An Experimental Field Trial Investigating the Use of Bacteriophage and Manure Slurry Applications in Beef Cattle Feedlot Pens for Salmonella Mitigation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Manure Slurry Treatment
2.2.1. Pen Manure Salmonella Populations
2.2.2. Pen Manure Phage Presence
2.2.3. Manure Slurry Treatment Development and Application
2.3. Bacteriophage Cocktail Treatment
2.3.1. Bacteriophage Assays to Determine Host Range
2.3.2. Bacteriophage Cocktail Treatment Development and Application
2.4. Experimental Trial Study Design
2.4.1. Pre-Trial Sampling—WTAMU Feedlot
2.4.2. Experimental Trial—AgriLife Feedlot
2.4.3. Follow-Up Sampling—WTAMU and AgriLife Feedlots
2.5. Sample Collection
2.6. Salmonella Selective Enrichment and Isolation
2.7. Whole Genome Sequencing
2.8. Data Analysis
3. Results
3.1. Pen Environment Selection for the Manure Slury Treatment
3.2. Bacteriophage Selection for the Bacteriophage Cocktail Treatment
3.3. Pre-Trial Results
3.4. Experimental Trial Results
3.4.1. Pre-Treatment Salmonella Prevalence
3.4.2. Post-Treatment Salmonella Prevalence
3.5. Whole Genome Sequencing
3.5.1. Quality Metrics
3.5.2. Salmonella Serovar Composition
3.6. Phylogenetic Analysis
3.7. Antimicrobial Resistance Genes
3.8. Follow-Up Results
3.9. Cattle Subiliac Lymph Nodes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knight, R. Cattle & Beef Sector at a Glance; USDA Economic Research Service: Washington, DC, USA, 2023.
- Spiegal, S.; Cibils, A.; Bestelmeyer, B.; Steiner, J.; Estell, R.; Archer, D.; Auvermann, B.; Bestelmeyer, S.; Boucheron, L.; Cao, H.; et al. Beef Production in the Southwestern United States: Strategies Toward Sustainability. Front. Sustain. Food Syst. 2020, 4, 114. [Google Scholar] [CrossRef]
- Masebo, N.; Marliani, G.; Cavallini, D.; Accorsi, P.; DiPietro, M.; Beltrame, A.; Gentile, A.; Jacinto, J. Health and welfare assessment of beef cattle during the adaptaion period in a specialized commercial fattening unit. Res. Vet. Sci. 2023, 158, 50–55. [Google Scholar] [CrossRef]
- Laufer, A.; Grass, J.; Holt, K.; Whichard, J.; Griffin, P.; Gould, L. Outbreaks of Salmonella Infections Attributed to Beef—United States, 1973–2011. Epidemiol. Infect. 2015, 143, 2003–2013. [Google Scholar] [CrossRef]
- Bacon, R.; Sofos, J.; Belk, K.; Hyatt, D.; Smith, G. Prevalence and Antibiotic Susceptibility of Salmonella Isolated from Beef Animal Hides and Carcasses. J. Food Prot. 2002, 65, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Koohmaraie, M.; Scanga, J.; de la Zerda, M.; Koohmaraie, B.; Tapay, L.; Beskhlebnaya, V.; Mai, T.; Greeson, K.; Samadpour, M. Tracking the Sources of Salmonella in Ground Beef Produced from Nonfed Cattle. J. Food Prot. 2012, 75, 1464–1468. [Google Scholar] [CrossRef]
- Brichta-Harhay, D.; Guerini, M.; Arthur, T.; Bosilevac, J.; Kalchayanand, N.; Shackelford, S.; Wheeler, T.; Koohmaraie, M. Salmonella and Escherichia coli O157:H7 Contamination on Hides and Carcasses of Cull Cattle Presented for Slaughter in the United States: An evaluation of Prevalence and Bacterial Loads by Immunomagnetic Separation and Direct Plated Methods. Appl. Environ. Microbiol. 2008, 74, 6289–6297. [Google Scholar] [CrossRef] [PubMed]
- Winkler, D.; Harris, K. Reference Document: Antimicrobial Interventions for Beef; National Cattlemen’s Beef Association, Beef Industry Food Safety Council: Centennial, CO, USA, 2009. [Google Scholar]
