Automated Quantification of the Behaviour of Beef Cattle Exposed to Heat Load Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Animal Facilities
2.3. Animal Management
2.4. Automated Behavioural Quantification and Other Key Observations
2.5. Climatic Data
2.6. Statistical Analyses
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, G. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1999, 77, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mader, T.L. Environmental stress in confined beef cattle. J. Anim. Sci. 2003, 81, E110–E119. [Google Scholar]
- Farooq, U.; Samad, H.; Shehzad, F.; Qayyum, A. Physiological responses of cattle to heat stress. World Appl. Sci. J. 2010, 8, 38–43. [Google Scholar]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J.C. Non-Invasive physiological indicators of heat stress in cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Nienaber, J.; Hahn, G. Livestock production system management responses to thermal challenges. Int. J. Biometeorol. 2007, 52, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, B. Implications of excessive heat load to the welfare of cattle in feedlots. In Recent Advances in Animal Nutrition in Australia; Farrel, D.J., Ed.; University of New England: Armidale, NSW, Australia, 1993; pp. 45–50. [Google Scholar]
- Petherick, J.C.; Phillips, C.J. Space allowances for confined livestock and their determination from allometric principles. Appl. Anim. Behav. Sci. 2009, 117, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Lisle, A.T.; Phillips, C.J. Development of an effective sampling strategy for ammonia, temperature and relative humidity measurement during sheep transport by ship. Biosyst. Eng. 2017, 155, 12–23. [Google Scholar] [CrossRef]
- McCarthy, M. Independent Review of Conditions for the Export of Sheep to the Middle East during the Northern Hemisphere Summer; The Office of the Minister for Agriculture and Water Resources: Canberra, ACT, Australia, 2018. [Google Scholar]
- Spink, A.; Tegelenbosch, R.; Buma, M.; Noldus, L. The ethovision video tracking system—A tool for behavioral phenotyping of transgenic mice. Physiol. Behav. 2001, 73, 731–744. [Google Scholar] [CrossRef]
- Leighty, R.E.; Runfeldt, M.J.; Berndt, D.J.; Schleif, W.S.; Cracchiolo, J.R.; Potter, H.; Arendash, G.W. Use of artificial neural networks to determine cognitive impairment and therapeutic effectiveness in alzheimer’s transgenic mice. J. Neurosci. Methods 2008, 167, 358–366. [Google Scholar] [CrossRef]
- Spruijt, B.M.; DeVisser, L. Advanced behavioural screening: Automated home cage ethology. Drug Discov. Today Technol. 2006, 3, 231–237. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, Y.C.; Huang, K.N.; Jen, S.L.; Young, M.S. Video tracking algorithm of long-term experiment using stand-alone recording system. Rev. Sci. Instrum. 2008, 79, 085108. [Google Scholar] [CrossRef]
- Junior, C.F.C.; Pederiva, C.N.; Bose, R.C.; Garcia, V.A.; Lino-de-Oliveira, C.; Marino-Neto, J. Ethowatcher: Validation of a tool for behavioral and video-tracking analysis in laboratory animals. Comput. Biol. Med. 2012, 42, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Conklin, E.E.; Lee, K.L.; Schlabach, S.A.; Woods, I.G. Videohacking: Automated tracking and quantification of locomotor behavior with open source software and off-the-shelf video equipment. J. Undergrad. Neurosci. Educ. 2015, 13, A120. [Google Scholar] [PubMed]
