Next Article in Journal
Do Organochlorine Contaminants Modulate the Parasitic Infection Degree in Mediterranean Trout (Salmo trutta)?
Next Article in Special Issue
Parasitic Characteristics of Ticks (Acari: Ixodidae) Collected from Water Deer (Hydropotes inermis argyropus) and Spatiotemporal Distribution Prediction within Host-Influenced Cultivated Areas
Previous Article in Journal
Establishment and Characterization of a Spermatogonial Stem Cell Line from Tiger Puffer Fish (Takifugu rubripes)
Previous Article in Special Issue
Mitochondrial Genome Fragmentation Occurred Multiple Times Independently in Bird Lice of the Families Menoponidae and Laemobothriidae
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Parasitic Arthropods of Soricinae Shrews in North-Eastern Poland

1
W. Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland
2
Faculty of Medical and Health Sciences, University of Social and Medical Sciences in Warsaw, 04-367 Warsaw, Poland
3
Institute of Parasitology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
4
Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warsaw, Poland
5
Department of General Biology and Parasitology, Medical University of Warsaw, 02-004 Warsaw, Poland
6
Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
*
Author to whom correspondence should be addressed.
Animals 2023, 13(18), 2960; https://doi.org/10.3390/ani13182960
Submission received: 7 July 2023 / Revised: 6 September 2023 / Accepted: 9 September 2023 / Published: 19 September 2023
(This article belongs to the Special Issue Parasitic Arthropods of Vertebrates)

Abstract

:

Simple Summary

Studies on the ectoparasites of insectivores are quite rare compared with other groups of mammals. The study of the ectoparasite fauna of the insectivores: Sorex araneus, Sorex minutus, Neomys fodiens, and Neomys anomalus—was carried out in three locations in north-eastern Poland: Białowieża National Park, Kosewo Górne in the Masurian Lake District, and one location in vicinity of Warsaw. Three species of ixodid ticks, eleven species of fleas and four species of mites from the order Mesostigmata were noted, in comparison to the total number of ectoparasite species on Soricinae, recorded in Central Europe, amounts to eighty-one species: six tick species, twenty-three gamasid mites, nine trombiculid mites, nine Myobiidae and Sarcoptiformes, twenty-nine flea species, and five sucking lice. The most numerous ectoparasites recorded during the study are ticks Ixodes ricinus (larvae), Dermacentor reticulatus (nymphs), fleas Palaeopsylla soricis, Megabothris walkeri, and Hystrichopsylla orientalis. These species show the highest prevalence and show the highest dominance index. The parasitofauna of S. araneus is much richer in species than other insectivorous species. The structure and dominance of parasite assemblages differ between locations.

Abstract

The study of the ectoparasite fauna of the insectivores—Sorex araneus, Sorex minutus, Neomys fodiens, and Neomys anomalus (subfamily Soricinae)—was carried out in three locations in Poland: Białowieża National Park, Kosewo Górne in the Masurian Lake District, and in vicinity of Warsaw. Three species of Ixodidae ticks, eleven species of fleas, and four species of mites from the order Mesostigmata were noted. The most numerous ectoparasites are ticks Ixodes ricinus (larvae), Dermacentor reticulatus (nymphs), and fleas Palaeopsylla soricis, Megabothris walkeri, and Hystrichopsylla orientalis. These species show the highest prevalence and show the highest dominance index. The parasitofauna of S. araneus is much richer in species than other shrew species. The structure and dominance of parasite assemblages differ between locations.

1. Introduction

Soricinae shrews are a common and important component of the small mammal’s fauna in Central Europe. They play a role as small predators in the environment, and in the epidemiology of zoonotic diseases as zoonotic reservoir and/or amplifer of arthropod-borne pathogens, as Babesia microti [1,2,3] or some strains of Anaplasma phagocytophilum [4,5,6]. However, they are not abundant, thus their role as the source of infection for ticks is limited.
The parasitofauna of shrews is not very well known. There are available few data on the parasite species composition of particular species of shrews, mainly due to the fact that shrews are often captured during studies on parasites of small rodents. However, there are not many analyses on the structure of insectivorous parasite assemblages. The main reason is the high mortality of shrews in live-traps set for rodents, which results in blood-sucking arthropods leaving the surface of their bodies. In addition, many ectoparasites quickly leave dead animals, which further complicates parasitological studies. Trapping live insectivores is difficult and time-consuming [7,8,9,10], which makes their parasitological study difficult and not as popular as rodents.

