Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Phenotype Measurement and Preprocessing
2.3. Genotyping and Preprocessing
2.4. Construction of Genetic Relationship Metrics and GWAS
2.5. Gene Annotation and Functional Annotation Analysis
3. Results
3.1. Basic Statistics of Phenotypic Values
3.2. GWAS Results and the Candidate Genomic Region
3.3. Gene Annotation and Functional Annotation Analyses
4. Discussion
4.1. GWAS and the Relationships among IMP, Inosine, and Hypoxanthine in Chicken Muscle
4.2. Functional Annotation and Candidate Genes—TNNT3 and TNNI2
4.3. Functional Annotation and Candidate Genes—INS, IGF2, and DUSP8
4.4. Functional Annotation and Candidate Genes—C5NT1AL
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Graça, J.; Calheiros, M.M.; Oliveira, A. Moral disengagement in harmful but cherished food practices? An exploration into the case of meat. J. Agric. Environ. Ethics 2014, 27, 749–765. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; Moloney, A.; Hyland, J.; Zimmermann, J.; McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Szejda, K.; Parekh, N.; Deshpande, V.; Tse, B. A Survey of Consumer Perceptions of Plant-Based and Clean Meat in the USA, India, and China. Front. Sustain. Food Syst. 2019, 3, 11. [Google Scholar] [CrossRef]
- Bryant, C.; Barnett, J. Consumer Acceptance of Cultured Meat: An Updated Review (2018–2020). Appl. Sci. 2020, 10, 5201. [Google Scholar] [CrossRef]
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2021–2030; OECD: Paris, France, 2021.
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed]
- Chumngoen, W.; Tan, F.-J. Relationships between Descriptive Sensory Attributes and Physicochemical Analysis of Broiler and Taiwan Native Chicken Breast Meat. Asian-Australas. J. Anim. Sci. 2015, 28, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.-T.; Chen, G.-H.; Han, W.; Zhang, X.-Y. Analysis of the Genetic Effects of Three Single Nucleotide Polymorphisms on Inosine Monophosphate Content in Chinese Baier Chicken. Avian Biol. Res. 2010, 3, 75–80. [Google Scholar] [CrossRef]
- Jung, S.; Bae, Y.S.; Kim, H.J.; Jayasena, D.D.; Lee, J.H.; Park, H.B.; Heo, K.N.; Jo, C. Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci. 2013, 92, 3275–3282. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, G.; Liu, R.; Zheng, M.; Hu, Y.; Wu, D.; Zhang, L.; Li, P.; Wen, J. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genom. 2013, 14, 458. [Google Scholar] [CrossRef]
- Ono, T.; Kouguchi, T.; Ishikawa, A.; Nagano, A.J.; Takenouchi, A.; Igawa, T.; Tsudzuki, M. Quantitative trait loci mapping for the shear force value in breast muscle of F2chickens. Poult. Sci. 2019, 98, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Jung, S.; Kim, H.J.; Bae, Y.S.; Yong, H.I.; Lee, J.H.; Kim, J.G.; Jo, C. Comparison of Quality Traits of Meat from Korean Native Chickens and Broilers Used in Two Different Traditional Korean Cuisines. Asian-Australas. J. Anim. Sci. 2013, 26, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhang, J.; Gu, Y.; Cai, Z.; Feng, X.; Yang, C.; Xin, G. Research progress on inosine monophosphate deposition mechanism in chicken muscle. Crit. Rev. Food Sci. Nutr. 2022, 62, 1062–1078. [Google Scholar] [CrossRef] [PubMed]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Uemoto, Y.; Ohtake, T.; Sasago, N.; Takeda, M.; Abe, T.; Sakuma, H.; Kojima, T.; Sasaki, S. Effect of two non-synonymous ecto-5′-nucleotidase variants on the genetic architecture of inosine 5′-monophosphate (IMP) and its degradation products in Japanese Black beef. BMC Genom. 2017, 18, 874. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Xu, L.; Wang, H.; Chen, J.; Liu, L.; Chang, G.; Chen, G. Mining the key regulatory genes of chicken inosine 5′-monophosphate metabolism based on time series microarray data. J. Anim. Sci. Biotechnol. 2015, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Anggraeni, A.; Gunawan, A.; Rukmiasih, R.; Suryati, T.; Sumantri, C. Identification of poymorphism and association analyses of FMO3 gene related with carcass and meat quality in Cihateup Duck. Anim. Prod. 2018, 19, 151–159. [Google Scholar] [CrossRef]