- Noldus, L.P.; Spink, A.J.; Tegelenbosch, R.A. Ethovision: A versatile video tracking system for automation of behavioral experiments. Behav Res. Methods Instrum. Comput. 2001, 33, 398–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouchiroud, L.; Sorrentino, V.; Williams, E.G.; Cornaglia, M.; Frochaux, M.V.; Lin, T.; Nicolet-dit-Felix, A.A.; Krishnamani, G.; Ouhmad, T.; Gijs, M.A.M.; et al. The movement tracker: A flexible system for automated movement analysis in invertebrate model organisms. Curr. Protoc. Neurosci. 2016, 77, 8.37.1–8.37.21. [Google Scholar] [CrossRef] [PubMed]
- Itskovits, E.; Levine, A.; Cohen, E.; Zaslaver, A. A multi-animal tracker for studying complex behaviors. BMC Biol. 2017, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- Bloemen, H.; Aerts, J.M.; Berckmans, D.; Goedseels, V. Image analysis to measure activity index of animals. Equine Vet. J. 1997, 29, 16–19. [Google Scholar] [CrossRef]
- Lind, N.M.; Vinther, M.; Hemmingsen, R.P.; Hansen, A.K. Validation of a digital video tracking system for recording pig locomotor behaviour. J. Neurosci. Methods 2005, 143, 123–132. [Google Scholar] [CrossRef]
- Caulfield, M.P.; Cambridge, H.; Foster, S.F.; McGreevy, P.D. Heat stress: A major contributor to poor animal welfare associated with long-haul live export voyages. Vet. J. 2014, 199, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.L.; Wijfels, G.; George, A.; Al-Hosni, Y.A.; Olm, J.; Gaughan, J.B. Elliptical and linear relationships with rumen temperature support a homeorhetic trajectory for DMI during recovery of feedlot cattle exposed to moderate heat load. J. Anim. Sci. 2022, 100, skac127. [Google Scholar] [CrossRef]
- Friard, O.; Gamba, M. Boris: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Idris, M. Behavioural and Physiological Responses of Beef Cattle to Hot Environmental Conditions. Ph.D. Thesis, The University of Queensland, Gatton, QLD, Australia, 2020. [Google Scholar]
- Gaughan, J.B.; Mader, T.L. Body temperature and respiratory dynamics in un-shaded beef cattle. Int. J. Biometeorol. 2014, 58, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Shultz, T. Weather and shade effects on cow corral activities. J. Dairy Sci. 1984, 67, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Nienaber, J.A. Heat stress risk factors of feedlot heifers. Livest. Sci. 2006, 105, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Brown-Brandl, T.M.; Nienaber, J.A.; Eigenberg, R.A.; Mader, T.L.; Morrow, J.; Dailey, J. Comparison of heat tolerance of feedlot heifers of different breeds. Livest. Sci. 2006, 105, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.; Smith, N.; Taylor, J.; Sharp, M. Manipulating metabolic parameters to improve growth rate and milk secretion. J. Anim. Sci. 1980, 51, 1416–1428. [Google Scholar] [CrossRef]
- West, J.W. Balancing diets for dairy cattle during heat stress conditions. In Florida Ruminant Nutrition Symposium Proceedings; University of Florida: Gainesville, FL, USA, 1997. [Google Scholar]