- Yang, X.; Bullard, B.; Geornaras, I.; Hu, S.; Woerner, D.; Delmore, R.; Morgan, J.; Belk, K. Comparison of the Efficacy of a Sulfuric Acid-Sodium Sulfate Blend and Lactic Acid for the Reduction of Salmonella on Prerigor Beef Carcass Surface Tissue. J. Food Prot. 2017, 90, 809–813. [Google Scholar] [CrossRef]
- Arthur, T.; Kalachayanand, N.; Bosilevac, J.; Brichta-Harhay, D.; Shackelford, S.; Bono, J.; Wheeler, T.; Koohmaraie, M. Comparison of Effects of Antimicrobial Interventions on Multidrug-Resistant Salmonella, Susceptible Salmonella and Esherichia coli O157:H7. J. Food Prot. 2008, 71, 2177–2181. [Google Scholar] [CrossRef] [PubMed]
- Phebus, R.; Nutsch, A.; Schafer, D.; WIlson, R.; Riemann, M.; Leising, J.; Kastner, C.; Wolf, J.; Prasai, R. Comparison of Steam Pasteurization and Other Methods for Reducation of Pathogens on Surfaces of Freshly Slaughtered Beef. J. Food Prot. 1997, 60, 476–484. [Google Scholar] [CrossRef]
- Prasai, R.; Phebus, R.; Garcia Zepeda, C.; Kastner, C.; Boyle, A.; Fung, D. Effectiveness of trimming and/or washing on microbiological quality of beef carcasses. J. Food Prot. 1995, 58, 1114–1117. [Google Scholar] [CrossRef]
- Brichta-Harhay, D.; Arthur, T.; Bosilevac, J.; Kalachayanand, N.; Schmidt, J.; Wang, R.; Shackelford, S.; Loneragan, G.; Wheeler, T. Microbiological Analysis of Bovine Lymph Nodes for the Detection of Salmonella enterica. J. Food Prot. 2012, 75, 854–858. [Google Scholar] [CrossRef]
- FSIS. USDA Food Safety Inspection Service Annual Sampling Report, Fiscal Year 2021; United States Department of Agriculture: Washington, DC, USA, 2021.
- Vipham, J.; Loneragan, G.; Guillen, L.; Brooks, J.; Johnson, B.; Pond, A.; Brashears, M. Reduced Burden of Salmonella enterica in Bovine Subiliac Lymph Nodes Associated with Administration of Direct-fed Microbial. Zoonoses Public Health 2015, 62, 599–608. [Google Scholar] [CrossRef]
- Edrington, T.; Arthur, T.; Loneragan, G.; Genovese, K.; Hanson, D.; Anderson, R.; Nisbet, D. Evaluation of two commercially-available Salmonella vaccines on Salmonella in the peripheral lymph nodes of experimentally-infected cattle. Ther. Adv. Vaccines Immunother. 2020, 8, 2515135520957760. [Google Scholar] [CrossRef]
- Wottlin, L.; Edrington, T.; Brown, T.; Zook, C.; Sulakvelidze, A.; Droleskey, R.; Genovese, K.; Nisbet, D. Evaluation of a Preharvest Bacteriophage Therapy for Control of Salmonella within Bovine Peripheral Lymph Nodes. J. Food Prot. 2022, 8, 254–260. [Google Scholar] [CrossRef]
- Nickodem, C.; Arnold, A.; Gehring, K.; Gill, J.; Richeson, J.; Kendall, S.; Scott, H.; Smith, J.; Taylor, M.; Vinasco, J.; et al. Longitudinal dynamics of Salmonella enterica prevalence and serovar composition in beef cattle and their feedlot pen environment. Appl. Environ. Microbiol. 2023, 89, e00033-23. [Google Scholar] [CrossRef] [PubMed]
- Fegan, N.; Vanderlinde, P.; Higgs, G.; Desmarchelier, P. Quantification and prevalence of Salmonella in beef cattle presenting at slaugher. Appl. Microbiol. 2004, 97, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Levent, G.; Schlochtermeier, A.; Ives, S.; Norman, K.; Lawhon, S.; Longeragan, G.; Anderson, R.; Vinasco, J.; Scott, H. Population Dynamics of Salmonella enterica within Beef Cattle Cohorts Followed from Single-Dose Metaphylactic Antibiotic Treatment until Slaughter. Appl. Environ. Microbiol. 2019, 85, 1386–1419. [Google Scholar] [CrossRef]
