Bivalent Vaccine against Streptococcus agalactiae and Aeromonas hydrophila in Nile Tilapia (Oreochromis niloticus): A Laboratory-Phase and Large-Scale Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Biochemical Identification of Bacterial Strains
2.3. Molecular Identification of Bacterial Strains with Loop-Amplification-Mediated Purification (LAMP)
2.4. Development of the Bivalent Vaccine
2.5. Pre-Experimental Period
2.6. Laboratory Experiment Design
2.7. Field Experiment Design
2.8. Statistical Analysis
3. Results
3.1. Bacterial Identification of Aeromonas hydrophila and Streptococcus agalactiae
3.2. Vaccinated Group Fish Antiserum Presented Antigen Agglutination after Vaccination in Laboratory Experiment
3.3. Histopathological Analysis of Liver, Spleen, and Tissue from the Vaccine Injection Region
3.4. Bivalent Vaccine against Aeromonas hydrophila and Streptococcus agalactiae Efficacy in Laboratory and Field Experiments
3.5. Bivalent Vaccine against Aeromonas hydrophila and Streptococcus agalactiae Protects Tilapia against Clinical Signs of Both Diseases
3.6. Mortality Was Lower in the Vaccinated Tilapia Groups after Laboratory Experiment Challenge and Lower in the Field Experiment without Challenge
3.7. Effect of Vaccination on Weight Gain and Feed Conversion
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- PEIXEBR. Anuário Brasileiro da Piscicultura, PEIXE BR 2023. São Paulo: Associação Brasileira da Piscicultura. 2023. Available online: https://www.aen.pr.gov.br/sites/default/arquivos_restritos/files/documento/2023-03/anuariopeixebr2023.pdf (accessed on 15 January 2023).
- Ayroza, D.M.M.R.; Carmo, F.J.; Ayroza, L.M.S. Panorama da Piscicultura no Brasil—Destaque para o Potencial do Estado de São Paulo; Casa da Agricultura: São Paulo, Brazil, 2011; pp. 9–10.
- Hirsch, D.; Pereira Júnior, D.J.; Logato, P.V.R.; Piccoli, R.H.; Figueiredo, H.C.P. Identificação e resistência a antimicrobianos de espécies de Aeromonas móveis isoladas de peixes e ambientes aquáticos. Ciênc. Agrotec. 2006, 30, 1211–1217. [Google Scholar] [CrossRef]
- Xu, D.H.; Shoemaker, C.A.; Martins, M.L.; Pridgeon, J.W.; Klesius, P.H. Enhanced susceptibility of channel catfish to the bacterium Edwardsiella ictaluri after parasitism by Ichthyophthirius multifiliis. Vet. Microbiol. 2012, 158, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Leira, M.H.; de Assis Lago, A.; Viana, J.A.; da Cunha, L.T.; Mendonça, F.G.; de Freitas, R.T.F. As principais doenças na criação de tilápias no Brasil: Revisão de literatura. Nutr. Time 2017, 14, 4982–4996. [Google Scholar]
- Schering-Plough. Principais Doenças Bacterianas em Criações Comerciais de Peixes no Brasil. Boletim Técnico, Cotia, SP, 2007. 8p. Available online: https://www.snatural.com.br/wp-content/uploads/2017/05/Doencas-Peixes-Tratamento.pdf (accessed on 15 June 2022).
- Kubitza, F. Tilápias na mira dos patógenos. Rev. Panor. Aquicultura 2008, 18, 28–37. [Google Scholar]
- Batra, P.; Mathur, P.; Misra, M.C. Aeromonas spp.: An emerging nosocomial pathogen. J. Lab. Physicians 2016, 8, 1. [Google Scholar] [CrossRef]
- Figueiredo, H.C.P.; Castro, G.A.C.; Leal, C.A.G.; Lopes, C.O. Sanidade aquícola: Quem tem medo de Aeromonas? Rev. Panor. Aquicultura 2008, 108, 26–31. [Google Scholar]
- Sime-Ngando, T. Aeromonas; Caister Academic Press: Norfolk, UK, 2015. [Google Scholar]
- Delphino, M.K.; Barone, R.S.; Leal, C.A.; Figueiredo, H.C.; Gardner, I.A.; Gonçalves, V.S. Economic appraisal of vaccination against Streptoccocus agalactiae in Nile tilapia farms in Brazil. Prev. Vet. Med. 2019, 162, 131–135. [Google Scholar] [CrossRef]
- Salvador, R.; Muller, E.E.; Freitas, J.C.D.; Leonhadt, J.H.; Pretto-Giordano, L.G.; Dias, J.A. Isolation and characterization of Streptococcus spp. group B in Nile tilapias (Oreochromis niloticus) reared in hapas nets and earth nurseries in the northern region of Parana State, Brazil. Cienc. Rural. 2005, 35, 1374–1378. [Google Scholar] [CrossRef]
