Possibility of Wild Boar Harm Occurring in Five Provinces of Northwest China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition and Processing of Geographic Distribution Data
2.2. Environmental Variables
2.3. Maximum Entropy Modeling and Model Evaluation
2.4. Classification of Suitable Living Areas and Their Overlap with Land Use Types
3. Results
3.1. Accuracy Analysis of Maxent Model
3.2. Analysis of the Contribution Rate of Environmental Variables
3.3. Potential Suitable Habitat Distribution
3.4. Overlapping Analysis of High-Suitability Areas and Land Use Types
4. Discussion
4.1. Environmental Variables Affecting the Distribution of Wild Boars
4.2. Current Potential Distribution
4.3. Management Suggestions and Measures for Future Wild Boar Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grinnell, J. Field Tests of Theories Concerning Distributional Control. Am. Nat. 1917, 51, 115–128. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Roloff, G.J. Habitat Selection, Life Science Reference Module; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-809633-8. [Google Scholar]
- Morris, D.W. Toward an ecological synthesis: A case for habitat selection. Oecologia 2003, 136, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fahrig, L.; Merriam, G. Conservation of Fragmented Populations. Conserv. Biol. 1994, 8, 50–59. [Google Scholar] [CrossRef]
- Yang, W.C.; Ran, J.C.; Peng, T.; Xu, Y.; Xiang, G.; Yi, Y.; Jiang, Y.; Chai, X.; Yang, S.L. Habitat suitability assessment for the Near Threatened Hume’s Pheasant (Syrmaticus humiae) in a new distribution location in southwestern China. Wilson J. Ornithol. 2022, 134, 408–415. [Google Scholar] [CrossRef]
- Boultif, M.; Boulghobra, N.; Bakroune, N.; Deghiche-Diab, N. Assessment of Biotope Suitability of Desert Locust (Schistocerca gregaria) in the Region of Hoggar (Southern Algerian Sahara). J. Ecol. Eng. 2022, 23, 171–180. [Google Scholar] [CrossRef]
- Zhao, M.J. Study on Rural Resources Destroy and Its Restriction Mechanism in Northwestern China. Master’s Thesis, Northwest Agriculture and Forestry University, Xianyang, China, May 2001. [Google Scholar]
- Sun, C. Research on Pattern of Returning Land for Farming to Forestry and Gress in Northwest China. Master’s Thesis, Northwest Agriculture and Forestry University, Xianyang, China, May 2007. [Google Scholar]
- Dupuis-Desormeaux, M.; Kaaria, T.N.; Kinoti, J.; Paul, A.; Gilisho, S.; Kobia, J.; Onyango, R.; Chege, J.; Kimiti, G.; Mwololo, M.; et al. Human-wildlife conflicts in communities bordering a Savannah-Fenced wildlife conservancy. Afr. J. Ecal. 2023, 61, 628–635. [Google Scholar] [CrossRef]
- Pettigrew, M.; Xie, Y.; Kang, A.; Rao, M.; Goodrich, J.; Liu, T.; Berger, J. Human–carnivore conflict in China: A review of current approaches with recommendations for improved management. Integr. Zoöl. 2012, 7, 210–226. [Google Scholar] [CrossRef]
- Close, R. Introduced mammals of the world: Their history, distribution and influence. john long. a review by robert l close. Aust. Mammal. 2005, 27, 109–110. [Google Scholar] [CrossRef]
- Sjarmidi, A.; Gerard, J. Autour de la systématique et la distribution des suidés. Monitore Zool. Ital. 1988, 22, 415–448. [Google Scholar]
- Kotanen, P.M. Responses of vegetation to a changing regime of disturbance: Effects of feral pigs in a Californian coastal prairie. Ecography 1995, 18, 190–199. [Google Scholar] [CrossRef]
