Detection of the Endangered Siamese Bat Catfish (Oreoglanis siamensis Smith, 1933) in Doi Inthanon National Park Using Environmental DNA
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Primers and Probe Development
2.2. Study Sites
2.3. Water Sampling and eDNA Extraction
2.4. qPCR Assay
2.5. Fish Population
3. Results
3.1. Specificity of Designed Primers and Probe
3.2. eDNA Detection at Sampling Sites
3.3. qPCR Assay Sensitivity
3.4. Fish Population
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vidthayanon, C. Oreoglanis siamensis. The IUCN Red List of Threatened Species 2013: E.T15459A4587978. Available online: https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T15459A4587978.en (accessed on 23 November 2020).
- Smith, H.M. Contributions to the ichthyology of Siam. II–VI. Journal of the Siam Society. Nat. Hist. Suppl. 1993, 9, 53–87. [Google Scholar]
- Ng, H.H.; Kottelat, M. Oreoglanis hypsiurus, a new species of glyptosternine catfish (Teleostei: Sisoridae). Ichthyol. Explor. Freshw. 1999, 10, 375–380. [Google Scholar]
- Ng, H.H.; Rainboth, W.J. A review of the sisorid catfish genus Oreoglanis (Siluriformes: Sisoridae) with descriptions of four new species. Occas. Pap. Mus. Zoo. Univ. Mich. 2001, 732, 1–34. [Google Scholar]
- Vidthayanon, C. Thailand Red Data: Fishes; Office of Natural Resources and Environmental Policy and Planning: Bangkok, Thailand, 2005; p. 61. [Google Scholar]
- Cobos, M.; Bosch, R.A. Breeding sites of a narrowly distributed amphibian, a key element in its conservation in the face of global change. Aquat. Conserv. 2018, 28, 1089–1098. [Google Scholar] [CrossRef]
- Boon, P.; Cooksley, S.; Geist, J.; Killeen, I.; Moorkens, E.; Sime, I. Developing a standard approach for monitoring freshwater pearl mussel (Margaritifera margaritifera) populations in European rivers. Aquat. Conserv. 2019, 29, 1365–1379. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Kume, G.; Goto, M.; Kono, T.; Fujii, T.; Inui, R.; Kurita, Y. Using environmental DNA analyses to assess the occurrence and abundance of the endangered amphidromous fish Plecoglossus altivelis ryukyuensis. Biodivers. Data J. 2020, 8, e39679. [Google Scholar] [CrossRef] [PubMed]
- Portt, C.B.; Coker, G.A.; Ming, D.L.; Randall, R.G. A review of fish sampling methods commonly used in Canadian freshwater habitats. Can. Tech. Rep. Fish. Aquat. Sci. 2006, 2604, 1–41. [Google Scholar]
- Bonar, S.A.; Hubert, W.A.; Willis, D.W. Standard Methods for Sampling North American Freshwater Fishes; American Fisheries Society: Bethesda, MD, USA, 2009; pp. 195–197. [Google Scholar]
- Bylemans, J.; Furlan, E.M.; Pearce, L.; Daly, T.; Gleeson, D.M. Improving the containment of a freshwater invader using environmental DNA (eDNA) based monitoring. Biol. Invasions. 2016, 8, 3081–3089. [Google Scholar] [CrossRef]
- Evans, N.T.; Shirey, P.D.; Wieringa, J.G.; Mahon, A.R.; Lamberti, G.A. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 2017, 42, 90–99. [Google Scholar] [CrossRef]
- Campbell, S.P.; Clark, J.A.; Crampton, L.H.; Guerry, A.D.; Hatch, L.T.; Hosseini, P.R.; Lawler, J.J.; O’Connor, R.J. An assessment of monitoring efforts in endangered species recovery plans. Ecol. Appl. 2009, 12, 674–681. [Google Scholar] [CrossRef]
- Britton, J.R.; Pegg, J.; Gozlan, R.E. Quantifying imperfect detection in an invasive pest fish and the implications for conservation management. Biol. Conserv. 2011, 144, 2177–2181. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Kielgast, J.; Iversen, L.L.; Wiuf, C.; Rasmussen, M.; Gilbert, M.T.P.; Orlando, L.; Willerslev, E. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 2012, 21, 2565–2573. [Google Scholar] [CrossRef]
- Davison, P.I.; Copp, G.H.; Créach, V.; Vilizzi, L.; Britton, J.R. Application of environmental DNA analysis to inform invasive fish eradication operations. Sci. Nat. 2017, 104, 35. [Google Scholar] [CrossRef]