- Marcusso, P.F.; Eto, S.F.; Claudiano, G.D.S.; Vieira, F.C.F.; Salvador, R.; Moraes, J.R.E.D.; Moraes, F.R.D. Isolamento de Streptococcus agalactiae em diferentes órgãos de tilápias-do-nilo (Oreochromis niloticus) criadas em tanques-rede. Biosci. J. 2015, 31, 549–554. [Google Scholar] [CrossRef]
- Leal, C.A.G. Estreptococose clínica em tilápia: Passado e presente. Rev. Panor. Aquicultura 2018, 169, 28–35. [Google Scholar]
- Smith, P.; Hiney, M.P.; Samuelsen, O.B. Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Annu. Rev. Fish Dis. 1994, 4, 273–313. [Google Scholar] [CrossRef]
- Abutbul, S.; Golan-Goldhirsh, A.; Barazani, O.; Zilberg, D. Use of Rosmarinus officinalis as a treatment against Streptococcus iniae in tilapia (Oreochromis sp.). Aquaculture 2004, 238, 97–105. [Google Scholar] [CrossRef]
- Burridge, L.; Weis, J.S.; Cabello, F.; Pizarro, J.; Bostick, K. Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture 2010, 306, 7–23. [Google Scholar] [CrossRef]
- Pádua, S.B.; Menezes Filho, R.N. Antibióticos na aquicultura e os critérios para o uso racional. Rev. Panor. Aquicultura 2014, 145, 31. [Google Scholar]
- Chakravarti, D.N.; Fiske, M.J.; Fletcher, L.D.; Zagursky, R.J. Application of genomics and proteomics for identification of bacterial gene products as potential vaccine candidates. Vaccine 2000, 19, 601–612. [Google Scholar] [CrossRef]
- Dumrongphol, Y.; Hirota, T.; Kondo, H.; Aoki, T.; Hirono, I. Identification of novel genes in Japanese flounder (Paralichthys olivaceus) head kidney up-regulated after vaccination with Streptococcus iniae formalin-killed cells. Fish Shellfish Immunol. 2009, 26, 197–200. [Google Scholar] [CrossRef]
- Reiner, K. Catalase Test Protocol; American Society for Microbiology: Washington, DC, USA, 2010; pp. 1–9. Available online: https://asm.org/getattachment/72a871fc-ba92-4128-a194-6f1bab5c3ab7/Catalase-Test-Protocol.pdf (accessed on 15 June 2022).
- Barile, M.F. Gram Staining Technique. In Methods in Mycoplasmology V1: Mycoplasma Characterization; Razin, S., Ed.; Academic Press: New York, NY, USA, 2012; Volume 1, p. 39. [Google Scholar]
- Buxton, R. Blood Agar Plates and Hemolysis Protocols; American Society for Microbiology: Washington, DC, USA, 2005; pp. 1–9. Available online: https://asm.org/getattachment/7ec0de2b-bb16-4f6e-ba07-2aea25a43e76/protocol-2885.pdf (accessed on 15 June 2022).
- BioMérieux. VITEK 2 Compact. Available online: https://www.biomerieux.com.br/produto/vitekr-2-compact (accessed on 15 June 2022).
- Slotved, H.C.; Elliott, J.; Thompson, T.; Konradsen, H.B. Latex assay for serotyping of group B Streptococcus isolates. J. Clin. Microbiol. 2003, 41, 4445–4447. [Google Scholar] [CrossRef]
- Viogene Biotek, Blood and Tissue Genomic DNA Miniprep System, Taiwan. Available online: https://www.viogene.com/uploads/product/protocol/20/GG1002.pdf (accessed on 15 January 2023).
- Cai, Y.; Zhou, Q.J.; Chen, J. Establishment of loop-mediated isothermal amplification method combined with a lateral flow dipstick for rapid detection of Aeromonas hydrophila. J. Vet. Sci. Technol. 2016, 36, 256–264. [Google Scholar] [CrossRef]
- Zhou, Q.J.; Lu, J.F.; Su, X.R.; Jin, J.L.; Li, S.Y.; Zhou, Y.; Wang, L.; Shao, X.-B.; Wang, Y.H.; Chen, J.; et al. Simultaneous detection of multiple bacterial and viral aquatic pathogens using a fluorogenic loop-mediated isothermal amplification-based dual-sample microfluidic chip. J. Fish Dis. 2021, 44, 401–413. [Google Scholar] [CrossRef]
- SEPPIC. Animal Species and Veterinary Vaccines; SEPPIC: Courbevoie, France; Available online: https://www.seppic.com/en/animal-health/animal-species (accessed on 25 September 2023).