2. Materials and Methods

In the article is summarised and analysed data on the blood-sucking arthropods collected from common shrews Sorex araneus Linnaeus, 1758, and Eurasian pygmy shrew S. minutus Linnaeus, 1766, accidentally caught during rodent parasite studies and water shrews—Iberian water shrew Neomys anomalus Cabrera, 1907 and Eurasian water shrew N. fodiens (Pennant, 1771), intentionally caught for behavioural research. The research was conducted in various regions of eastern and central Poland.
Long-term studies of the fauna of external arthropods associated with small mammals were carried out in the Białowieża Primeval Forest in 2005 (August), 2006 (July), 2007 (July), and 2008 (July), along the southern border of the National Park (52°42′29″ N, 23°52′42″ E) and in Kosewo Górne (53°49′12″ N 21°26′36″ E), commune of Mikołajki, Masurian Lake District in 2004 (August) and 2009 (July), south-eastern vicinity of Warsaw in 2011 (July) (52° 9′12.21″ N, 21°10′42.68″ E). The study in Masurian Lake District and Warsaw vicinity were conducted in areas including pinewood community Leucobryo-Pinetum habitat. The study in Białowieża were conducted in areas including the three following habitats: tussock-sedge swamp (Caricetum appropinquatae from alliance Magnocaricion), streamside alder-ash forest (Circaeo-Alnetum from alliance Alno-Padion) and wet grassland (with Phalaris arundinacea and Bromus inermis), reeds (Phragmites communis) and bushes (of Salix species), as well and the ecotone between them [11].
Small mammals were captured by using live in box-traps baited with oat seeds and minced beef. Live traps were set randomly overnight from transects and checked each morning and evening (Kosewo Górne and vicinity of Warsaw) or set in the evening and checked every three hours during the night (Białowieża). Arthropods were brushed from the fur of the mammals and harvested from the trap material and then preserved in 70% ethanol. In the case of live trapped shrews, after the parasites were examined and harvested, the mammals were released.
Additionally, N. fodiens and N. anomalus were trapped using cone traps, checked every four hours. As above, the arthropods were brushed from the fur of the mammals and harvested from the trap material and then preserved. Small mites and tick larvae were mounted on slides in Berlese liquid; adult ticks, lice, and fleas were identified immediately under a stereoscope and microscope or, if necessary, embedded in a Canadian balsam. The arthropods were identified to the respective species using the keys developed by Skuratowicz [12], Bregetova [13], Siuda [14], Mašán and Fenďa [15], and Wegner [16].
The structure of parasite groups was characterised by the indices of prevalence (P%) and intensity of infestation (I), the factors commonly used in the description of parasitocenoses. Prevalence, in some works known also as frequency indices, is expressed as a percentage ratio of the numbers of individuals of host species infected with a particular parasite species (or taxonomic group) to the number of hosts examined (number of hosts infected with a parasite species divided by the number of examined hosts) [17]. The calculation is made according to the formula P = (Np/n) × 100%, where Np = the number of hosts infected, n = the total number of hosts. I is the total number of parasites of a particular species found in a sample divided by the number of hosts infested with that parasite, according to the formula I = Par/Np, where Par = the number of parasites detected; Np = the number of infected hosts.
However, because there is often no correlation between the intensity of infestation and the prevalence of parasites, the index of dominance (D) is additionally used. D is calculated according to the formula Di = ni × 100/N [%], where: ni = total number of parasites of a particular species, N—total number of all parasites. The index D can prove the dominant parasite species, following the subdominant and accessory species in the grouping [18,19], independent of the number of hosts and parasite population size. The structure of domination is classified according to Czachorowski [19], Kisielewska [20] and Margolis et al. [21]: Eu—eudominant (above 10%); Do—dominant (5.1–10.0%), Su—subdominant (2.1—5.0%), Re—rare (1.1–2.0%), and Ac—accidental (below 1.0%).
Following, the structural and quantitative characteristics of the parasitic arthropods communities were assessed, and the data were analysed using the abundance (A) indices according to Margolis et al. [21], Bush et al. [18], and Baláž and Zigová [22], calculated according to the formula A = Par/n, where Par = the number of parasites detected, and n = the number of hosts examined.
The analysis and comparison of the obtained results was limited to the data available for the countries of Central Europe, due to the potential differences in the geographic distribution of the parasite fauna [23,24].

