Effects of Intramammary Antimicrobial Treatment on the Milk Microbiota Composition in Mild Clinical Bovine Mastitis Caused by Gram-Positive Bacteria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Bacterial Cultures and Sensitivity Tests
2.3. Milk Test
2.4. DNA Extraction, 16S rRNA Gene Amplicon Sequencing, and Preprocessing of Sequence Reads
2.5. Statistical Analyses
3. Results
3.1. Cow Characteristics
3.2. Bacterial Isolation and Antimicrobial Sensitivity Tests
3.3. Milk SCS and NAGase Activity
3.4. Microbial Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shinozuka, Y. Consider antibiotics treatment for non-severe clinical mastitis in dairy cattle. J. Farm Anim. Infect. Dis. 2019, 8, 73–78. Available online: https://www.kachikukansen.org/kaiho2/PDF/8-3-1.pdf (accessed on 22 December 2022). (In Japanese (Ab-stract in English)).
- Oliveira, L.; Hulland, C.; Ruegg, P. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013, 96, 7538–7549. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Langa, S.; Martin, V.; Jiménez, E.; Martín, R.; Rodríguez, J. The microbiota of human milk in healthy women. Cell. Mol. Biol. 2013, 59, 31–42. [Google Scholar] [PubMed]
- Yeoman, C.J.; Ishaq, S.L.; Bichi, E.; Olivo, S.K.; Lowe, J.; Aldridge, B.M. Biogeographical differences in the infuence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract. Sci. Rep. 2018, 8, 3197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falentin, H.; Rault, L.; Nicolas, A.; Bouchard, D.S.; Lassalas, J.; Lamberton, P.; Aubry, J.-M.; Marnet, P.-G.; Le Loir, Y.; Even, S. Bovine Teat Microbiome Analysis Revealed Reduced Alpha Diversity and Significant Changes in Taxonomic Profiles in Quarters with a History of Mastitis. Front. Microbiol. 2016, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, G.; Bicalho, M.L.; Meira, E.; Rossi, R.E.; Foditsch, C.; Machado, V.S.; Teixeira, A.G.V.; Santisteban, C.; Schukken, Y.H.; Bicalho, R.C. Microbiota of cow’s milk; distinguishing healthy, sub-clinically and clinically diseased quarters. PLoS ONE 2014, 9, e85904. [Google Scholar] [CrossRef] [Green Version]
- Patangia, D.V.; Ryan, C.A.; Dempsey, E.; Ross, R.P.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen 2021, 11, e1206. [Google Scholar] [CrossRef]
- Ramirez, J.; Guarner, F.; Fernandez, L.B.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef]
- Ji, S.; Jiang, T.; Yan, H.; Guo, C.; Liu, J.; Su, H.; Algongo, G.M.; Shi, H.; Wang, Y.; Cao, Z.; et al. Ecological restoration of antibiotic-disturbed gastrointestinal microbiota in foregut and hindgut of cows. Front. Cell. Infect. Microbiol. 2018, 8, 79. [Google Scholar] [CrossRef]
- Yousif, M.H.; Li, J.; Li, Z.; Alugongo, G.M.; Ji, S.; Li, Y.; Wang, Y.; Li, S.; Cao, Z. Low concentration of antibiotics modulates gut microbiota at different levels in pre-weaning dairy calves. Microorganisms 2018, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Soto, A.; Martın, V.; Jimenez, E.; Mader, I.; Rodrıguez, J.M.; Fernandez, L. Lactobacilli and Bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermansson, H.; Kumar, H.; Collado, M.C.; Salminen, S.; Isolauri, E.; Rautava, S. Breast Milk Microbiota Is Shaped by Mode of Delivery and Intrapartum Antibiotic Exposure. Front. Nutr. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basbas, C.; Aly, S.; Okello, E.; Karle, B.M.; Lehenbauer, T.; Williams, D.; Ganda, E.; Wiedmann, M.; Pereira, R.V. Effect of Intramammary Dry Cow Antimicrobial Treatment on Fresh Cow’s Milk Microbiota in California Commercial Dairies. Antibiotics 2022, 11, 963. [Google Scholar] [CrossRef] [PubMed]