- Conte, G.; Ciampolini, R.; Cassandro, M.; Lasagna, E.; Calamari, L.; Bernabucci, U.; Abeni, F. Feeding and nutrition management of heat-stressed dairy ruminants. Ital. J. Anim. Sci. 2018, 17, 604–620. [Google Scholar] [CrossRef] [Green Version]
- Oetzel, G.R. Subacute ruminal acidosis in dairy herds: Physiology, pathophysiology, milk fat responses, and nutritional management. In Proceedings of the 40th Annual Conference, American Association of Bovine Practitioners, Vancouver, BC, Canada, 17 September 2007; pp. 89–119. [Google Scholar]
- Abdela, N. Sub-acute ruminal acidosis (sara) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Erdman, R.A. Dietary buffering requirements of the lactating dairy cow: A review. J. Dairy Sci. 1988, 71, 3246–3266. [Google Scholar] [CrossRef]
- Mishra, M.; Martz, F.; Stanley, R.; Johnson, H.; Campbell, J.; Hilderbrand, E. Effect of diet and ambient temperature-humidity on ruminal ph, oxidation reduction potential, ammonia and lactic acid in lactating cows. J. Anim. Sci. 1970, 30, 1023–1028. [Google Scholar] [CrossRef]
- Shearer, J. Rumen acidosis, heat stress and laminitis. In Proceedings of the 4th Annual Arizona Dairy Production Conference, Tempe, AZ, USA, 11 October 2005. [Google Scholar]
- Bandaranayaka, D.; Holmes, C. Changes in the composition of milk and rumen contents in cows exposed to a high ambient temperature with controlled feeding. Trop. Anim. Health Prod. 1976, 8, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Niles, M.; Collier, R.; Croom, W. Effects of heat stress on rumen and plasma metabolites and plasma hormone concentrations of holstein cows. J. Anim. Sci. 1980, 51, 152. [Google Scholar]
- Hernández, J.; Benedito, J.L.; Abuelo, A.; Castillo, C. Ruminal acidosis in feedlot: From aetiology to prevention. Sci. World J. 2014, 2014, 702572. [Google Scholar] [CrossRef] [Green Version]
- Haley, D.; Rushen, J.; de Passillé, A. Behavioural indicators of cow comfort: Activity and resting behaviour of dairy cows in two types of housing. Can. J. Anim. Sci. 2000, 80, 257–263. [Google Scholar] [CrossRef]
- Phillips, C.J.C. Cattle Behaviour and Welfare; Blackwell’s Scientific: Oxford, UK, 2002; pp. 180–297. [Google Scholar]
- Gaughan, J.; Mader, T.; Holt, S. Cooling and feeding strategies to reduce heat load of grain-fed beef cattle in intensive housing. Livest. Sci. 2008, 113, 226–233. [Google Scholar] [CrossRef]
- Lees, A.M. Biological Responses of Feedlot Cattle to Heat Load; The University of Queensland: Brisbane, QLD, Australia, 2016. [Google Scholar]
- Young, B.; Hall, A. Heat load in cattle in the Australian environment. In Australian Beef; Morescope Publishing: Melbourne, VIC, Australia, 1993; pp. 143–148. [Google Scholar]
- Mader, T.; Holt, S.; Hahn, G.; Davis, M.; Spiers, D. Feeding strategies for managing heat load in feedlot cattle. J. Anim. Sci. 2002, 80, 2373–2382. [Google Scholar] [CrossRef] [Green Version]
- Robins, A.; Berthoux, G.; Santurtun, E.; Navarro, G.; Phillips, C. Sheep quickstep while the floor rock and rolls: Visuomotor lateralization during simulated sea travel. Animals 2019, 9, 700. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, D.; Keeling, L.J. Routine activities and emotion in the life of dairy cows: Integrating body language into an affective state framework. PLoS ONE 2018, 13, e0195674. [Google Scholar] [CrossRef] [Green Version]