3. Results

In total, 118 individuals of Sorex araneus, 17 Sorex minutus, 11 Neomys fodiens, and three Neomys anomalus were investigated. There were 19 species of parasitic arthropods identified—3 species of ixodid ticks: Ixodes apronophorus (Schulze, 1924), Ixodes ricinus (Linnaeus, 1758), Dermacentor reticulatus (Fabricius, 1794); 11 species of fleas: Palaeopsylla soricis (Dale, 1878), Palaeopsylla similis Dampf, 1910, Ctenophthalmus agyrtes (Heller, 1896), Ctenophthalmus assimilis (Taschenberg, 1880), Ctenophthalmus bisoctodentatus Kolenati, 1863, Ctenophthalmus uncinatus (Wagner, 1898), Peromyscopsylla bidentata (Kolenati, 1860), Megabothris turbidus (Rothschild, 1909), Megabothris walkeri (Rothschild, 1902), Hystrichopsylla orientalis Smit, 1956, Doratopsylla dasycnema (Rothschild, 1897); five species of mesostigmatid mites—Eulaelaps stabularis (Koch, 1836), Laelaps hilaris Koch 1836, Haemogamasus hirsutosimilis Willmann, 1952, Haemogamasus nidi Michael, 1892, and Androlaelaps fahrenholzi (Berlese, 1911).
The richest in species is the ectoparasite fauna of S. araneus. It includes all of the species listed above, except I. apronophorus (Table 1).
The ectoparasite fauna of S. minutus includes ticks I. apronophorus, D. reticulatus, fleas P. soricis, P. bidentata, C. agyrtes, M. turbidus, M. walkeri, and H. orientalis (Table 2).
On N. fodiens there were found ticks I. apronophorus and fleas P. soricis, on N. anomalus—fleas P. soricis and M. walkeri (Table 3). Ticks were present as larvae and nymphs.
The eudominant parasite of S. araneus in almost all localities of study was flea P. soricis; in the majority of the studied places, as eudominant a larvae and nymphs of D. reticulatus and I. ricinus ticks, and fleas M. turbidus and M. walkeri were found. Dominants in majority of studied places were three flea species—P. similis, C. agyrtes, and H. orientalis. Subdominats were fleas—C. agyrtes, C. assimilis, and mite H. nidi. Rare and accidental species were fleas C. unicinatus, D. dasycnema, mites L. hilaris, and E. stabularis. The structure of dominance coincides with the intensity of infestation and abundance.
Only in Kosewo Górne and Warsaw, in a forest environment, were mites from the order Mesostigmata found. The subdominant among them was H.nidi.
The dominance structure of parasitofauna of S. minutus is possible for material collected in Białowieża 2007; the material collected in 2005 is too poor to draw conclusions about the structure of the population. The eudominants are D.reticulatus nymphs, M. walkeri, and H. orientalis fleas. Dominants are I. apronophorus, M. turbidus and P. soricis. As in ectoparasites of S. araneus, the indices P, I, and A coincide. Lower categories cannot be distinguished on the basis of the obtained material (Table 2).
Parasitofauna of N. fodiens and N. anomalus is relatively poor, the numerous parasites are flea P. soricis, present on both water shrew species. The next parasite is I. apronophorus—larvae—on N. fodiens and M. walkeri on N. anomalus (Table 3).
The highest intensity of infestation shows the tick D. reticulatus nymphs, fleas P. soricis, M. turbidus, M. walkeri, and C. agyrtes, in Masurian District I. ricinus larvae and nymphs too.
The prevalence of ectoparasites was basically similar in all locations and catching periods. However, there was a noticeable difference in the tick’s infestation. The prevalence of the total of tick infestation was higher in August than in July. Moreover, there are different proportions between I. ricinus and D. reticulatusI. ricinus infestation is higher in July, D. reticulatus infestation is higher in August. I. ricinus is present more often as larvae, D. reticulatus as nymphs. The records in July 2001 in Warsaw are a special case. The infestation I of D. reticulatus is 2.0 and 5.0 (larvae and nymphs, respectively) and the I. ricinus tick is absent on the area. Infestations with ectoparasites in particular years and localities are presented in Table 1.
The structure of parasitofauna of S. araenus is different in particular localities. The richest was in Białowieża in 2005, the number of parasite species affected S. araneus was 13. In 2007 there were seven species of parasitic arthropods noted, and in 2008 five species. In Kosewo Górne there were nine species and eight species noted in years 2004 and 2009, respectively. In Warsaw 2005 there were four species noted. The parasites noted in all studies were D. reticulatus nymphs and flea P. soricis, parasites noted in at least four of six studies were I. ricinus larvae and nymphs, fleas M. turbidus, M. walkeri, and H. orientalis.
Sorex minutus, N. fodiens, and N. anomalus are much less numerous, and therefore their participation in the study is smaller. Noteworthy, results were obtained in Białowieża in 2005 (August) and 2007 (July). Dominant parasites of S. minutus were fleas P. soricis and H. orientalis in both visits and in single studies, the dominants were D. reticulatus nymphs and M. walkeri fleas. In Białowieża 2007 there were noted larvae of I. apronophorus ticks, not recorded for S. araneus.
In the case of N. fodiens and N. anomalus, each of these mammals have two species of ectoparasites as eudominants. On N. fodiens were I. apronophorus tick larvae and flea P. soricis, on N. anomalus fleas P. soricis and M. walkeri. Due to the low number of samples and poor composition of parasite assemblage, the dominance structure is impossible to estimate.