- Bonsaglia, E.C.R.; Gomes, M.S.; Canisso, I.F.; Zhou, Z.; Lima, S.F.; Rall, V.L.M.; Oikonomou, G.; Bicalho, R.C.; Lima, F.S. Milk microbiome and bacterial load following dry cow therapy without antibiotics in dairy cows with healthy mammary gland. Sci. Rep. 2017, 7, 8067. [Google Scholar] [CrossRef] [Green Version]
- Roberson, J.R. Establishing treatment protocols for clinical mastitis. Veter Clin. N. Am. Food Anim. Pract. 2003, 19, 223–234. [Google Scholar] [CrossRef]
- Dahlberg, J.; Williams, J.; McGuire, M.; Peterson, H.; Östensson, K.; Agenäs, S.; Dicksved, J.; Waller, K.P. Microbiota of bovine milk, teat skin, and teat canal: Similarity and variation due to sampling technique and milk fraction. J. Dairy Sci. 2020, 103, 7322–7330. [Google Scholar] [CrossRef]
- Kurumisawa, T.; Kawai, K.; Shinozuka, Y. Verification of a simplified disk diffusion method for antimicrobial susceptibility testing of bovine mastitis isolates. Jpn. J. Vet. Res. 2021, 69, 135–143. [Google Scholar]
- Kawai, K.; Hayashi, T.; Kiku, Y.; Chiba, T.; Nagahata, H.; Higuchi, H.; Obayashi, T.; Itoh, S.; Onda, K.; Arai, S.; et al. Reliability in somatic cell count measurement of clinical mastitis milk using DeLaval cell counter. Anim. Sci. J. 2013, 84, 805–807. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Shook, G.E. A Lactation Measure of Somatic Cell Count. J. Dairy Sci. 1987, 70, 2666–2672. [Google Scholar] [CrossRef]
- De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef] [Green Version]
- GenomeSync. Available online: http://genomesync.org (accessed on 14 May 2022).
- Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 2012, 40, D136–D143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Ganda, E.K.; Bisinotto, R.S.; Lima, S.F.; Kronauer, K.; Decter, D.H.; Oikonomou, G.; Schukken, Y.H.; Bicalho, R.C. Longitudinal metagenomic profiling of bovine milk to assess the impact of intramammary treatment using a third-generation cephalosporin. Sci. Rep. 2016, 6, 37565. [Google Scholar] [CrossRef] [Green Version]
- Pyörälä, S. Indicators of inflammation in the diagnosis of mastitis. Veter. Res. 2003, 34, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Kalmus, P.; Simojoki, H.; Orro, T.; Taponen, S.; Mustonen, K.; Holopainen, J.; Pyörälä, S. Efficacy of 5-day parenteral versus intramammary benzylpenicillin for treatment of clinical mastitis caused by gram-positive bacteria susceptible to penicillin in vitro. J. Dairy Sci. 2014, 97, 2155–2164. [Google Scholar] [CrossRef] [Green Version]
- Taponen, S.; Pyörälä, S. Coagulase-negative staphylococci as cause of bovine mastitis -not so different from? Vet. Microbiol. 2009, 134, 29–36. [Google Scholar] [CrossRef]
- Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010, 156, 3216–3223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, C.; Luukkonen, P.; Yki-Järvinen, H.; Salonen, A.; Korpela, K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE 2020, 15, e0227285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuki, T.; Watanabe, K.; Fujimoto, J.; Takada, T.; Tanaka, R. Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Human Feces. Appl. Environ. Microbiol. 2004, 70, 7220–7228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PCR Mixture | PCR Condition | ||||
---|---|---|---|---|---|
Forward primer [23] | 0.25 µM (Final conc.) | 5′-GACGGGCGGTGWGTRCA-3′ | |||
Reverse primer [23] | 0.25 µM (Final conc.) | 5′-AGRGTTYGATYMTGGCTCAG-3′ | |||