- Liu, D.; Van Belleghem, J.; de Vries, C.; Burgener, E.; Chen, Q.; Manasherob, R.; Aronson, J.; Amanatullah, D.; Tamma, P.; Suh, G. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses 2021, 13, 1268. [Google Scholar] [CrossRef] [PubMed]
- Yosef, I.; Manor, M.; Qimron, U. Counteracting selection for antibiotic-resistant bacteria. Bacteriophage 2016, 6, e1096996. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, S.; Rashel, M.; Uchiyama, J.; Sakurai, S.; Ujihara, T.; Kuroda, M.; Ikeuchi, M.; Tani, T.; Fujieda, M.; Wakiguchi, H.; et al. Bacteriophage therapy: A revialized therapy against bacterial infectious diesases. J. Infect. Chemother. 2005, 11, 211–219. [Google Scholar] [CrossRef]
- Liu, N.; Lewis, C.; Zheng, W.; Fu, Z. Phage Cocktail Therapy: Multiple Ways to Suppress Pathogenicity. Trends Plant Sci. 2020, 25, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, S.; Guo, Z.; Liu, H.; Sun, D.; Yan, G.; Hu, D.; Du, C.; Feng, X.; Han, W.; et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Modi, R.; Hirvi, Y.; Hill, A.; Griffiths, M. Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J. Food Prot. 2001, 64, 927–933. [Google Scholar] [CrossRef]
- Whichard, J.; Sriranganathan, N.; Pierson, F. Suppression of Salmonella Growth by Wild-Type and Large-Plaque Variamts of Bacteriophage Felix O1 in Liquid Culture and on Chicken Frankfurters. J. Food Prot. 2003, 66, 220–225. [Google Scholar] [CrossRef]
- Bigwood, T.; Hudson, J.; Billington, C.; Carey-Smith, G.; Heinemann, J. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol. 2008, 25, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.; Purushothaman, P.; Gupta, N.; Ragnone, M.; Verma, S.; de Mello, A. Bacteriophage application on read meats and poultry: Effects on Salmonella apopulation in final ground products. Meat Sci. 2017, 127, 30–34. [Google Scholar] [CrossRef]
- Yeh, Y.; de Moura, F.; Van Den Broek, K.; de Mello, A. Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci. 2018, 139, 44–48. [Google Scholar] [CrossRef]
- Lee, N.; Harris, D. The effect of bacteriophage treatment to reduce the rapid dissemination of Salmonella typhimurium in pigs. Swine Res. Rep. 2001, 50, 196–197. [Google Scholar]
- Fiorentin, L.; Vieira, N.; Barioni, W. Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol. 2005, 34, 258–263. [Google Scholar] [CrossRef]
- Borie, C.; Sanches, M.; Navarro, C.; Ramirez, S.; Morales, M.; Retamales, J.; Robeson, J. Aerosol Spray Treatment with Bacteriophages and Competitive Exclussion Reduces Salmonella Enteritidis Infection in Chickens. Avian Dis. 2009, 53, 250–254. [Google Scholar] [CrossRef]
- Sheng, H.; Knecht, H.; Kudva, I.; Hovde, C. Application of Bacteriophages to Control Intestinal Escherichia coli O157:H7 Levels in Ruminants. Appl. Environ. Microbiol. 2006, 72, 5359–5366. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Pacan, J.; Carson, M.; Leslie, K.; Griffiths, M.; Sabour, P. Efficacy and Pharmacokinetics of Bacteriophage Therapy in Treatment of Subclinical Stapylococcus aureus Mastitis in Lactating Dairy Cattle. Antimicrob. Agents Chemother. 2006, 50, 2912–2918. [Google Scholar] [CrossRef] [PubMed]