- Geng, X.; Liu, S.; Yuan, Z.; Jiang, Y.; Zhi, D.; Liu, Z. A Genome-Wide Association Study Reveals That Genes with Functions for Bone Development Are Associated with Body Conformation in Catfish. Mar. Biotechnol. 2017, 19, 570–578. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Li, Y.; Yu, J.; Liao, H.; Wang, S.; Lv, J.; Liang, J.; Huang, X.; Bao, Z. A Genome-Wide Association Study Identifies the Genomic Region Associated with Shell Color in Yesso Scallop, Patinopecten yessoensis. Mar. Biotechnol. 2017, 19, 301–309. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, M.; Cheng, H.; Fan, W.; Yuan, Z.; Gao, Q.; Xu, Y.; Guo, Z.; Zhang, Y.; Hu, J.; et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nat. Commun. 2018, 9, 2648. [Google Scholar] [CrossRef]
- Simcoe, M.; Valdes, A.; Liu, F.; Furlotte, N.A.; Evans, D.M.; Hemani, G.; Ring, S.M.; Smith, G.D.; Duffy, D.L.; Zhu, G.; et al. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. Sci. Adv. 2021, 7, eabd1239. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, C.; Campa, A.; Garzón, A.S.; Miklas, P.; Ferreira, J.J. GWAS of pod morphological and color characters in common bean. BMC Plant Biol. 2021, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.Y.; You, S.W.; Shin, J.-G.; Kim, Y.; Park, S.G.; Won, H.-H.; Kang, N.G. GWAS Identifies Multiple Genetic Loci for Skin Color in Korean Women. J. Investig. Dermatol. 2021, 142, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Song, X.; Shan, H.; Jiang, J.; Xiong, P.; Wu, J.; Shi, F.; Jiang, Y. Genome-Wide Association Study of Body Weights in Hu Sheep and Population Verification of Related Single-Nucleotide Polymorphisms. Front. Genet. 2020, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.; Park, H.-B.; Jung, S.; Manjula, P.; Choi, N.; Jin, S.; Heo, K.-N.; Jo, C.; Gotoh, T.; Lee, J.H. Association of HSPB1 and CRYAB SNPs with Chicken Meat Quality and Robustness in Five Lines of Korean Native Chicken. J. Fac. Agric. Kyushu Univ. 2016, 61, 127–132. [Google Scholar] [CrossRef]
- Jin, S.; Jayasena, D.; Jo, C.; Lee, J. The breeding history and commercial development of the Korean native chicken. World’s Poult. Sci. J. 2017, 73, 163–174. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jung, S.; Kim, H.J.; Yong, H.I.; Nam, K.C.; Jo, C. Taste-active compound levels in Korean native chicken meat: The effects of bird age and the cooking process. Poult. Sci. 2015, 94, 1964–1972. [Google Scholar] [CrossRef]
- Kim, M.; Cho, E.; Cho, S.; Choo, H.; Jin, D.; Lee, J.H. A study on the conservation status of Korean native chicken populations. J. Anim. Breed. Genom. 2022, 6, 135–142. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Kim, S.H.; Lee, H.J.; Jung, S.; Lee, J.H.; Park, H.B.; Jo, C. Comparison of the amounts of taste-related compounds in raw and cooked meats from broilers and Korean native chickens. Poult. Sci. 2014, 93, 3163–3170. [Google Scholar] [CrossRef]
- Choe, J.-H.; Nam, K.-C.; Jung, S.; Kim, B.-N.; Yun, H.-J.; Jo, C.-R. Differences in the Quality Characteristics between Commercial Korean Native Chickens and Broilers. Food Sci. Anim. Resour. 2010, 30, 13–19. [Google Scholar] [CrossRef]
- Seo, J.H.; Lee, J.H.; Kong, H.S. Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers. Asian-Australas. J. Anim. Sci. 2017, 30, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Bae, Y.S.; Yong, H.I.; Lee, H.J.; Seo, D.W.; Park, H.B.; Lee, J.H.; Jo, C. Proximate composition, and l-carnitine and betaine contents in meat from korean indigenous chicken. Asian-Australas. J. Anim. Sci. 2015, 28, 1760. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.R.; Seo, D.W.; Ben Jemaa, S.; Sultana, H.; Heo, K.N.; Jo, C.; Lee, J.H. Discrimination of the commercial Korean native chicken population using microsatellite markers. J. Anim. Sci. Technol. 2015, 57, 5. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yu, P.; Ding, X.; Xu, M.; Guo, B.; Xu, Y. Genetic polymorphisms of the AMPD1 gene and their correlations with IMP contents in Fast Partridge and Lingshan chickens. Gene 2015, 574, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Bao, W.; Zhang, X.; Ji, C.; Han, W.; Chen, K. Combined effect of mutations in ADSL and GARS-AIRS-GART genes on IMP content in chickens. Br. Poult. Sci. 2009, 50, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Wang, Y.; Wang, H.; Lin, S.; Sun, S.; Huang, B.; Hu, H. Adsl, ampd1, and atic expression levels in muscle and their correlations with muscle inosine monophosphate content in dapulian and hybridized pig species. Open J. Anim. Sci. 2017, 7, 393–404. [Google Scholar] [CrossRef]