KAPA HiFi HotStart ReadyMix | 10 µL | Amplification | |||
Step | Duration | Temperature | Cycles | ||
Nuclease Free Water | 7 µL | Initial denaturation | 5 min | 95 °C | 1 |
Haloarcula japonica * | 1 µL (2.8 × 103 cells) | Denaturation | 20 s | 98 °C | 35 |
Genomic DNA | 1 µL (100 ng) | Annealing | 15 s | 69 °C | 35 |
Extension | 60 s | 72 °C | 35 | ||
Final extension | 5 min | 72 °C | 1 | ||
Hold | ∞ | 4 °C | 1 |
Treatment Group | Antimicrobial Treatment | n | Characteristics | |||
---|---|---|---|---|---|---|
Day 0 | Day 1 | Age (Mean ± S.D.) | DIM (Mean ± S.D.) | Parity (Mean ± S.D.) | ||
NT-NT | NO | NO | 3 | 3.20 ± 1.25 | 126.67 ± 119.56 | 1.33 ± 0.58 |
NT-AMT | NO | YES | 7 | 3.36 ± 1.29 | 134.29 ± 88.27 | 1.86 ± 1.07 |
AMT-AMT | YES | YES | 6 | 3.50 ± 0.67 | 226.67 ± 128.13 | 1.83 ± 0.75 |
p value * | 0.8047 | 0.425 | 0.6124 |
Sample No. | Treatment Group | Isolation | BBL Crystal Result | Inhibition Circle Diameter (mm) | Susceptibility | ||
---|---|---|---|---|---|---|---|
Penicillin | Kanamycin | Penicillin | Kanamycin | ||||
1 | NT-NT | CNS | Staphylococcus equorum | ND | ND | ND | ND |
2 | NT-NT | CNS | Staphylococcus equorum | ND | ND | ND | ND |
3 | NT-NT | CNS | Staphylococcus saprophyticus | ND | ND | ND | ND |
4 | NT-AMT | OS | Streptococcus dysgalactiae | 29.7 | 9.3 | S | R |
5 | NT-AMT | CNS | Staphylococcus haemolyticus | 38.0 | 31.2 | S | S |
6 | NT-AMT | OS | Streptococcus equinus | 28.8 | 7.0 | S | R |
7 | NT-AMT | OS | Streptococcus porcinus | 25.9 | 7.0 | S | R |
8 | NT-AMT | OS | Streptococcus bovis | 17.6 | 8.0 | S | R |
9 | NT-AMT | CNS | Staphylococcus intermedius | 26.1 | 7.0 | S | R |
10 | NT-AMT | CNS | Staphylococcus sciuri | 28.6 | 25.1 | S | S |
11 | AMT-AMT | OS | Streptococcus dysgalactiae | 32.1 | 10.0 | S | R |
12 | AMT-AMT | OS | Streptococcus dysgalactiae | 29.3 | 9.6 | S | R |
13 | AMT-AMT | OS | Streptococcus dysgalactiae | 29.6 | 10.3 | S | R |
14 | AMT-AMT | OS | Streptococcus vestibularis | 27.6 | 7.0 | S | R |
15 | AMT-AMT | OS | Streptococcus bovis | 24.9 | 8.0 | S | R |
16 | AMT-AMT | OS | Streptococcus dysgalactiae | 29.0 | 10.6 | S | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, M.; Shinozuka, Y.; Kurumisawa, T.; Yagisawa, T.; Suenaga, N.; Shimizu, Y.; Suzuki, N.; Kawai, K. Effects of Intramammary Antimicrobial Treatment on the Milk Microbiota Composition in Mild Clinical Bovine Mastitis Caused by Gram-Positive Bacteria. Animals 2023, 13, 713. https://doi.org/10.3390/ani13040713
Hayashi M, Shinozuka Y, Kurumisawa T, Yagisawa T, Suenaga N, Shimizu Y, Suzuki N, Kawai K. Effects of Intramammary Antimicrobial Treatment on the Milk Microbiota Composition in Mild Clinical Bovine Mastitis Caused by Gram-Positive Bacteria. Animals. 2023; 13(4):713. https://doi.org/10.3390/ani13040713
Chicago/Turabian StyleHayashi, Mayu, Yasunori Shinozuka, Tomomi Kurumisawa, Takuya Yagisawa, Nagomu Suenaga, Yuko Shimizu, Naoki Suzuki, and Kazuhiro Kawai. 2023. "Effects of Intramammary Antimicrobial Treatment on the Milk Microbiota Composition in Mild Clinical Bovine Mastitis Caused by Gram-Positive Bacteria" Animals 13, no. 4: 713. https://doi.org/10.3390/ani13040713
APA StyleHayashi, M., Shinozuka, Y., Kurumisawa, T., Yagisawa, T., Suenaga, N., Shimizu, Y., Suzuki, N., & Kawai, K. (2023). Effects of Intramammary Antimicrobial Treatment on the Milk Microbiota Composition in Mild Clinical Bovine Mastitis Caused by Gram-Positive Bacteria. Animals, 13(4), 713. https://doi.org/10.3390/ani13040713