- Santurtun, E.; Moreau, V.; Marchant-Forde, J.; Phillips, C. Physiological and behavioral responses of sheep to simulated sea transport motions. J. Anim. Sci. 2015, 93, 1250–1257. [Google Scholar] [CrossRef]
- Rousing, T.; Bonde, M.; Badsberg, J.H.; Sørensen, J.T. Stepping and kicking behaviour during milking in relation to response in human–animal interaction test and clinical health in loose housed dairy cows. Livest. Prod. Sci. 2004, 88, 1–8. [Google Scholar] [CrossRef]
- Goma, A.A.; Pearce, G.P.; Uddin, J.; Rimon, E.; Davies, H.; Phillips, C.J.C. A forced lateralisation test for dairy cows and its relation to their behaviour. Appl. Anim. Behav. Sci. 2018, 207, 8–19. [Google Scholar]
- Chapinal, N.; De Passille, A.; Weary, D.; Von Keyserlingk, M.; Rushen, J. Using gait score, walking speed, and lying behavior to detect hoof lesions in dairy cows. J. Dairy Sci. 2009, 92, 4365–4374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neveux, S.; Weary, D.; Rushen, J.; Von Keyserlingk, M.; De Passillé, A. Hoof discomfort changes how dairy cattle distribute their body weight. J. Dairy Sci. 2006, 89, 2503–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Day | Treatment Phase | Min TA (°C) | Max TA (°C) | Mean TA (°C) | Min RH (%) | Max RH (%) | Mean RH (%) | Min THI | Max THI | Mean THI |
---|---|---|---|---|---|---|---|---|---|---|
0 | ACC | 19.7 | 21.0 | 20.1 | 60.9 | 90.6 | 66.2 | 65.5 | 69.1 | 66.3 |
1 | ACC | 19.7 | 21.0 | 20.1 | 60.9 | 90.6 | 66.2 | 65.5 | 69.1 | 66.3 |
2 | ACC | 19.5 | 21.6 | 20.0 | 60.0 | 89.3 | 67.1 | 65.3 | 68.9 | 66.2 |
3 | TN | 19.5 | 20.8 | 19.9 | 61.3 | 90.1 | 67.9 | 65.3 | 68.8 | 66.1 |
4 | TN | 19.6 | 24.0 | 20.2 | 60.0 | 89.1 | 68.2 | 65.5 | 72.0 | 66.4 |
5 | TP1 | 19.9 | 40.5 | 33.2 | 42.9 | 88.4 | 66.1 | 66.3 | 92.6 | 84.9 |
Finisher Dietary Cohort—Transition to 30 °C from 00.00 h on day 5 Substituted Dietary Cohort—Transition to 30 °C from 21.00 h on day 5 | ||||||||||
6 | HOT | 28.4 | 40.2 | 33.0 | 43.3 | 82.8 | 65.8 | 80.5 | 91.8 | 84.8 |
7 | HOT | 28.4 | 38.1 | 32.1 | 42.3 | 84.2 | 63.7 | 78.3 | 89.1 | 83.0 |
8 | HOT | 24.9 | 34.3 | 28.7 | 44.3 | 82.0 | 65.9 | 73.6 | 85.0 | 78.4 |
9 | HOT | 22.6 | 34.4 | 28.0 | 45.81 | 79.5 | 66.2 | 69.9 | 85.7 | 77.5 |
10 | HOT | 20.6 | 30.3 | 24.3 | 54.4 | 80.5 | 66.7 | 67.2 | 80.0 | 72.3 |
11 | HOT | 20.4 | 30.4 | 24.2 | 45.3 | 80.6 | 65.8 | 67.1 | 79.2 | 72.0 |
12 | HOT | 19.7 | 21.3 | 20.3 | 50.0 | 90.5 | 64.6 | 65.8 | 68.8 | 66.4 |
13 | TP2 | 19.7 | 20.7 | 20.1 | 56.4 | 91.3 | 65.5 | 65.6 | 68.6 | 66.2 |
14 | Recovery | 19.7 | 21.4 | 20.1 | 58.1 | 89.0 | 66.7 | 65.6 | 69.6 | 66.2 |
15 | Recovery | 19.6 | 20.5 | 19.9 | 58.4 | 90.3 | 66.4 | 65.6 | 68.2 | 66.0 |
16 | Recovery | 19.4 | 25.0 | 20.5 | 57.8 | 93.5 | 66.4 | 65.2 | 73.2 | 66.8 |
17 | Recovery | 19.3 | 23.7 | 21.1 | 58.1 | 69.0 | 61.9 | 64.9 | 71.1 | 67.5 |
Item | Starter | Intermediate | Finisher Diet | Substituted Diet |
---|---|---|---|---|
Ingredients, % of diet | ||||
Grain mix * | 62.1 | 74.5 | 86.8 | 78.7 |
Whole cottonseed | 9.0 | 16.5 | 9.0 | 9.0 |
Lucerne hay | 28.9 | 9.0 | 4.2 | 12.3 |
Nutrient composition | ||||
DM, g/kg fresh weight | 880 | 893 | 887 | 886 |
ADF, g/kg DM | 263 | 257 | 119 | 177 |
NDF, g/kg DM | 404 | 375 | 229 | 253 |
NEg, MJ/kg DM | 29 | 29 | 30 | 30 |