- Atterbury, R.; Van Bergen, M.; Ortiz, F.; Lovell, M.; Harris, J.; De Boer, A.; Wagenaar, J.; Allen, V.; Barrow, P. Bacteriophage Therapy to Reduce Salmonella Colonization of Broiler Chickens. Appl. Environ. Microbiol. 2007, 73, 4543–4549. [Google Scholar] [CrossRef]
- Callaway, T.; Edrington, T.; Brabban, A.; Kutter, E.; Karriker, L.; Stahl, C.; Wagstrom, E.; Anderson, R.; Genovese, K.; McReynolds, J.; et al. Occurrence of Salmonella-Specific Bacteriophages in Swine Feces Collected from Commercial Farms. Foodborne Pathog. Dis. 2010, 7, 851–856. [Google Scholar] [CrossRef]
- Switt, A.; den Bakker, H.; Vongkamjan, K.; Hoelzner, K.; Warnick, L.; Cummings, K.; Wiedmann, M. Salmonella bacteriophage diversity reflects host diversity on dairy farms. Food Microbiol. 2013, 36, 275–285. [Google Scholar] [CrossRef]
- Xie, Y.; Savall, J.; Arnold, A.; Gehring, K.; Gill, J.; Taylor, T. Prevalence and Characterization of Salmonella enterica and Salmonella Bacteriophages Recovered from Beef Cattle Feedlots in South Texas. J. Food Prot. 2016, 79, 1332–1340. [Google Scholar] [CrossRef]
- Ohta, N.; Norman, K.; Norby, B.; Lawhon, S.; Vinasco, J.; den Bakker, H.; Loneragan, G.; Scott, H. Popultion dynamics of enteric Salmonella in response to antimicrobial use in beef feedlot cattle. Sci. Rep. 2017, 7, 14310. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wahab, L.; Gill, J. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses 2018, 10, 189. [Google Scholar] [CrossRef]
- Purdy, C.; Straus, D.; Clark, R. Diversity of Salmonella serovars in feedyard and nonfeedyard playas of the Southern High Plains in the summer and winter. Am. J. Vet. Res. 2004, 65, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Loneragan, G.; Brashears, M. Effects of using retention-pond water for dust abatement on performance of feedlot steers and carriage fo Escherichia coli O157 and Salmonella spp. J. Am. Vet. Med. Assoc. 2005, 226, 1378–1383. [Google Scholar] [CrossRef]
- Carvalho, C.; Costa, A.; Silva, F.; Oliveira, A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit. Rev. Microbiol. 2017, 43, 583–601. [Google Scholar] [CrossRef]
- Zbikowska, K.; Michalczuk, M.; Dolka, B. The Use of Bacteriophages in the Poultry Industry. Animals 2020, 10, 872. [Google Scholar] [CrossRef] [PubMed]
- PhageGuard. Phageguard Salmonella Applications. Available online: https://www.phageguard.com/applications (accessed on 22 September 2023).
- Ferrari, R.; Rosario, D.; Cunha-Neto, A.; Mano, S.; Figueiredo, E.; Conte-Junio, C. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef]
- Jonczyk, E.; Klak, M.; Miedzybrodski, R.; Gorski, A. The influence of external factors on bacteriophages—Review. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Sun, M.; Huang, D.; Zhang, Z.; Zhang, H.; Zhang, S.; Hu, F.; Jiang, X.; Jiao, W. A reivew of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environ. Int. 2019, 129, 488–496. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, M.; Zhang, X.; Sun, M.; Zhang, Z.; Chao, H.; Huang, D.; Wan, J.; Zhang, S.; Jiang, X.; et al. Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. Sci. Total Environ. 2019, 657, 918–925. [Google Scholar] [CrossRef] [PubMed]
- CDC. Outbreak of Salmonella Infections Linked to Ground Beef—Final Update; National Center for Emerging and Zoonotic Infectious Diseases: Atlanta, GA, USA, 2019.