- Popma, T.J.; Green, B.W. Reversão sexual de tilápias em tanques de terra. In Manual de Produção em Aquacultura; University Aurburn: Aurburn, FL, USA, 1990; p. 52. [Google Scholar]
- Kubitza, F.; Kubitza, L.M.M. Tilápias: Qualidade da água, sistemas de cultivo, planejamento da produção, manejo nutricional e alimentar e sanidade–Parte 2. Rev. Panor. Aqüicultura 2000, 60, 31–53. [Google Scholar]
- Marengoni, N.G. Produção de tilápia-do-Nilo Oreochromis niloticus (linhagem chitralada), cultivada em tanques-rede, sob diferentes densidades de estocagem. Arch. Zootec. 2006, 55, 127–138. [Google Scholar]
- Kubitza, F. Manejo nutricional e alimentar de tilápias. Rev. Panor. Aquicultura 2000, 10, 31–36. [Google Scholar]
- Rotili, D.A.; Devens, M.A.; Diemer, O.; Lorenz, E.K.; Lazzari, R.; Boscolo, W.R. Uso de eugenol como anestésico em pacu. Pesq. Agropec. Trop. 2012, 42, 288–294. [Google Scholar] [CrossRef]
- Sørensen, U.B.; Larsen, J.L. Serotyping of Vibrio anguillarum. Appl. Environ. Microbiol. 1986, 51, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Melo, C.C.V.; Bruhn, F.R.P.; Ascari, I.J.; Leira, M.H.; Zangeronimo, M.G.; Pereira, L.J.; Mian, G.F. A eficácia das vacinas contra Streptococcus agalactiae em tilápias: Uma revisão sistemática. Rev. Científica Eletrônica Med. Veterinária 2015, 13, 1–15. [Google Scholar]
- Liu, G.; Zhu, J.; Chen, K.; Gao, T.; Yao, H.; Liu, Y.; Zhang, W.; Lu, C. Development of Streptococcus agalactiae vaccines for tilapia. Dis. Aquat. Org. 2016, 122, 163–170. [Google Scholar] [CrossRef]
- Munang’andu, H.M.; Paul, J.; Evensen, Ø. An overview of vaccination strategies and antigen delivery systems for Streptococcus agalactiae vaccines in Nile tilapia (Oreochromis niloticus). Vaccines 2016, 4, 48. [Google Scholar] [CrossRef]
- Lamers, C.H.J.; De Hass, M.J.H.; Van Muiswinkel, W.B. Humoral response and memory formation in carp after injection of Aeromonas hydrophila bacterin. Dev. Comp. Immunol. 1985, 9, 65–75. [Google Scholar] [CrossRef]
- Evans, J.J.; Klesius, P.H.; Shoemaker, C.A. Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccin 2004, 22, 3769–3773. [Google Scholar] [CrossRef]
- Longhi, E.; Pretto-Giordano, L.G.; Müller, E.E. Effectiveness of homologous inactivated Streptococcus agalactiae vaccine by immersion bath in Nile tilapia (Oreochromis niloticus). Semin. Cienc. Agrar. 2013, 33 (Suppl. 2), 3191–3200. [Google Scholar] [CrossRef]
- Klesius, P.H.; Shoemaker, C.A.; Evans, J.J. Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia (Oreochromis niloticus). Aquaculture 2000, 188, 237–246. [Google Scholar] [CrossRef]
- Sevaraj, V.; Sampath, K.; Sekar, V. Extraction and characterization of lipopolysaccharide from Aeromonas hydrophila and its effects on survival and hematology of the carp, Cyprinus carpio. Asian Fish. Sci. 2004, 17, 163–173. [Google Scholar]
- Khoshbavar-Rostami, H.A.; Soltani, M.; Hassan, H.M.D. Immune responses of great sturgeon Huso huso to Aeromonas hydrophila bacterin. J. Fish Biol. 2007, 70, 1931–1938. [Google Scholar] [CrossRef]
- Silva, B.C.; Martins, M.L.; Jatobá, A.; Buglione Neto, C.C.; Vieira, F.N.; Pereira, G.V.; Jerônimo, G.T.; Seiffert, W.Q.; Mouriño, J.L.P. Resposta hematológica e imunológica de tilápia do Nilo após administração de vacina polivalente por diferentes vias. Pesq. Vet. Bras. 2009, 29, 874–880. [Google Scholar] [CrossRef]
- Eldar, A.; Horovitcz, A.; Bercovier, H. Development and efficacy of a vaccine against Streptococcus iniae infection in farmed rainbow trout. Vet. Immunol. Immunopathol. 1997, 56, 175–183. [Google Scholar] [CrossRef]
- Pretto-Giordano, L.G.; Müller, E.E.; Klesius, P.; Da Silva, V.G. Efficacy of an experimentally inactivated Streptococcus agalactiae vaccine in Nile tilapia (Oreochromis niloticus) reared in Brazil. Aquac. Res. 2010, 41, 1539–1544. [Google Scholar] [CrossRef]
- Pasnik, D.J.; Evans, J.J.; Panangala, V.S.; Klesius, P.H.; Shelby, R.A.; Shoemaker, C.A. Antigenicity of Streptococcus agalactiae extracellular products and vaccine efficacy. J. Fish Dis. 2005, 28, 205–212. [Google Scholar] [CrossRef]
- Steckert, L.D.; Cardoso, L.; Jerônimo, G.T.; de Pádua, S.B.; Martins, M.L. Investigation of farmed Nile tilapia health through histopathology. Aquaculture 2018, 486, 161–169. [Google Scholar] [CrossRef]
- Ministério da Agricultura e Pecuária. Decreto Nº 9.013, de 29 de Março de 2017. Regulamenta a Lei nº 1.283, de 18 de Dezembro de 1950, e a Lei nº 7.889, de 23 de Novembro de 1989; Diário Oficial da União; Poder Executivo; Ministério da Agricultura e Pecuária: Brasília, Brasil, 2017.
