs 100 µg/mL) | 5726.0 ± 571.0 | 5896.5 ± 54.7 | 9283.4 ± 920.3 | 9931.2 ± 700.3 | 9442.8 ± 110.9 | 5257.0 ± 67.1 |
QC- | <LOQ = 6.25 | <LOQ = 6.25 | <LOQ = 6.25 | <LOQ = 6.25 | <LOQ = 6.25 | <LOQ = 6.25 |
QCM- | <LOQ = 6.25 | <LOQ = 6.25 | <LOQ = 6.25 | <LOQ = 6.25 | <LOQ = 6.25 | <LOQ = 6.25 |
QCM+ (ndl-PCBs 6.25 µg/kg) | 6.0 ± 1.0 | 6.4 ± 0.7 | 5.9 ± 0.5 | 5.8 ± 0.6 | 6.2 ± 0.7 | 6.6 ± 0.6 |
QCM+ (ndl-PCBs 6.25 µg/kg) | 6.1 ± 0.9 | 6.3 ± 0.8 | 5.8 ± 0.5 | 6.0 ± 0.8 | 6.0 ± 0.8 | 6.5 ± 0.7 |
QCM+ (ndl-PCBs 1200 µg/kg) | 10,773.1 ± 161.0 | 8966.6 ± 377.6 | 11,278.1 ± 782.4 | 11,551.9 ± 442.9 | 11,585.3 ± 736.0 | 10,770.1 ± 971.2 |
QCM+ (ndl-PCBs 1200 µg/kg) | 11,004.5 ± 220.0 | 9725.3 ± 122.7 | 13,319.4 ± 340.5 | 11,738.7 ± 1111.1 | 12,047.3 ± 349.7 | 12,558.0 ± 511.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallocchio, F.; Moressa, A.; Pascoli, F.; Vetri, A.; Toffan, A.; Pretto, T.; Arcangeli, G.; Angeletti, R.; Ricci, A. Effect of TiO2 Nanoparticle on Bioaccumulation of ndl-PCBs in Mediterranean Mussels (Mitilus galloprovincialis). Animals 2023, 13, 1208. https://doi.org/10.3390/ani13071208
Gallocchio F, Moressa A, Pascoli F, Vetri A, Toffan A, Pretto T, Arcangeli G, Angeletti R, Ricci A. Effect of TiO2 Nanoparticle on Bioaccumulation of ndl-PCBs in Mediterranean Mussels (Mitilus galloprovincialis). Animals. 2023; 13(7):1208. https://doi.org/10.3390/ani13071208
Chicago/Turabian StyleGallocchio, Federica, Alessandra Moressa, Francesco Pascoli, Alessia Vetri, Anna Toffan, Tobia Pretto, Giuseppe Arcangeli, Roberto Angeletti, and Antonia Ricci. 2023. "Effect of TiO2 Nanoparticle on Bioaccumulation of ndl-PCBs in Mediterranean Mussels (Mitilus galloprovincialis)" Animals 13, no. 7: 1208. https://doi.org/10.3390/ani13071208
APA StyleGallocchio, F., Moressa, A., Pascoli, F., Vetri, A., Toffan, A., Pretto, T., Arcangeli, G., Angeletti, R., & Ricci, A. (2023). Effect of TiO2 Nanoparticle on Bioaccumulation of ndl-PCBs in Mediterranean Mussels (Mitilus galloprovincialis). Animals, 13(7), 1208. https://doi.org/10.3390/ani13071208