A Technical Report on the Potential Effects of Heat Stress on Antioxidant Enzymes Activities, Performance and Small Intestinal Morphology in Broiler Chickens Administered Probiotic and Ascorbic Acid during the Hot Summer Season
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals, Management, and Environmental Conditions
2.2. Experimental Design
2.3. Measurement of Oxidative Stress Biomarkers
2.3.1. Superoxide Dismutase Activity
2.3.2. Catalase Activity
2.3.3. Glutathione Peroxidase Activity
2.4. Measurement of Performance Parameters
2.4.1. Measurement of Feed Intake
2.4.2. Measurement of Water Intake
2.4.3. Measurement of Body Weight Gain
2.5. Measurement of Small Intestinal Morphology
2.6. Data Analyses
3. Results
3.1. Superoxide Dismutase Enzyme Activity
3.2. Catalase Enzyme Activity
3.3. Glutathione Peroxidase Enzyme Activity
3.4. Feed and Water Intake, and Body Weight Gain
3.5. Morphological Analysis
4. Discussion
4.1. Antioxidant Enzyme Activities
4.2. Performance Indicators
4.3. Small Intestinal Morphology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elbaz, A.M.; Ahmed, A.M.; Abdel-Maqsoud, A.; Badran, A.M.; Abdel-Moneim, A.M.E. Potential ameliorative role of Spirulina platensis in powdered or extract forms against cyclic heat stress in broiler chickens. Environ. Sci. Pollut. Res. 2022, 29, 45578–45588. [Google Scholar] [CrossRef] [PubMed]
- Madkour, M.; Aboelazab, O.; Abd El-Azeem, N.; Younis, E.; Shourrap, M. Growth performance and hepatic antioxidants responses to early thermal conditioning in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2023, 107, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Goo, D.; Kim, J.H.; Park, G.H.; Delos Reyes, J.B.; Kil, D.Y. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals 2019, 9, 107. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.; Choi, Y.H. Characterization of differential gene expression of broiler chicken to thermal stress in discrete developmental stages. Anim. Cells Syst. 2022, 26, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Gopi, M.; Dutta, N.; Rokade, J.J.; Prabakar, G.; Kumar, R.D.; Beulah, P.; Mohan, J. Dietary supplementation of polyphenols alleviates the negative effects of heat stress in broilers. Biol. Rhythm. Res. 2019, 53, 535–546. [Google Scholar] [CrossRef]
- Israr, M.; Chand, N.; Khan, R.U.; Alhidary, I.A.; Abdelrahman, M.M.; Al-Baddani, H.H.; Tufarelli, V. Dietary grape (Vitis vinifera) seed powder and zn–gly chelate complex for mitigating heat stress in broiler chickens: Growth parameters, malondialdehyde, paraoxonase-1, and antibody titer. Agriculture 2021, 11, 1087. [Google Scholar] [CrossRef]
- Alagawany, M.; Ashour, E.A.; El-Fakhrany, H.H.H.; Ismail, T.A.; Nasr, M. Early nutrition programming with Astragalus membranaceus polysaccharide: Its effect on growth, carcasses, immunity, antioxidants, lipid profile and liver and kidney functions in broiler chickens. Anim. Biotechnol. 2022, 33, 362–368. [Google Scholar] [CrossRef]
- Abeyrathne, E.S.; Nam, K.; Ahn, D.U. Analytical methods for lipid oxidation and antioxidant capacity in food systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef]
- Lee, D.; Lee, H.J.; Jung, D.Y.; Kim, H.J.; Jang, A.; Jo, C. Effect of an animal-friendly raising environment on the quality, storage stability, and metabolomic profiles of chicken thigh meat. Food Res. Int. 2022, 155, 111046. [Google Scholar] [CrossRef]