- Massei, G.; Genov, P.V. The environmental impact of wild boar. Galemys Span. J. Mammal. 2004, 16, 135–145. [Google Scholar]
- Barrios-Garcia, M.N.; Gonzalez-Polo, M.; Simberloff, D.; Classen, A.T. Wild boar rooting impacts soil function differently in different plant community types. Biol. Invasions 2022, 25, 583–592. [Google Scholar] [CrossRef]
- Schley, L.; Roper, T.J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal Rev. 2003, 33, 43–56. [Google Scholar] [CrossRef]
- Ravenelle, J.; Nyhus, P.J. Global patterns and trends in human–wildlife conflict compensation. Conserv. Biol. 2017, 31, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Torres, D.F.; Oliveira, E.S.; Alves, R.R.N. Conflicts Between Humans and Terrestrial Vertebrates: A Global Review. Trop. Conserv. Sci. 2018, 11, 1–15. [Google Scholar] [CrossRef]
- Francis, M.; Duffy, J.K. Epidemiological drivers and control strategies for African swine fever transmission cycles at a wildlife-livestock interface. Ecol. Model. 2023, 481, 110344. [Google Scholar]
- Liang, R.; Lu, Y.; Qu, X.; Su, Q.; Li, C.; Xia, S.; Liu, Y.; Zhang, Q.; Cao, X.; Chen, Q.; et al. Prediction for global African swine fever outbreaks based on a combination of random forest algorithms and meteorological data. Transbound. Emerg. Dis. 2020, 67, 935–946. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Caley, P. Population Dynamics of Feral Pigs (Sus Scrofa) in a Tropical Riverine Habitat Complex. Wildl. Res. 1993, 20, 625–636. [Google Scholar] [CrossRef]
- Froese, J.G.; Smith, C.S.; Durr, P.A.; McAlpine, C.A.; van Klinken, R.D. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia. PLoS ONE 2017, 12, e0177018. [Google Scholar] [CrossRef]
- Honda, T. Environmental Factors Affecting the Distribution of the Wild Boar, Sika Deer, Asiatic Black Bear and Japanese Macaque in Central Japan, with Implications for Human-Wildlife Conflict. Mammal Study 2009, 34, 107–116. [Google Scholar] [CrossRef]
- Singer, F.J.; Otto, D.K.; Tipton, A.R.; Hable, C.P. Home ranges, movements, and habitat use of European wild pig in tennessec. J. Wildlife Manag. 1981, 45, 343–353. [Google Scholar] [CrossRef]
- Thurfjell, H.; Ball, J.P.; Åhlén, P.-A.; Kornacher, P.; Dettki, H.; Sjöberg, K. Habitat use and spatial patterns of wild boar Sus scrofa (L.): Agricultural fields and edges. Eur. J. Wildl. Res. 2009, 55, 517–523. [Google Scholar] [CrossRef]
- Geisser, H. The wild boar (sus scrofa) in the thurgau (northeastern Switzerland): Population status, damages and the influence of supplementary feeding on damage frequency. Gibier. Faune Sauvag. 1998, 15, 547–554. [Google Scholar]
- Nie, Y.; Zhou, W.; Gao, K.; Swaisgood, R.R.; Wei, F. Seasonal competition between sympatric species for a key resource: Implications for conservation management. Biol. Conserv. 2019, 234, 1–6. [Google Scholar] [CrossRef]
- Smith, A.T.; Xie, Y. Chinese Wild Animal Handbook, 1st ed.; Hunan Education Press: Changsha, China, 2009; pp. 365–366. [Google Scholar]
- Han, C.M.; Gao, Q.H.; Gong, H.T.; Zhao, Y. Genetic diversity analysis of mtDNA control region sequence in Xinjiang wild pig. J. Anhui Agric. Sci. 2008, 36, 3142–3143. [Google Scholar]
- Wang, Y.H.; Yang, A.X.; Yang, Q.Y.; Kong, X.B.; Fan, H. Spatiotemporal characteristics of human-boar conflicts in China and its implications for ecosystem “anti-service”. Acta Geogr. Sin. 2023, 78, 163–176. [Google Scholar]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 2016, 3, 160067. [Google Scholar] [CrossRef]