- Kim, M.; Cho, E.; Munyaneza, J.P.; Ediriweera, T.K.; Cha, J.; Jin, D.; Cho, S.; Lee, J.H. Genome-wide association study for the free amino acid and nucleotide components of breast meat in an F2 crossbred chicken population. J. Anim. Sci. Technol. 2023, 65, 57–68. [Google Scholar] [CrossRef]
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic Acids Res. 2021, 50, D956–D961. [Google Scholar] [CrossRef]
- Kim, H.C.; Yim, D.-G.; Kim, J.W.; Lee, D.; Jo, C. Nuclear Magnetic Resonance (NMR)-Based Quantification on Flavor-Active and Bioactive Compounds and Application for Distinguishment of Chicken Breeds. Korean J. Food Sci. Anim. Resour. 2021, 41, 312–323. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. Clusterprofiler: An R Package for Comparing Biological Themes Among Gene Clusters. Omics J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Surette, M.E.; Gill, T.A.; LeBlanc, P.J. Biochemical basis of postmortem nucleotide catabolism in cod (Gadus morhua) and its relationship to spoilage. J. Agric. Food Chem. 1988, 36, 19–22. [Google Scholar] [CrossRef]
- John, M.; Ankenbrand, M.J.; Artmann, C.; Freudenthal, J.A.; Korte, A.; Grimm, D.G. Efficient permutation-based genome-wide association studies for normal and skewed phenotypic distributions. Bioinformatics 2022, 38, ii5–ii12. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-P.; Zhang, Z.; Bautista, J.A. Isoform Diversity, Regulation, and Functional Adaptation of Troponin and Calponin. Crit. Rev. Eukaryot. Gene Expr. 2008, 18, 93–124. [Google Scholar] [CrossRef]
- Mullen, A.J.; Barton, P.J. Structural characterization of the human fast skeletal muscle troponin I gene (TNNI2). Gene 2000, 242, 313–320. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; Yu, B.; Li, L.; Shang, Y. Molecular cloning, structural analysis, and tissue expression of the TNNT3 gene in Guizhou black goat. Gene 2015, 573, 123–128. [Google Scholar] [CrossRef]
- Gomes, A.V.; Potter, J.D.; Szczesna-Cordary, D. The Role of Troponins in Muscle Contraction. IUBMB Life 2002, 54, 323–333. [Google Scholar] [CrossRef]
- Geeves, M.A.; Chai, M.; Lehrer, S.S. Inhibition of Actin−Myosin Subfragment 1 ATPase Activity by Troponin I and IC: Relationship to the Thin Filament States of Muscle. Biochemistry 2000, 39, 9345–9350. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.M.; Nakaie, C.R.; Sousa, A.D.; Farah, C.S.; Reinach, F.C. Mapping the Domain of Troponin T Responsible for the Activation of Actomyosin ATPase Activity. J. Biol. Chem. 2000, 275, 27513–27519. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.M.; Holloszy, J.O.; Wyss, M.; Kaddurah-Daouk, R.; McConell, G.; Snow, R.J.; Proietto, J.; Hargreaves, M.; Tullson, P.C.; Rush, J.W.E.; et al. Adaptation of rat skeletal muscle to creatine depletion: AMP deaminase and AMP deamination. J. Appl. Physiol. 1992, 73, 2713–2716. [Google Scholar] [CrossRef]
- Lei, M.; Luo, C.; Peng, X.; Fang, M.; Nie, Q.; Zhang, D.; Yang, G.; Zhang, X. Polymorphism of Growth-Correlated Genes Associated with Fatness and Muscle Fiber Traits in Chickens. Poult. Sci. 2007, 86, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.F.; Nie, Q.H.; Luo, C.L.; Zhang, D.X.; Lin, S.M.; Zhang, X.Q. Association of Single Nucleotide Polymorphisms of the Insulin Gene with Chicken Early Growth and Fat Deposition. Poult. Sci. 2006, 85, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Buczkowska, E.; Jarosz-Chobot, P. Insulin effect on metabolism in skeletal muscles and the role of muscles in regulation of glucose homeostasis. Przeglad Lek. 2001, 58, 782–787. [Google Scholar]