- Jiang, S.; Yan, F.F.; Hu, J.Y.; Mohammed, A.; Cheng, H.W. Bacillus subtilis-based probiotic improves skeletal health and immunity in broiler chickens exposed to heat stress. Animals 2021, 11, 1494. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Khalaifah, H.; Abd El-Hamid, H.S.; Al-Harthi, M.A.; Alyileili, S.R.; El-Shafey, A.A. Antioxidant status, blood constituents and immune response of broiler chickens fed two types of diets with or without different concentrations of active yeast. Animals 2022, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- Gopi, M.; Prabakar, G.; Kolluri, G.; Tamilmani, T.; Tyagi, J.S.; Mohan, J. Effect of organic chromium (chromium picolinate) supplementation on production parameters, egg quality attributes and serum biochemistry in Pearl guinea fowls during second laying cycle. Indian J. Anim. Sci. 2018, 88, 823–827. [Google Scholar] [CrossRef]
- Ebeid, T.A.; Al-Homidan, I.H. Organic acids and their potential role for modulating the gastrointestinal tract, antioxidative status, immune response, and performance in poultry. World’s Poult. Sci. J. 2022, 78, 83–101. [Google Scholar] [CrossRef]
- Jahejo, A.R.; Leghari, I.; Sethar, A.; Rao, M.; Nisa, M.; Sethar, G. Effect of heat stress and ascorbic acid on gut morphology of broiler chicken. Sindh Univ. Res. J. 2016, 48, 829–883. [Google Scholar]
- Chaudhary, A.; Mishra, P.; Amaz, S.A.; Mahato, P.L.; Das, R.; Jha, R.; Mishra, B. Dietary supplementation of microalgae mitigates the negative effects of heat stress in broilers. Poult. Sci. 2023, 102, 102958. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Jiang, S.; Mohammed, A.A.; Jacobs, J.A.; Cramer, T.A.; Cheng, H.W. Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress. Poult. Sci. 2020, 99, 142–150. [Google Scholar] [CrossRef]
- Aluwong, T.; Kawu, M.; Raji, M.; Dzenda, T.; Govwang, F.; Sinkalu, V.; Ayo, J.O. Effect of yeast probiotic on growth, antioxidant enzyme activities and malondialdehyde concentration of broiler chickens. Antioxidants 2013, 2, 326–339. [Google Scholar] [CrossRef]
- Sumanu, V.O.; Tagang, A.; Ayo, J.O.; Ogbuagu, N.E. Effects of probiotic and fisetin supplementation on performance, carcass characteristics and small intestinal morphology in broiler chickens. Open Vet. Sci. 2021, 2, 23–32. [Google Scholar] [CrossRef]
- Parlat, S.S.; Ozcan, M.; Oguz, H. Biological suppression of aflatoxicosis in Japanese quail (Coturnixcoturnix japonica) by dietary addition of yeast (Saccharomyces cerevisiae). Res. Vet. Sci. 2001, 71, 207–211. [Google Scholar] [CrossRef]
- Gouda, A.; Amer, S.A.; Gabr, S.; Tolba, S.A. Effect of dietary supplemental ascorbic acid and folic acid on the growth performance, redox status, and immune status of broiler chickens under heat stress. Trop. Anim. Health Prod. 2020, 52, 2987–2996. [Google Scholar] [CrossRef] [PubMed]
- Egbuniwe, I.C.; Uchendu, C.N.; Obidike, I.R. Ameliorative effects of betaine and ascorbic acid on endocrine and erythrocytic parameters of sexually-maturing female Japanese quails during the dry season. J. Therm. Biol. 2021, 96, 102812. [Google Scholar] [CrossRef]
- Luna, L.G. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology; 152.91 M31 Ed.2; McGraw-Hill: New York, NY, USA, 1968; pp. 37–39. [Google Scholar]