- Carraro, L.; Mächler, E.; Wüthrich, R.; Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 2020, 11, 3585. [Google Scholar] [CrossRef]
- Doi, H.; Inui, R.; Akamatsu, Y.; Kanno, K.; Yamakana, H.; Takahara, T.; Minamoto, T. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 2016, 62, 30–39. [Google Scholar] [CrossRef]
- Robson, H.L.A.; Noble, T.H.; Saunders, R.J.; Robson, S.K.A.; Burrows, D.W.; Jerry, D.R. Fine-tuning for the tropics: Application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Mol. Ecol. Resour. 2016, 16, 922–932. [Google Scholar] [CrossRef]
- Hinlo, R.; Furlan, E.; Suitor, L.; Gleeson, D. Environmental DNA monitoring and management of invasive fish: Comparison of eDNA and fyke netting. Manag. Biol. Invasions. 2016, 8, 89–100. [Google Scholar] [CrossRef]
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Opensci. 2015, 2, 150088. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.F.; Møller, P.R.; Sigsgaard, E.E.; Knudsen, S.W.; Jørgensen, O.A.; Willerslev, E. Environmental DNA from seawater samples correlate with trawl catches of subarctic, Deepwater fishes. PLoS ONE 2016, 11, e0165252. [Google Scholar] [CrossRef]
- Qu, C.; Stewart, K.A. Evaluating monitoring options for conservation: Comparing traditional and environmental DNA tools for a critically endangered mammal. Sci. Nat. 2019, 106, 9. [Google Scholar] [CrossRef]
- Robinson, A.T.; Paroz, Y.M.; Clement, M.J.; Frankli, T.W.; Dysthe, J.C.; Young, M.K.; Mckevey, K.S.; Carim, K.J. Environmental DNA sampling of small-bodied minnows: Performance relative to location, species, and traditional sampling. N. Am. J. Fish. Manag. 2019, 39, 1073–1085. [Google Scholar] [CrossRef]
- Jeunen, G.J.; Urbam, L.; Lewis, R.; Knapp, M.; Lamare, M.; Rayment, W.; Dawson, S.; Gemmell, N. Marine environmental DNA (eDNA) for biodiversity assessments: A one-to-one comparison between eDNA and baited remote underwater video (BRUV) surveys. Authorea 2020, 1, 486941. [Google Scholar] [CrossRef]
- Osathanunkul, M. An eDNA detection of captive-bred Mekong giant catfish in the Chao Phraya River basin for further environmental impacts assessment. Aquaculture 2022, 546, 737328. [Google Scholar] [CrossRef]
- Piggott, M.P.; Banks, S.C.; Broadhurst, B.T.; Fulton, C.J.; Lintermans, M. Comparison of traditional and environmental DNA surveymethods for detecting rare and abundant freshwater fish. Aquat. Conserv. 2021, 31, 173–184. [Google Scholar] [CrossRef]
- Osathanunkul, M.; Minamoto, T. eDNA-based detection of a vulnerable crocodile newt (Tylototriton uyenoi) to influence government policy and raise public awareness. Divers. Distrib. 2021, 27, 1958–1965. [Google Scholar] [CrossRef]
- Janosik, A.M.; Johnston, C.E. Environmental DNA as an effective tool for detection of imperiled fishes. Environ. Biol. Fish. 2015, 98, 1889–1893. [Google Scholar] [CrossRef]
- Sigsgaard, E.E.; Carl, H.; Møller, P.R.; Thomsen, P.F. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 2015, 183, 46–52. [Google Scholar] [CrossRef]
- Simpfendorfer, C.A.; Kyne, P.M.; Noble, T.H.; Goldsbury, J.; Basiita, R.K.; Lindsay, R.; Shields, A.; Perry, C.; Jerry, D.R. Environmental DNA detects critically endangered largetooth sawfish in the wild. Endanger. Species Res. 2016, 30, 109–116. [Google Scholar] [CrossRef]
- Belle, C.C.; Stoeckle, B.C.; Geist, J. Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation. Aquat. Conserv. 2019, 29, 1996–2009. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Linacre, A.; Lee, J. Species determination: The role and use of the cytochrome b gene. Methods. Mol. Biol. 2005, 297, 45–52. [Google Scholar]