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Wu, S.X. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC). In Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences; Resources and Environment Science Data Registration and Publishing System: Beijing, China, 2018. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2015, 5, 1198–1205. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papes, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Tanner, E.P.; Elmore, R.D.; Fuhlendorf, S.D.; Davis, C.A.; Dahlgren, D.K.; Orange, J.P. Extreme climatic events constrain space use and survival of a ground-nesting bird. Glob. Chang. Biol. 2016, 23, 1832–1846. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. Ecol. Inform. 2019, 50, 68–75. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, Z.; Zeng, Y. Factors affecting crop damage by wild boar and methods of mitigation in a giant panda reserve. Eur. J. Wildl. Res. 2008, 54, 723–728. [Google Scholar] [CrossRef]
- Roman, A.; Włodzimierz, J. Management of a wild boar population and its effects on commercial land. Acta Theriol. 1978, 23, 309–339. [Google Scholar]
- Phoenix, G.K.; Gwynn-Jones, D.; Callaghan, T.V.; Sleep, D.; Lee, J.A. Effects of global change on a sub-Arctic heath: Effects of enhanced UV-B radiation and increased summer precipitation. J. Ecol. 2001, 89, 256–267. [Google Scholar] [CrossRef]
- Li, Y.M.; Liu, H.Y.; Chen, Z.Z. Climate and topography explain range sizes of terrestrial vertebrates. Nat. Clim. Change. 2016, 6, 498–502. [Google Scholar] [CrossRef]
- Schiaffini, I.M.; Vila, R.A. Habitat use of the wild boar, Sus scrofa Linnaeus 1758, in Los Alerces National Park, Stud. Neotrop. Fauna E 2012, 47, 37–41. [Google Scholar]
- Bongi, P.; Tomaselli, M.; Petraglia, A. Wild boar impact on forest regeneration in the northern Apennines (Italy). For. Ecol. Manag. 2017, 391, 230–238. [Google Scholar] [CrossRef]
- Schley, L.; Dufrêne, M.; Krier, A.; Frantz, A.C. Patterns of crop damage by wild boar (Sus scrofa) in Luxembourg over a 10-year period. Eur. J. Wildl. Res. 2008, 54, 589–599. [Google Scholar] [CrossRef]
- Schlageter, A. Preventing Wild Boar Sus scrofa Damage-Considerations for Wild Boarmanagement in Highly Fragmented Agroecosystems. Ph.D. Thesis, Basel University, Basel, Switzerland, 2015. [Google Scholar]
- Wang, Y.; Yang, A.; Yang, Q.; Kong, X.; Fan, H. Spatiotemporal patterns of human and wild boar conflicts in rural China and its implications for social-ecological systems coevolution. J. Geogr. Sci. 2023, 33, 1614–1630. [Google Scholar] [CrossRef]
- Linkie, M.; Dinata, Y.; Nofrianto, A.; Leader-Williams, N. Patterns and perceptions of wildlife crop raiding in and around Kerinci Seblat National Park, Sumatra. Anim. Conserv. 2007, 10, 127–135. [Google Scholar] [CrossRef]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef] [PubMed]
- National Forestry Administration. A Survey of Key Terrestrial Wildlife Resources in China; China Forestry Publishing: Beijing, China, 2009; p. 340. [Google Scholar]
- Naqiah, H.A.M.A.; Soon, K.H.; Luo, Z.H.; Liu, M.L.; Kuo, L.I.; Tung, T.S.; Fadzil, A.M.; GU, H.F.; Pin, L.C.; Teen, L.P. Mapping harmful microalgal species by eDNA monitoring: A large-scale survey across the southwestern South China Sea. Harmful Algae 2023, 129, 102515. [Google Scholar]