Species | Primers |
---|---|
A. hydrophila | F3 ATATGATGCGCTTGAGCC |
B3 ACCACCGTTATTGATGACTG | |
FIP GAGCAGCATTTGCATTAGCAACATATTTTGATGCTGAGACAATGACAC | |
BIP ACATCCTGAAATTGGAGAAGACTTTTTTCCTGACGAATATCTTCTGGAAT | |
LF TGCATGGTGCTTATCATGATGT | |
LB AGGCGCTCTTAGCTGATGT | |
S. agalactiae | F3 CCGAAGGTGTTCCACTTCC |
B3 ATAACGGCAATCAGACCTTC | |
FIP GCTGCGGAATGTTGTTGGTGTTTTGGTGTGGAAGTAGCGATG | |
BIP ACCTGGTGGGCTTCCGTATTTTGCCTTCTTGCTGTAGTCC | |
LF CCTGATAGGCGTCGTTCC | |
LB CCGTACTCTGAACTCCTACATG |
Experiment | Treatment | Deaths/Total (%) | p < 0.05 | VE% |
---|---|---|---|---|
Laboratory | Vaccinated | 1/34 (2.94) | 0.0042 * | 93.66 |
Control | 11/34 (32.34) | |||
Field | Vaccinated | 200/6000 (3.33) | 0.0001 * | 59.14 |
Control | 467/6000 (7.78) |
Final Average Weight (kg) | FCR (kg) | Average Daily Mortality | |
---|---|---|---|
Control | 0.657 (±0.10) | 1.54 | 5.12 (±3.16) |
Vaccinated | 0.792 (±0.016) | 1.27 | 2.40 (±4.37) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas, A.V.; dos Santos, A.G.V.; de Souza, A.B.; Bueno Junior, G.; de Souza, G.F.; de Souza, E.M.; de Carvalho Nunes, L.; Viana, K.F. Bivalent Vaccine against Streptococcus agalactiae and Aeromonas hydrophila in Nile Tilapia (Oreochromis niloticus): A Laboratory-Phase and Large-Scale Study. Animals 2023, 13, 3338. https://doi.org/10.3390/ani13213338
Rivas AV, dos Santos AGV, de Souza AB, Bueno Junior G, de Souza GF, de Souza EM, de Carvalho Nunes L, Viana KF. Bivalent Vaccine against Streptococcus agalactiae and Aeromonas hydrophila in Nile Tilapia (Oreochromis niloticus): A Laboratory-Phase and Large-Scale Study. Animals. 2023; 13(21):3338. https://doi.org/10.3390/ani13213338
Chicago/Turabian StyleRivas, Açucena Veleh, Angelo Gabriel Vidal dos Santos, Adrieli Barboza de Souza, Gilson Bueno Junior, Gabriela Fernandes de Souza, Estevam Martins de Souza, Louisiane de Carvalho Nunes, and Kelvinson Fernandes Viana. 2023. "Bivalent Vaccine against Streptococcus agalactiae and Aeromonas hydrophila in Nile Tilapia (Oreochromis niloticus): A Laboratory-Phase and Large-Scale Study" Animals 13, no. 21: 3338. https://doi.org/10.3390/ani13213338
APA StyleRivas, A. V., dos Santos, A. G. V., de Souza, A. B., Bueno Junior, G., de Souza, G. F., de Souza, E. M., de Carvalho Nunes, L., & Viana, K. F. (2023). Bivalent Vaccine against Streptococcus agalactiae and Aeromonas hydrophila in Nile Tilapia (Oreochromis niloticus): A Laboratory-Phase and Large-Scale Study. Animals, 13(21), 3338. https://doi.org/10.3390/ani13213338