- Finizio, A.D.; Guerriero, G.; Russo, G.L.; Ciarcia, G. Identification of gadoid species (Pisces, Gadidae) by sequencing and PCR-RFLP analysis of mitochondrial 12S and 16S rRNA gene fragments. Eur. Food Res. Technol. 2007, 225, 337–344. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Osathanunkul, M.; Minamoto, T. A molecular survey based on eDNA to assess the presence of a clown featherback (Chitala ornata) in a confined environment. PeerJ 2020, 8, e10338. [Google Scholar] [CrossRef] [PubMed]
- Osathanunkul, M.; Minamoto, T. Molecular detection of giant snakeheads, Channa micropeltes (Cuvier, 1831), one of the most troublesome fish species. Sci. Rep. 2021, 11, 9943. [Google Scholar] [CrossRef] [PubMed]
- Osathanunkul, M.; Madesis, P. Environmental DNA detection of giant snakehead in Thailand’s major rivers for wild stock assessment. PLoS ONE 2022, 17, e0267667. [Google Scholar] [CrossRef]
- Gysin, G.; Urbano, P.; Brandner-Garrod, L.; Begum, S.; Kristan, M.; Walker, T.; Hernández, C.; Ramírez, J.D.; Messenger, L.A. Towards environmental detection of Chagas disease vectors and pathogen. Sci. Rep. 2022, 12, 9849. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, L.V.G.; Nielsen, J.W.; Villadsen, M.K.; Vismann, B.; Dalvin, S.; Mathiessen, H.; Madsen, L.; Kania, P.W.; Buchmann, K. A non-lethal method for detection of Bonamia ostreae in flat oyster (Ostrea edulis) using environmental DNA. Sci. Rep. 2020, 10, 16143. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, C.S.; Turner, C.R.; Deiner, K.; Klymus, K.E.; Thomsen, P.F.; Murphy, M.A.; Spear, S.F.; McKee, A.; Oyler-McCance, S.J.; Cornman, R.S.; et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 2016, 7, 1299–1307. [Google Scholar] [CrossRef]
- Edmunds, R.C.; Burrows, D. Got Glycogen?: Development and multispecies validation of the novel preserve, precipitate, lyse, precipitate, purify (PPLPP) workflow for environmental DNA extraction from Longmire’s preserved water samples. J. Biomol. Tech. 2020, 31, 125–150. [Google Scholar] [CrossRef]
- Foote, A.D.; Thomsen, P.F.; Sveegaard, S.; Wahberg, M.; Kielglast, J.; Kyhn, L.A.; Salling, A.B.; Galatius, A.; Orlando, L.; Gilbert, M.T.P. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE 2012, 7, e41781. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.P.; Bernes, M.A.; Hwang, C.; Mahon, A.R.; Feder, J.L.; Ruggiero, S.T.; Tanner, C.E.; Lodge, D.M. Rapid invasive species detection by combining environmental DNA with light transmission spectroscopy. Conserv. Lett. 2013, 6, 402–409. [Google Scholar] [CrossRef]
- Takahara, T.; Minamoto, T.; Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 2013, 8, e56584. [Google Scholar] [CrossRef]
- Deiner, K.; Walser, J.; Mächler, E.; Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 2015, 183, 53–63. [Google Scholar] [CrossRef]
- Gingera, T.D.; Steeves, T.B.; Boguski, D.A.; Whyard, S.; Li, W.; Docker, M.F. Detection and identification of lampreys in Great Lakes streams using environmental DNA. J. Great Lakes Res. 2016, 42, 649–659. [Google Scholar] [CrossRef]
- Piggott, M.P. Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish. Ecol. Evol. 2016, 6, 2739–2750. [Google Scholar] [CrossRef]
- Tingley, R.; Coleman, R.; Gecse, N.; van Rooyen, A.R.; Weeks, A. Accounting for false positive detections in occupancy studies based on environmental DNA: A case study of a threatened freshwater fish (Galaxiella pusilla). Environ. DNA 2021, 3, 388–397. [Google Scholar] [CrossRef]
- Sani, L.M.I.; Husna, A.K.; Subhan, B.; Madduppa, H. Environmental DNA (eDNA) reveals endangered narrow sawfish across Indonesian Reefs. IOP Conf. Ser. Earth Environ. Sci. 2021, 944, 012020. [Google Scholar] [CrossRef]
- Bingpeng, X.; Heshan, L.; Zhilan, Z.; Chunguang, W.; Yanguo, W.; Jianjun, W. DNA barcoding for identification of fish species in the Taiwan Strait. PLoS ONE 2018, 13, e0198109. [Google Scholar] [CrossRef]
- Atkinson, S.; Carlsson, J.E.L.; Ball, B.; Egan, D.; Kelly-Quinn, M.; Whelan, K.; Carlsson, J. A quantitative PCR-based environmental DNA assay for detecting Atlantic salmon (Salmo salar L.). Aquat. Conserv. 2018, 28, 1238–1243. [Google Scholar] [CrossRef]