4. Discussion

In our research carried out in the Masurian District, Białowieża Primeval Forest, and Warsaw vicinity, we confirmed the presence of 19 species of parasitic arthropods associated with shrew of the Soricinae subfamily. It is quite a high number, in comparison to the number of parasites noted in the whole Central Europe—81 [12,14,15,16,25,26,27,28]. We compare the four most common Insectivores species; Sorex alpinus and Crocidura spp. are not present or are very rare in north-eastern Poland, and therefore are omitted.
The structure of their taxonomic and ecological association (three tick species, eleven flea species and five Mesostigmatid mites) and proportions are typical of small insectivores in Central Europe and like earlier data published elsewhere (Table S1 in Supplementary Materials). Geographically, 13 species of ectoparasites occurring on S. araneus, S. minutus, N. fodiens, and N. anomalus are typical of the Palaearctic zone. These are ticks: I. ricinus, I. apronophorus, and D. reticulatus; mites: L. hilaris and H. hirsutosimilis; and fleas: C. agyrtes, C. assimilis, C. uncinatus, M. turbidus, M. walkeri, P. soricis, P. bidentata, and D. dasycnema. One species—H. nidi mite—occurs throughout the Holarctic zone, two species of fleas—C. bisoctodentatus and Palaeopsylla similis—occur only in Europe, flea H. orientalis—occurs in Central and Eastern Europe and Asia. Two species of mites—E. stabularis and A. fahrenholzi—has the cosmopolitan area of occurrence [12,14,29].
The mixed structure of arthropod communities associated with Soricidae populations in north-eastern Poland is characteristic of this biogeographic region, on the border of boreal and temperate forest zones. The Białowieża Primeval Forest is one of the last primeval forest complexes in Western and Central Europe and is particularly interesting place for biological research due to its geographical location on the border of boreal and temperate forest zones. This fact causes the mixing of fauna and flora of both zones [30]. The common shrew parasite fauna in Białowieża was the richest in species—it included 2 species of ticks and 11 species of fleas. These were parasites noted in studies also by other authors from Central Europe [15,22,23,30,31,32,33]. It is evident, that I. ricinus tick on S. araneus from Warsaw vicinity were absent; however, shrews were infested with D. reticulatus. It is the eastern components of parasitofauna (Table 1). Until the end of the 20th century, this tick species was present in Central Europe only east of the line of the Vistula and San rivers in Poland and Latorica river in Ukraine and Slovakia. Apart from Poland these ticks were found on S. araneus and S. minutus in Slovakia only, in the beginning of XXI century, since it started the expansion to the new areas [31,32].
The dominant group of ectoparasites—I. ricinus larvae and nymphs, D. reticulatus larvae and nymphs, C. agyrtes, M. walkeri, and H. orientalis fleas—includes typical dominants for small mammals in this region of Europe [22,26,33]. The characteristic and dominant component of flea communities are P. soricis, and M. walkeri fleas. P. soricis is a species strongly associated to insectivores, present also on other small mammals but in lower prevalence [33,34]. Moreover, the dominance of other flea species is typical for other records. Rosický and Černý [35] showed the dominance of P. soricis, followed by C. assimilis, P. similis, D. dasycnema, C. agyrtes, and H. talpae. The eudominant mite was E. stabularis, the subdominant was H. nidi. These mites are common and dominate in the parasite fauna of S. araneus and common on other Soricidae according to other authors [29,33,34,36].