- Uchimura, T.; Hollander, J.M.; Nakamura, D.S.; Liu, Z.; Rosen, C.J.; Georgakoudi, I.; Zeng, L. An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth. Development 2017, 144, 3533–3546. [Google Scholar] [CrossRef]
- Livingstone, C.; Borai, A. Insulin-like growth factor-II: Its role in metabolic and endocrine disease. Clin. Endocrinol. 2014, 80, 773–781. [Google Scholar] [CrossRef]
- Schriever, S.C.; Kabra, D.G.; Pfuhlmann, K.; Baumann, P.; Baumgart, E.V.; Nagler, J.; Seebacher, F.; Harrison, L.; Irmler, M.; Kullmann, S.; et al. Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. J. Clin. Investig. 2020, 130, 6093–6108. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Mookerjee, S.A.; Gerencser, A.A.; Nicholls, D.G.; Brand, M.D. Quantifying intracellular rates of glycolytic and oxidative atp production and consumption using extracellular flux measurements. J. Biol. Chem. 2017, 292, 7189–7207. [Google Scholar] [CrossRef]
- Ye, J. Mechanism of insulin resistance in obesity: A role of ATP. Front. Med. 2021, 15, 372–382. [Google Scholar] [CrossRef]
- Andrews, S.C.; Guest, J.R. Nucleotide sequence of the gene encoding the GMP reductase of Escherichia coli K12. Biochem. J. 1988, 255, 35–43. [Google Scholar] [CrossRef]
- Sakumi, K.; Abolhassani, N.; Behmanesh, M.; Iyama, T.; Tsuchimoto, D.; Nakabeppu, Y. ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells. Mutat. Res. Toxicol. Environ. Mutagen. 2010, 703, 43–50. [Google Scholar] [CrossRef]
- Baer, H.P.; Drummond, G.I.; Duncan, E.L. Formation and deamination of adenosine by cardiac muscle enzymes. Mol. Pharmacol. 1966, 2, 67–76. [Google Scholar]
- Srinivasan, S.; Torres, A.G.; de Pouplana, L.R. Inosine in Biology and Disease. Genes 2021, 12, 600. [Google Scholar] [CrossRef] [PubMed]
Traits | Mean | SD | CV (%) | Minimum | Maximum | Heritability | Trans |
---|---|---|---|---|---|---|---|
Inosine | 1.2002 | 0.4647 | 0.3872 | 0.1780 | 3.0676 | 0.5197 | Sqrt |
IMP | 4.9658 | 1.0253 | 0.2065 | 0.4489 | 7.8536 | 0.2577 | Log |
Hypoxanthine | 0.4384 | 0.2266 | 0.5169 | 0.0960 | 1.5322 | 0.2493 | Cube |
Category | ID | GO Term | p-Value | Gene Names |
---|---|---|---|---|
Molecular function | GO:0005179 | hormone activity | 0.0039 | INS, IGF2 |
Biological process | GO:0006941 | striated muscle contraction | 0.0007 | TNNT3, TNNI2 |
GO:0006006 | glucose metabolic process | 0.0023 | INS, IGF2 | |
GO:0019318 | hexose metabolic process | 0.0024 | INS, IGF2 | |
GO:0005996 | monosaccharide metabolic process | 0.003 | INS, IGF2 | |
GO:0006936 | muscle contraction | 0.0034 | TNNT3, TNNI2 | |
GO:0003012 | muscle system process | 0.0046 | TNNT3, TNNI2 | |
Cellular component | GO:0005865 | striated muscle thin filament | 0.0005 | TNNT3, TNNI2 |
GO:0036379 | myofilament | 0.0005 | TNNT3, TNNI2 | |
GO:0030017 | sarcomere | 0.0059 | TNNT3, TNNI2 | |
GO:0044449 | contractile fiber part | 0.007 | TNNT3, TNNI2 | |
GO:0030016 | myofibril | 0.0085 | TNNT3, TNNI2 | |
GO:0043292 | contractile fiber | 0.0092 | TNNT3, TNNI2 | |
GO:0015629 | actin cytoskeleton | 0.0189 | TNNT3, TNNI2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Munyaneza, J.P.; Cho, E.; Jang, A.; Jo, C.; Nam, K.-C.; Choo, H.J.; Lee, J.H. Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat. Animals 2023, 13, 2966. https://doi.org/10.3390/ani13182966
Kim M, Munyaneza JP, Cho E, Jang A, Jo C, Nam K-C, Choo HJ, Lee JH. Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat. Animals. 2023; 13(18):2966. https://doi.org/10.3390/ani13182966
Chicago/Turabian StyleKim, Minjun, Jean Pierre Munyaneza, Eunjin Cho, Aera Jang, Cheorun Jo, Ki-Chang Nam, Hyo Jun Choo, and Jun Heon Lee. 2023. "Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat" Animals 13, no. 18: 2966. https://doi.org/10.3390/ani13182966
APA StyleKim, M., Munyaneza, J. P., Cho, E., Jang, A., Jo, C., Nam, K.-C., Choo, H. J., & Lee, J. H. (2023). Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat. Animals, 13(18), 2966. https://doi.org/10.3390/ani13182966