- USDA-FSIS. Salmonella Newport Outbreaks Associated with Ground Beef; Food Safety and Inspection Service: Washington, DC, USA, 2019.
- Sargeant, J.; Totton, S.; Plishka, M.; Vriezen, E. Salmonella in Animal Feeds: A Scoping Review. Front. Vet. Sci. 2021, 8, 727495. [Google Scholar] [CrossRef]
- Hanson, D.; Ison, J.; Malin, K.; Webb, H. Salmonella White Paper; Beef Industry Food Safety Council: Centennial, CO, USA, 2020; Volume 2, pp. 1–52. [Google Scholar]
- Arthur, T.; Kalchayanand, N.; Agga, G.; Wheeler, T.; Koohmaraie, M. Evalulation of Bacteriophage Application to Cattle in Lairage at Beef Processing Plants to Reduce Escherichia coli O157:H7 Prevalence on Hides and Carcasses. Foodborne Pathog. Dis. 2016, 14, 17–22. [Google Scholar] [CrossRef]
- Kalchayanand, N.; Brichta-Harhay, D.; Arthur, T.; Bosilevac, J.; Guerini, M.; Wheeler, T.; Shackelford, S.; Koohmaraie, M. Prevalence Rates of Escherichia coli O157:H7 and Salmonella at Different Sampling Sites on Cattle Hides at a Feedlot and Processing Plant. J. Food Prot. 2009, 72, 1267–1271. [Google Scholar] [CrossRef]
- Horvath, K.; Miller-Cushon, E. Characterizing grooming behavior patterns and the influence of brush access on the behavior of group-housed dairy calves. J. Dairy Sci. 2019, 102, 3421–3430. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, L.; He, Y.; Luo, X.; Zhao, S.; Jia, X. Composition of Fecal Microbiota in Grazing and Feedlot Angus Beef Cattle. Animals 2021, 11, 3167. [Google Scholar] [CrossRef] [PubMed]
- Lucas, D.; Fontenot, J.; Webb, K. Composition and Digestibility of Cattle Fecal Waste. J. Anim. Sci. 1975, 41, 1480–1486. [Google Scholar] [CrossRef]
- Soykut, E.; Tayyarcan, E.; Evran, S.; Boyaci, I.; Cakir, I.; Khaaladi, M.; Fattouch, S. Microencapsulation of phages to analyze their demeanor in physiological conditions. Folia Microbiol. 2019, 64, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Thompson, T.; O’Leary, C.; Crosby, S.; Nguyen, Q.; Liu, M.; Gill, J. Differential Bacteriophage Efficacy in Controlling Salmonella in Hide and Soil Models. Front. Microbiol. 2021, 12, 657524. [Google Scholar] [CrossRef] [PubMed]
- Barkocy-Gallagher, G.; Arthur, T.; Rivera-Betancourt, M.; Nou, X.; Shackelford, S.; Wheeler, T.; Koohmaraie, M. Seasonal Prevalence of Shiga Toxin-Producing Escherichia coli, Including O157:H7 and Non-O157 Serotypes, and Salmonella in Commercial Beef Processing Plants. J. Food Prot. 2003, 66, 1978–1986. [Google Scholar] [CrossRef]
- Cummings, K.; Warnick, L.; Alexander, K.; Cripps, C.; Grohn, Y.; James, K.; McDonough, P.; Reed, K. The duration of fecal Salmonella shedding following clinical disease among dairy cattle in the northeastern USA. Prev. Vet. Med. 2009, 92, 134–139. [Google Scholar] [CrossRef]
- Natvig, E.; Ingham, S.; Ingham, B.; Cooperband, L.; Roper, T. Salmonella enterica Serovar Typhimurium and Escherichia coli Contamination of Root and Leaf Vegetables Grown in Soils with Incorporated Bovine Manure. Appl. Environ. Microbiol. 2002, 68, 2737–2744. [Google Scholar] [CrossRef]