Szabo [37], obtained a similar order to that obtained in our study, except for fleas D. dasycnema, a species quite rare in Poland. An interesting fact is the high prevalence of the flea M. walkeri. It is a species strongly associated to the root vole Microtus oeconomus (Pallas, 1776) [12,38,39,40] and is present according to the presence of that host. On other species of small mammals it occurs less frequently, and only in populations coexisting with M. oeconomus. In the study, the flea was present in Białowieża and Kosewo Górne, where the root vole occurs too, and does not occur in Warsaw vicinity, where M. oeconomus is absent. In Central Europe south of the Carpathian range, this species occurs locally on insectivorous mammals, only where M. oeconomus occurs. An example is the presence of M. walkeri flea on S. araneus and N. fodiens in the area of Kiz Balaton, where there is a relict population of M. oeconomus mehelyi [38,40]. Flea D. dasycnema is recorded by other authors as common on Soricidae [12,26,41,42], and on the study described it was found in Białowieża only. This is a relatively rare species in Poland although typical for Sorex shrews [43], and highly present in the other area of their occurrence [44]. Another species of note is I. trainguliceps. It is reported as a common species in Slovakia [45,46,47] but was not found during our research. This tick is associated with the highland regions, in Poland it is found in the south of the country, but in the central and northern regions it is absent or rare. However, it is common on small mammals in Northern Europe [14,23].
No species typical for other zones were found. Boreo-Alpine species found on insectivores in Austria have not been reported. These are two boreo-alpine flea species—Amphipsylla rossica and A. sibirica present in Central Europe only in insectivores in mountain areas in Austria and the Czech Republic. It concerns also I. trianguliceps tick [34,48].
D. marginatus and Haemaphysalis concinna ticks are common south of the Carpathian Mountains and recorded in insectivores [49,50,51] while to the north they are practically absent.
The high prevalence of D. reticulatus ticks on Sorex araneus, mainly nymphs, is in accordance with the developmental cycle of this tick [52]. The study was confirmed in July–August, the months of the immature stages of this tick activity. During a study conducted by Karbowiak [39] in Masurian District in July, the infestation of the bank voles Myodes glareolus (Schreber, 1780) with larvae and nymphs of D. reticulatus reached 43.0%, the infestation of the yellow-necked mice Apodemus flavicolis (Melchior, 1834), occurring in the same area, was 27.0%, the infestation of M. oeconomus reach 100%. Moreover, the infestation of other small mammals is the highest in July and in August [39,53]. This phenomenon is related to the short feeding period of the juvenile stages of D. reticulatus. Outside these months, immature stages of D. reticulatus no longer occur during the year [14,39,52,53].
The prevalence of infestation with I. ricinus on S. araneus in Białowieża is relatively low, and high in Kosewo Górne. The first possible explanations are environmental differences. D. reticulatus prefers open areas, so inevitably, their residents will be frequent. The shrew inhabits woodland, where these ticks are less numerous and show higher prevalence of I. ricinus.
Among ticks, I. apronophorus is recorded in Poland on S. araneus [54] but is a new species associated with N. fodiens, although both water shrew species are associated with wet habitats [11,55]. On S. minutus, this species was not recorded. The occurrence and distribution of I. apronophorus ticks are poorly known in Poland and throughout Europe. Currently, it is considered a rare species, but it is possible that further research will reveal its wider distribution and host range than described so far [53,54,56,57].
H. orientalis is a species associated with moles mainly; however, often affects small insectivores, especially inhabited in humid environments. It is noted from S. araneus, N. fodiens, and N. anomalus [12,26,58,59,60]. On S. minutus was noted so far from Poland only [59,60].
The parasite fauna of S. minutus and N. fodiens and especially N. anomalus is definitely poorer than that of S. araneus. This is evident both in the reported results and in the review of available data from Central Europe. The less diverse fauna of Neomys sp. compared to other small mammals was also pointed out by Haitlinger [60]. An explanation may be the semi-aquatic lifestyle of Neomys fodiens and N. anomalus. These mammals spend most of their lives submerged in water, which is a limiting factor for most parasitic arthropods sensitive to water. The presence of the I. apronophorus tick, associated with wetlands, may be evidence of this. This tick was found on various species of mammals, but always in swampy areas.