- Cheville, N.F.; Stasko, J. Techniques in electron microscopy of animal tissue. Vet. Pathol. 2014, 51, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ishfaq, M.; Miao, Y.; Liu, Z.; Hao, M.; Wang, C.; Chen, X. Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poult. Sci. 2022, 101, 101693. [Google Scholar] [CrossRef]
- Ahmed-Farid, O.A.; Salah, A.S.; Nassan, M.A.; El-Tarabany, M.S. Effects of chronic thermal stress on performance, energy metabolism, antioxidant activity, brain serotonin, and blood biochemical indices of broiler chickens. Animals 2021, 11, 2554. [Google Scholar] [CrossRef]
- Xue, B.; Song, J.; Liu, L.; Luo, J.; Tian, G.; Yang, Y. Effect of epigallocatechin gallate on growth performance and antioxidant capacity in heat-stressed broilers. Arch. Anim. Nutr. 2017, 71, 362–372. [Google Scholar] [CrossRef]
- Decker, E.; Beecher, G.; Slavin, J.; Miller, H.E.; Marquart, L. Whole grains as a source of antioxidants. Cereal Foods World 2002, 47, 370–373. [Google Scholar]
- Winiarska-Mieczan, A.; Kwiecien, M.; Mieczan, T.; Kwiatkowska, K.; Jachimowicz, K. The effect of Cu, Zn and Fe chelates on the antioxidative status of thigh meat of broiler chickens. Animal 2021, 15, 34–44. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, K.; Kumar, A. Nutritional and physiological responses of broiler chicken to the dietary supplementation of Moringa oleifera aqueous leaf extract and ascorbic acid in tropics. Trop. Anim. Health Prod. 2021, 53, 428–435. [Google Scholar] [CrossRef]
- Deng, S.; Hu, S.; Xue, J.; Yang, K.; Zhuo, R.; Xiao, Y.; Fang, R. Productive performance, serum antioxidant status, tissue selenium deposition, and gut health analysis of broiler chickens supplemented with selenium and probiotics—A pilot study. Animals 2022, 12, 1086. [Google Scholar] [CrossRef]
- Moataz, F.; Ibrahim, A.; Abdelaziz, A.; Tarek, E.; Osama, A.; Ahmed, A. Effects of dietary probiotic (Bacillus subtilis) supplementation on productive performance, immune response, and egg quality characteristics in laying hens under high ambient temperature. Ital. J. Anim. Sci. 2018, 17, 804–814. [Google Scholar]
- Egbuniwe, I.C.; Ayo, J.O.; Kawu, M.U.; Mohammed, A. Behavioral and hematological responses of broiler chickens administered with betaine and ascorbic acid during hot-dry season. J. Appl. Anim. Welfare Sci. 2018, 4, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Ross Broiler Pocket Guide. 2020. Available online: https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-Broiler-Pocket-Guide-2020-EN.pdf (accessed on 6 September 2022).
- Olnood, C.G.; Beski, S.S.M.; Iji, P.A.; Choct, M. Delivery routes for probiotics: Effects on broiler performance, intestinal morphology and gut microflora. Anim. Nutr. 2015, 1, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Aluwong, T.; Sumanu, V.O.; Ayo, J.O.; Ocheja, B.; Zakari, F.; Minka, N. Daily rhythms of cloacal temperature in broiler chickens of different age groups administered with zinc gluconate and probiotic during the hot-dry season. Physiol. Rep. 2017, 5, e13314. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Yan, F.F.; Hu, J.Y.; Amen, O.A.; Cheng, H.W. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J Anim Sci. 2018, 96, 1654–1666. [Google Scholar] [CrossRef]
- Nanto-Hara, F.; Kikusato, M.; Ohwada, S.; Toyomizu, M. Heat stress directly affects intestinal integrity in broiler chickens. J. Poult. Sci. 2020, 57, 284–290. [Google Scholar] [CrossRef]