- Islam, M.; Morgan, J.; Doyle, M.; Phatak, S.; Millner, P.; Jiang, X. Persistance of Salmonella enterica serovar typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathog. Dis. 2004, 1, 27–35. [Google Scholar] [CrossRef]
- USDA; AMS. Part 205-National Organic Program. In 7 CFR; Part 205:203.; United States Department of Agriculture: Washington, DC, USA, 2000. [Google Scholar]
Bacteriophage | Phage Stock Titer (PFU/mL) | Day 1 Phage Final Titer (PFU/mL) | Day 15 Phage Final Titer (PFU/mL) |
---|---|---|---|
Melville | 5.15 × 1010 | 1.02 × 109 | 1.25 × 109 |
Sw2 | 2.93 × 1010 | 7.70 × 108 | 6.70 × 108 |
Month | Sample Type | WTAMU Feedlot PN02 | AgriLife Feedlot |
---|---|---|---|
Aug | Feces | 78.6% (22/28) | 16.9% (30/178) |
Composite Environment | 100.0% (3/3) | 55.6% (10/18) | |
Rump Swabs | N/A | 2.2% (4/178) | |
Sept | Feces | 85.7% (24/28) | 7.9% (14/178) |
Composite Environment | 100.0% (3/3) | 27.8% (5/18) | |
Rump Swabs | N/A | 2.2% (4/178) | |
Oct | Feces | 75.0% (21/28) | 1.7% (3/178) |
Composite Environment | 100.0% (3/3) | 44.4% (8/18) | |
Nov | Feces | 57.1% (16/28) | 1.7% (3/178) |
Composite Environment | 100.0% (3/3) | 0.0% (0/0) | |
Dec | Feces | N/A a | 1.1% (2/178) |
Composite Environment b | 100.0% (3/3) | 0.0% (0/0) | |
Lymph Nodes | 42.9% (6/14) | N/A | |
Jan | Feces | 57.1% (8/14) | 0.6% (1/177) |
Composite Environment b | 66.7% (2/3) | N/A | |
Lymph Nodes | N/A | 0.6% (1/176) | |
Feb | Feces | 71.4% (10/14) | N/A |
Composite Environment b | 66.7% (2/3) | N/A | |
Lymph Nodes | 69.2% (9/13) c | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nickodem, C.A.; Arnold, A.N.; Beck, M.R.; Bush, K.J.; Gehring, K.B.; Gill, J.J.; Le, T.; Proctor, J.A.; Richeson, J.T.; Scott, H.M.; et al. An Experimental Field Trial Investigating the Use of Bacteriophage and Manure Slurry Applications in Beef Cattle Feedlot Pens for Salmonella Mitigation. Animals 2023, 13, 3170. https://doi.org/10.3390/ani13203170
Nickodem CA, Arnold AN, Beck MR, Bush KJ, Gehring KB, Gill JJ, Le T, Proctor JA, Richeson JT, Scott HM, et al. An Experimental Field Trial Investigating the Use of Bacteriophage and Manure Slurry Applications in Beef Cattle Feedlot Pens for Salmonella Mitigation. Animals. 2023; 13(20):3170. https://doi.org/10.3390/ani13203170
Chicago/Turabian StyleNickodem, Colette A., Ashley N. Arnold, Matthew R. Beck, K. Jack Bush, Kerri B. Gehring, Jason J. Gill, Tram Le, Jarret A. Proctor, John T. Richeson, H. Morgan Scott, and et al. 2023. "An Experimental Field Trial Investigating the Use of Bacteriophage and Manure Slurry Applications in Beef Cattle Feedlot Pens for Salmonella Mitigation" Animals 13, no. 20: 3170. https://doi.org/10.3390/ani13203170
APA StyleNickodem, C. A., Arnold, A. N., Beck, M. R., Bush, K. J., Gehring, K. B., Gill, J. J., Le, T., Proctor, J. A., Richeson, J. T., Scott, H. M., Smith, J. K., Taylor, T. M., Vinasco, J., & Norman, K. N. (2023). An Experimental Field Trial Investigating the Use of Bacteriophage and Manure Slurry Applications in Beef Cattle Feedlot Pens for Salmonella Mitigation. Animals, 13(20), 3170. https://doi.org/10.3390/ani13203170