- Freeland, J.R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome 2017, 60, 358–374. [Google Scholar] [CrossRef]
- Harper, L.R.; Handley, L.L.; Hahn, C.; Boonham, N.; Rees, H.C.; Gough, K.C.; Lewis, E.; Adams, I.; Brotherton, P.; Philips, S.; et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 2018, 8, 6330–6341. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.E.; Ferrante, J.A.; Meigs-Friend, G.; Ulmer, A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci. Rep. 2019, 9, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Takahara, T.; Minamoto, T.; Doi, H. Effects of sample processing on the detection rate of environmental DNA from the Common Carp (Cyprinus carpio). Biol. Conserv. 2015, 183, 64–69. [Google Scholar] [CrossRef]
- Govindarajan, A.F.; McCartin, L.; Adams, A.; Allan, E.; Belani, A.; Francolini, R.; Fujii, J.; Gomez-Ibañez, D.; Kukulya, A.; Marin, F.; et al. Improved biodiversity detection using a large-volume environmental DNA sampler with in situ filtration and implications for marine eDNA sampling strategies. Deep Sea Res. I Oceanogr. Res. Pap. 2022, 189, 103871. [Google Scholar] [CrossRef]
- Mächler, E.; Deiner, K.; Steinmann, P.; Altermatt, F. Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species. Freshw. Sci. 2014, 33, 1174–1183. [Google Scholar] [CrossRef]
- Bedwell, M.E.; Goldberg, C.S. Spatial and temporal patterns of environmental DNA detection to inform sampling protocols in lentic and lotic systems. Ecol. Evol. 2020, 10, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.T.; Lance, R.F. Modeling the sensitivity of field surveys for detection of environmental DNA (eDNA). PLoS ONE 2015, 10, e0141503. [Google Scholar] [CrossRef] [PubMed]
- Mächler, E.; Deiner, K.; Spahn, F.; Altermatt, F. Fishing in the water: Effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environ. Sci. Technol. 2016, 50, 305–312. [Google Scholar] [CrossRef]
- Renshaw, M.A.; Olds, B.P.; Jerde, C.L.; McVeigh, M.M.; Lodge, D.M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 2015, 15, 168–176. [Google Scholar] [CrossRef]
- Davison, P.I.; Créach, V.; Liang, W.J.; Andreou, D.; Britton, J.R.; Copp, G.H. Laboratory and field validation of a simple method for detecting four species of non-native freshwater fish using eDNA. J. Fish Biol. 2016, 89, 1782–1793. [Google Scholar] [CrossRef]
- Turner, C.R.; Uy, K.L.; Everhart, R.C. Environmental DNA Fish Environmental DNA Is More Concentrated in Aquatic Sediments than Surface Water. Biol. Conserv. 2015, 183, 93–102. [Google Scholar] [CrossRef]
- Kamoroff, C.; Goldberg, C.S. An issue of life or death: Using eDNA to detect viable individuals in wilderness restoration. Freshw. Sci. 2018, 37, 685–696. [Google Scholar] [CrossRef]
- Turner, C.R.; Barnes, M.A.; Xu, C.C.Y.; Jones, S.E.; Jerde, C.L.; Lodge, D.M. Particle size distribution and optimal capture of aqueousmacrobial eDNA. Methods Ecol. Evol. 2014, 5, 676–684. [Google Scholar] [CrossRef]
- Nukazawa, K.; Hamasuna, Y.; Suzuki, Y. Simulating the Advection and Degradation of the Environmental DNA of Common Carp along a River. Environ. Sci. Technol. 2018, 52, 10562–10570. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.N.; Tiemann, J.S.; Douglass, S.A.; Davis, M.A.; Larson, E.R. High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Divers. Distrib. 2020, 27, 1918–1931. [Google Scholar] [CrossRef]
- Harrison, J.B.; Sunday, J.M.; Rogers, S.M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B 2019, 286, 20191409. [Google Scholar] [CrossRef] [PubMed]
- Fremier, A.K.; Strickler, K.M.; Parzych, J.; Powers, S.; Goldberg, C.S. Stream Transport and Retention of Environmental DNA Pulse Releases in Relation to Hydrogeomorphic Scaling Factors. Environ. Sci. Technol. 2019, 53, 6640–6649. [Google Scholar] [CrossRef] [PubMed]