- Rao, V.V.; Naresh, B.; Reddy, V.R.; Sudhakar, C.; Venkateswarlu, P.; Rao, D.R. Traditional management methods used to minimize wild boar (Sus scrofa) damage in different agriculturalcrops at Telangana state, India. Int. J. Multidiscip. Res. Dev. 2015, 2, 32–36. [Google Scholar]
- Saito, M.; Momose, H.; Mihira, T. Both environmental factors and countermeasures affect wild boar damage to rice paddies in Boso Peninsula. Crop. Prot. 2011, 30, 1048–1054. [Google Scholar] [CrossRef]
- Honda, T.; Sugita, M. Environmental factors affecting damage by wild boars (Sus scrofa) to rice fields in Yamanashi Prefecture. Mammal Study 2007, 32, 173–176. [Google Scholar] [CrossRef]
Environment Variable | Abbreviation | Unit |
---|---|---|
Isothermality | Bio3 | — |
Mean temperature of coldest quarter | Bio11 | °C |
Precipitation seasonality | Bio15 | mm |
Precipitation of warmest quarter | Bio18 | mm |
Precipitation of coldest quarter | Bio19 | mm |
Human footprint index | HFI | — |
Elevation | Elev | m |
Slope | Slo | ° |
Aspect | Asp | — |
Normalized difference vegetation index | NDVI | — |
Environment Variable | Percent Contribution |
---|---|
Bio15 | 26.40 |
HFI | 16.50 |
Elev | 11.90 |
Bio3 | 11.50 |
Bio19 | 9.60 |
NDVI | 9.40 |
Bio18 | 8.00 |
Bio11 | 4.80 |
Slo | 1.60 |
Asp | 0.30 |
Suitable Grade | Dimension/km2 | Percentage/% |
---|---|---|
HSA | 2.63 × 105 | 8.54 |
MSA | 2.15 × 105 | 6.98 |
LSA | 6.73 × 105 | 21.84 |
NSA | 1.93 × 106 | 62.64 |
Cultivated Land | Woodland | Grassland | Water Area | Construction Land | Unused Land | |
---|---|---|---|---|---|---|
1980 | 0.8475 | 0.6163 | 1.0719 | 0.0178 | 0.0427 | 0.0190 |
1990 | 0.8505 | 0.6055 | 1.0808 | 0.0164 | 0.0392 | 0.0262 |
2000 | 0.8637 | 0.6166 | 1.0476 | 0.0176 | 0.0469 | 0.0226 |
Land Use Type | 1980 | 1990 | 2000 | |
---|---|---|---|---|
Cultivated land | Paddy field | 0.6203 | 0.6391 | 0.6134 |
Dry land | 7.8544 | 7.8664 | 8.0240 | |
Woodland | Forested land | 2.9402 | 2.8666 | 2.9351 |
Shrubbery | 1.8676 | 1.8676 | 1.8762 | |
Open woodland | 1.3107 | 1.2765 | 1.3813 | |
Other forest land | 0.0377 | 0.0445 | 0.0445 | |
Grassland | High-coverage grassland | 3.6873 | 3.7918 | 3.6068 |
Medium-coverage grassland | 5.4487 | 5.4007 | 5.3956 | |
Low coverage grassland | 1.5832 | 1.6157 | 1.4735 | |
Water area | Water area | 0.1782 | 0.1645 | 0.1765 |
Construction land | Urban land | 0.0633 | 0.0805 | 0.0719 |
Rural residential area | 0.3564 | 0.3050 | 0.3907 | |
Other construction land | 0.0069 | 0.0069 | 0.0069 | |
Unused land | Unused land | 0.1902 | 0.2621 | 0.2261 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Wang, Z.; An, K.; Tan, Y.; Ji, W.; Su, J. Possibility of Wild Boar Harm Occurring in Five Provinces of Northwest China. Animals 2023, 13, 3788. https://doi.org/10.3390/ani13243788
Liu P, Wang Z, An K, Tan Y, Ji W, Su J. Possibility of Wild Boar Harm Occurring in Five Provinces of Northwest China. Animals. 2023; 13(24):3788. https://doi.org/10.3390/ani13243788
Chicago/Turabian StyleLiu, Penghui, Zhicheng Wang, Kang An, Yuchen Tan, Weihong Ji, and Junhu Su. 2023. "Possibility of Wild Boar Harm Occurring in Five Provinces of Northwest China" Animals 13, no. 24: 3788. https://doi.org/10.3390/ani13243788
APA StyleLiu, P., Wang, Z., An, K., Tan, Y., Ji, W., & Su, J. (2023). Possibility of Wild Boar Harm Occurring in Five Provinces of Northwest China. Animals, 13(24), 3788. https://doi.org/10.3390/ani13243788