- Mazzoni, M.; Zampiga, M.; Clavenzani, P.; Lattanzio, G.; Tagliavia, C.; Sirri, F. Effect of chronic heat stress on gastrointestinal histology and expression of feed intake-regulatory hormones in broiler chickens. Animal 2022, 16, 100600. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Jiao, L.F.; Xiao, K.; Luan, Z.S.; Hua, C.H.; Shi, B. Cello-ligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. Anim. Feed Sci. Technol. 2013, 185, 175–181. [Google Scholar] [CrossRef]
- Zampiga, M.; Laghi, L.; Zhu, C.; Mancinelli, A.C.; Mattioli, S.; Sirri, F. Breast muscle and plasma metabolomics profile of broiler chickens exposed to chronic heat stress conditions. Animal 2021, 15, 100275. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Zhang, H.; Wu, S.; Hui, Q.; Yang, C.; Fang, R.; Qi, G. Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Front. Physiol. 2019, 9, 1968. [Google Scholar] [CrossRef]
- Mohsin, M.; Zhang, Z.; Yin, G. Effect of probiotics on the performance and intestinal health of broiler chickens infected with Eimeria tenella. Vaccines 2022, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Ingale, S.L.; Kim, Y.W.; Kim, J.S.; Kim, K.H.; Lohakare, J.D. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res. Vet. Sci. 2012, 93, 264–268. [Google Scholar] [CrossRef] [PubMed]
Feed Composition | Starter | Grower | Finisher |
---|---|---|---|
Proximate analysis (%) | |||
Protein | 18.22 | 18.23 | 18.24 |
Total lysine | 1.67 | 1.68 | 1.69 |
Total methionine | 0.63 | 0.64 | 0.65 |
Fat | 3.45 | 3.46 | 3.47 |
Fibre | 5.54 | 5.55 | 5.56 |
Calcium | 0.58 | 0.59 | 0.6 |
Phosphorus | 0.52 | 0.53 | 0.54 |
Metabolizable energy (kcal/kg) | 2910 | 2980 | 3000 |
Group | Day 0–7 | Day 8–14 | Day 15–21 | Day 22–28 | Day 29–35 | |
---|---|---|---|---|---|---|
Feed intake (g) | Control | 675.14 ± 157.20 | 1027.57 ± 58.95 | 1836.71 ± 80.19 | 2505.43 ± 70.01 | 2656.86 ± 45.88 |
Probiotic | 674.43 ± 137.40 | 981.57 ± 64.21 | 1923.00 ± 134.98 | 2821.86 ± 41.10 | 3126.71 ± 56.54 | |
Ascorbic acid | 708.71 ± 153.98 | 1045.00 ± 64.21 | 2327.71 ± 175.52 | 2626.00 ± 31.61 | 2792.29 ± 70.02 | |
Prob + AA | 672.29 ± 139.07 | 1322.29 ± 71.42 | 2066.57 ± 87.43 | 2571.43 ± 16.12 | 2920.71 ± 62.78 | |
Water intake (mL) | Control | 1400.00 ± 293.58a | 2542.86 ± 184.98a | 4585.71 ± 280.67a | 5928.57 ± 184.80a | 7350.00 ± 227.26a |
Probiotic | 2000.00 ± 243.98b | 2971.43 ± 176.90a | 4900.00 ± 325.87a | 6828.57 ± 164.34b | 8628.57 ± 316.77a | |
Ascorbic acid | 1942.86 ± 220.23a | 3200.00 ± 211.57b | 5142.86 ± 348.37b | 7057.14 ± 165.99b | 8771.43 ± 222.23b | |
Prob + AA | 1928.57 ± 229.61a | 2971.43 ± 178.24a | 5085.71 ± 317.30b | 6871.43 ± 171.43b | 7471.43 ± 153.86b | |
Body weight gain (g) | Control | 181.50 ± 2.24 | 505.86 ± 15.14 | 1031.21 ± 29.89 | 1756.50 ± 48.23a | 2138.50 ± 68.02a |
Probiotic | 183.93 ± 1.16 | 515.57 ± 19.33 | 1289.07 ± 90.23 | 1822.41 ± 41.00b | 2730.79 ± 55.26b | |
Ascorbic acid | 190.07 ± 1.95 | 521.14 ± 16.33 | 1063.14 ± 30.99 | 1768.86 ± 45.56a | 2321.71 ± 58.36a | |
Prob + AA | 185.07 ± 2.93 | 522.21 ± 15.89 | 1077.64 ± 34.02 | 1629.02 ± 54.73a | 2432.64 ± 58.82b |
Parameters | Control | Probiotic | Ascorbic Acid | Probiotic + AA | |
---|---|---|---|---|---|
Duodenum | Villus height (μm) | 652.18 ± 39.94c | 1706.92 ± 129.15a | 1427.69 ± 66.69b | 1230.55 ± 81.85b |
Villus width (μm) | 117.33 ± 6.98b | 288.21 ± 53.41a | 173.55 ± 8.23b | 278.15 ± 44.77a | |
Crypt depth (μm) | 95.61 ± 12.29c | 329.45 ± 37.26a | 267.20 ± 53.10b | 324.23 ± 43.89b | |