- Dejean, T.; Valentini, A.; Duparc, A.; Pellier-Cuit, S.; Pompanon, F.; Taberlet, P.; Miaud, C. Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE 2011, 6, e23398. [Google Scholar] [CrossRef]
- Jane, S.F.; Wilcox, T.; McKelvey, K.; Young, M.K.; Schwartz, M.K.; Lowe, W.H.; Letcher, B.H.; Whiteley, A.R. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 2015, 15, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.; Lennox, G.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Nally, R.M.; Thomson, J.R.; de Barros Ferraz, S.F.; Louzada, J.; Oliveira, V.H.F.; et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primer Name | Type | Length (bp) | Primer Sequence 5′–3′ | Amplicon Size |
---|---|---|---|---|
Osi 434 COI-F | Forward | 23 | CCTTGCAGGTGTATCGTCTATTC | 160 bp |
Osi 576 COI-R | Reverse | 19 | AGCTGCCAAGACTGGTAGT | |
Osi COI-PR | Probe | 27 | CCTCCAGCAATTTCCCAATACCAAACC |
Species | Forward | Reverse | Probe | Identity (%) | Accession Number |
---|---|---|---|---|---|
Oreoglanis siamensis | ······················· | ··················· | ··························· | 100 | MZ753672 |
Oreoglanis insignis | ·········G············T | ···G······C·A··T··C | ··C········C··A········G··· | 84 | DQ508082 |
Oreoglanis sp. | ·········A·····A··C···· | ···············T··C | ··C········C··············· | 90 | DQ846711 |
Oreoglanis immaculatus | ······G··G··G·········T | ···G··C···C····T··C | ··C··G·····C··A··G········T | 78 | JQ859840 |
Pareuchiloglanis anteanalis | T········A·····A······· | ·T········C·A··T··C | ··C··T·····C··G············ | 82 | DQ508085 |
Pareuchiloglanis sinensis | T········A·····A······· | ·T········C·A··T··C | ··C··T·····C··G············ | 82 | MF122630 |
Pseudexostoma yunnanense | T········G·C···A······· | ······G···C·A··T··C | ··C········C··A········G··T | 79 | KU987335 |
Pseudexostoma longipterus | T········G·C···A······· | G·········C·A··T··C | ···········C··A···········T | 82 | KU987301 |
Site | River | eDNA Detection | eDNA Detection (Average Concentration, Copies/mL) | Visual Detection in This Study | Visual Detection from Other Studies | References | ||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | ||||||
KP1 | Klang Phat | √ | √ | √ | 20.27 | √ | √ | Local reports |
KP2 | √ | √ | √ | 17.58 | √ | √ | Local reports | |
KP3 | √ | √ | √ | 2.60 | x | x | - | |
KP4 | √ | √ | √ | 12.00 | x | x | - | |
K1 | Klang | √ | √ | √ | 1.00 | x | x | - |
K2 | √ | √ | √ | 1.03 | x | x | - | |
K3 | x | x | x | - | x | x | - | |
K4 | √ | √ | √ | 0.71 | x | x | - | |
K5 | √ | √ | √ | 1.86 | x | x | - | |
K6 | x | x | x | - | x | x | - | |
K7 | √ | √ | √ | 1.23 | x | √ | Local reports | |
K8 | √ | √ | √ | 1.71 | x | x | - | |
K9 | √ | √ | √ | 1.73 | x | √ | [4] | |
K10 | √ | √ | √ | 3.94 | x | x | - | |
K11 | x | x | x | - | x | x | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodpai, T.; Suwannapoom, C.; Osathanunkul, M. Detection of the Endangered Siamese Bat Catfish (Oreoglanis siamensis Smith, 1933) in Doi Inthanon National Park Using Environmental DNA. Animals 2023, 13, 538. https://doi.org/10.3390/ani13030538
Rodpai T, Suwannapoom C, Osathanunkul M. Detection of the Endangered Siamese Bat Catfish (Oreoglanis siamensis Smith, 1933) in Doi Inthanon National Park Using Environmental DNA. Animals. 2023; 13(3):538. https://doi.org/10.3390/ani13030538
Chicago/Turabian StyleRodpai, Thanatrinan, Chatmongkon Suwannapoom, and Maslin Osathanunkul. 2023. "Detection of the Endangered Siamese Bat Catfish (Oreoglanis siamensis Smith, 1933) in Doi Inthanon National Park Using Environmental DNA" Animals 13, no. 3: 538. https://doi.org/10.3390/ani13030538
APA StyleRodpai, T., Suwannapoom, C., & Osathanunkul, M. (2023). Detection of the Endangered Siamese Bat Catfish (Oreoglanis siamensis Smith, 1933) in Doi Inthanon National Park Using Environmental DNA. Animals, 13(3), 538. https://doi.org/10.3390/ani13030538