ME, MJ/kg DM | 116 | 119 | 132 | 131 |
DE, MJ/kg DM | 143 | 147 | 163 | 162 |
Crude fibre, g/kg DM | 218 | 197 | 87 | 124 |
Nitrogen-free extract, g/kg DM | 503 | 548 | 678 | 685 |
Fat, g/kg DM | 46 | 43 | 46 | 43 |
Feed digestibility, g/kg DM | 768 | 791 | 861 | 868 |
Digestible DM, g/kg DM | 676 | 707 | 763 | 769 |
Digestible protein g/kg DM | 133 | 125 | 130 | 131 |
Starch, g/kg DM | 229 | 218 | 432 | 432 |
Item | Description |
---|---|
Standing | Animal standing with limb positioned upright |
Lying | Animal resting on the floor with their limb laterally or sternally recumbent |
Eating | Animal consuming feed at the trough |
Rumination | Animal chewing the cud or regurgitating bolus |
Grooming/Scratch | Animal licking any part of the body or striking one part with another part of the body or with fixture of the pen |
Stepping | |
Front right (FR) limb | Animal raising a front right limb and replacing it forthwith on the surface of pen |
Front left (FL) limb | Animal raising a front left limb and replacing it forthwith on the surface of pen |
Back right (BR) limb | Animal raising a back right limb and replacing it forthwith on the surface of pen |
Back left (BL) limb | Animal raising a back left limb and replacing it forthwith on the surface of pen |
Behaviour | Periods | SED | f-Value (d.f. †) | p-Value | ||||
---|---|---|---|---|---|---|---|---|
TN | HOT | Period (p) | D × P | S/L | P × S/L | |||
Video-digitised movement, Log10+1 (pixel changes/5 min) | 4.95 b (89,579) | 5.12 a (131,940) | 0.0684 | 7.56 (1, 21) | 0.012 | 0.29 | - | - |
Video-digitised movement of standing and lying cattle, Log10+1 (pixel changes/min) | 5.27 (184,926) | 5.40 (248,312) | 0.223 | 0.83 (1, 35.69) | 0.37 | - | ≤0.001 | 0.85 |
Period | SED | f-Value (d.f.†) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | HOT | Recovery | Period (P) | Diet (D) | D × P | D × d | S/L | P × S/L | ||
Video-digitised movement (pixel changes/5 min) | 163,112 a | 56,814 b | 28,426 | 44.48 (1, 54) | ≤0.001 | ≤0.001 | ≤0.001 | 0.003 | - | - |
Video-digitised movement of standing and lying cattle, Log10+1; pixel changes/min (pixels change/min) | 5.37 (235,012) | 5.10 (126,209) | 0.287 | 3.13 (1, 32) | 0.086 | - | - | - | ≤0.001 | 0.241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idris, M.; Gay, C.C.; Woods, I.G.; Sullivan, M.; Gaughan, J.B.; Phillips, C.J.C. Automated Quantification of the Behaviour of Beef Cattle Exposed to Heat Load Conditions. Animals 2023, 13, 1125. https://doi.org/10.3390/ani13061125
Idris M, Gay CC, Woods IG, Sullivan M, Gaughan JB, Phillips CJC. Automated Quantification of the Behaviour of Beef Cattle Exposed to Heat Load Conditions. Animals. 2023; 13(6):1125. https://doi.org/10.3390/ani13061125
Chicago/Turabian StyleIdris, Musadiq, Caitlin C. Gay, Ian G. Woods, Megan Sullivan, John B. Gaughan, and Clive J. C. Phillips. 2023. "Automated Quantification of the Behaviour of Beef Cattle Exposed to Heat Load Conditions" Animals 13, no. 6: 1125. https://doi.org/10.3390/ani13061125
APA StyleIdris, M., Gay, C. C., Woods, I. G., Sullivan, M., Gaughan, J. B., & Phillips, C. J. C. (2023). Automated Quantification of the Behaviour of Beef Cattle Exposed to Heat Load Conditions. Animals, 13(6), 1125. https://doi.org/10.3390/ani13061125