Crypt width (μm) | 48.16 ± 4.86d | 159.57 ± 16.87a | 125.07 ± 20.47c | 140.95 ± 25.55b | |
Villus height/crypt depth | 2.40 ± 0.10c | 4.03 ± 0.62a | 3.24 ± 1.24b | 3.03 ± 0.66b | |
Villus SA (mm2) | 5.40 ± 1.29c | 16.00 ± 2.98a | 7.50 ± 3.21b | 10.80 ± 1.32b | |
Crypt SA (mm2) | 2.80 ± 0.66c | 12.80 ± 2.13a | 3.80 ± 1.24c | 8.40 ± 1.03b | |
Goblet cells | 58.00 ± 13.99c | 101.00 ± 4.92b | 108.20 ± 9.32a | 102.80 ± 12.14b | |
Ileum | Villus height (μm) | 284.58 ± 56.72d | 1025.07 ± 66.80a | 678.08 ± 58.14c | 865.22 ± 68.37b |
Villus width (μm) | 84.70 ± 19.19c | 236.10 ± 41.28a | 107.93 ± 8.03b | 230.98 ± 19.38a | |
Crypt depth (μm) | 98.95 ± 5.09d | 159.73 ± 25.54b | 135.13 ± 21.12c | 231.73 ± 35.60a | |
Crypt width (μm) | 40.80 ± 5.94c | 88.70 ± 10.96a | 65.38 ± 5.05b | 92.28 ± 7.71a | |
Villus height/crypt depth | 1.22 ± 0.01c | 2.41 ± 0.10a | 1.49 ± 5.01b | 2.00 ± 1.01b | |
Villus SA (mm2) | 3.60 ± 0.93b | 10.40 ± 1.44a | 7.60 ± 1.60a | 9.00 ± 1.22a | |
Crypt SA (mm2) | 3.60 ± 0.68b | 7.40 ± 1.12a | 3.60 ± 1.21b | 7.40 ± 0.93a | |
Goblet cells | 52.40 ± 9.69c | 183.20 ± 20.61a | 125.40 ± 22.65b | 122.20 ± 13.40b | |
Jejunum | Villus height (μm) | 362.95 ± 68.90c | 1205.70 ± 105.67a | 1010.33 ± 62.26b | 1066.50 ± 51.31b |
Villus width (μm) | 102.81 ± 11.09c | 204.58 ± 20.54b | 202.58 ± 37.60b | 220.48 ± 35.19a | |
Crypt depth (μm) | 123.46 ± 11.16c | 303.43 ± 36.83a | 240.39 ± 39.34b | 279.19 ± 26.99b | |
Crypt width (μm) | 48.47 ± 4.33c | 98.71 ± 14.12a | 84.21 ± 5.62b | 88.41 ± 9.57b | |
Villus height/crypt depth | 1.10 ± 0.01c | 2.44 ± 3.00a | 1.90 ±1.02b | 2.00 ± 0.01b | |
Villus SA (mm2) | 2.70 ± 0.49c | 10.20 ± 1.39b | 11.40 ± 3.06a | 9.80 ± 0.86b | |
Crypt SA (mm2) | 2.80 ± 0.66c | 8.20 ± 1.28a | 6.40 ± 1.57b | 7.80 ± 1.02a | |
Goblet cells | 56.00 ± 8.15c | 150.60 ± 20.92a | 93.00 ± 9.95b | 102.60 ± 6.37b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumanu, V.O.; Naidoo, V.; Oosthuizen, M.; Chamunorwa, J.P. A Technical Report on the Potential Effects of Heat Stress on Antioxidant Enzymes Activities, Performance and Small Intestinal Morphology in Broiler Chickens Administered Probiotic and Ascorbic Acid during the Hot Summer Season. Animals 2023, 13, 3407. https://doi.org/10.3390/ani13213407
Sumanu VO, Naidoo V, Oosthuizen M, Chamunorwa JP. A Technical Report on the Potential Effects of Heat Stress on Antioxidant Enzymes Activities, Performance and Small Intestinal Morphology in Broiler Chickens Administered Probiotic and Ascorbic Acid during the Hot Summer Season. Animals. 2023; 13(21):3407. https://doi.org/10.3390/ani13213407
Chicago/Turabian StyleSumanu, Victory Osirimade, Vinny Naidoo, Marinda Oosthuizen, and Joseph Panashe Chamunorwa. 2023. "A Technical Report on the Potential Effects of Heat Stress on Antioxidant Enzymes Activities, Performance and Small Intestinal Morphology in Broiler Chickens Administered Probiotic and Ascorbic Acid during the Hot Summer Season" Animals 13, no. 21: 3407. https://doi.org/10.3390/ani13213407
APA StyleSumanu, V. O., Naidoo, V., Oosthuizen, M., & Chamunorwa, J. P. (2023). A Technical Report on the Potential Effects of Heat Stress on Antioxidant Enzymes Activities, Performance and Small Intestinal Morphology in Broiler Chickens Administered Probiotic and Ascorbic Acid during the Hot Summer Season. Animals, 13(21), 3407. https://doi.org/10.3390/ani13213407