5. Conclusions

The total number of ectoparasite species on Soricinae, recorded in Central Europe, amounts to 81 species: 6 tick species, 23 gamasid mites, 6 trombiculid mites, 6 Myobiidae and Sarcoptiformes, 29 flea species, five sucking lice [15,22,23,25,26,29,30,33,36,61] (Table S1 in Supplementary Materials). A significant proportion of these reports are single finds. Out of total 69 ectoparasites of S. araneus, six, 38, 28 and five species of ticks, mites, fleas, and sucking lice species are noted, respectively. Of these, 2, 18, 4, and 1 species were found on this only once, respectively, in total there are 25 single records; 10 species (one tick, five mite, three flea species) were recorded once only on S. araneus. Similarly for other insectivores species. In S. minutus, the total number of known ectoparasite species is 34 (3, 28, 19, 5 ticks, mites, fleas, and lice, respectively), 10 recorded once (1, 6, 2, 1 tick, mites, fleas, and lice, respectively). In N. fodiens, the total number of known ectoparasite species is 53 (3, 27, 19, 4 ticks, mites, fleas, and lice, respectively), 21 recorded once (1, 11, 8, 1 tick, mites, fleas, and lice, respectively; among these, 1 flea and 1 mite, and only on N. fodiens. In N. anomalus, the total number of known ectoparasite species is 34 (2, 20, 10, and 2 ticks, mites, fleas, and lice, respectively), 11 recorded once: 8 mite and three flea species. Thus, the number of arthropod ectoparasites found at least twice decreases to 53, 23, 33, and 23 in S. araneus, S. minutus, N. fodiens, and N. anomalus, respectively.
In our study, 197 species of parasitic arthropods were found. The most numerous ectoparasites of Soricinae are ticks Ixodes ricinus, as larvae, and Dermacentor reticulatus, as nymphs usually, fleas Palaeopsylla soricis, Megabothris walkeri, and Hystrichopsylla orientalis are commonly representative. These species show the highest prevalence and show the highest dominance index. The parasitofauna of S. araneus is much richer in species than other insectivorous species. The structure and dominance of parasite assemblages differ between locations.
All these species were recorded by other Authors in insectivores in other Central European countries. The differences concerned species more common south of the Carpathian range—such as the flea D. dasycnema, or trophically related to another host, such as the flea M. walkeri, whose main host is the root vole M. oeconomus.
The data cited certainly do not exhaust the list of blood-sucking arthropods related to insectivores; moreover, they are limited to the summer season only. Nevertheless, they show the most common species and may become useful in further studies.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ani13182960/s1, Table S1: List of Sorex araneus, Sorex minutus, Neomys fodiens, Neomys anomalus ectoparasites in Central Europe, according to various authors. References [62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128] are cited in the supplementary materials.

Author Contributions

Conceptualization, G.K.; methodology, G.K. and L.R.; formal analysis, G.K., M.S., L.R. and K.S.; investigation, G.K., J.W. and M.S.; writing—original draft preparation, G.K., L.R. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research was partially funded by MNiS, grant number N303 047 31/1487, grant number N304 094 31/3385, and KBN, grant number 6 PO4F 036 21.

Institutional Review Board Statement

The animal study protocol was approved by the III Local Ethics Committee in Warsaw, near Warsaw University of Life Sciences, years 2005 and 2010.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mahnert, V. Grahamella und Sporozoa als Blutparasiten alpiner Kleinsäger. Acta Trop. 1972, 29, 88–100. [Google Scholar]
  2. Yabsley, M.J.; Shock, B.C. Natural history of zoonoticBabesia: Role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2012, 2, 18–31. [Google Scholar] [CrossRef]
  3. Šebek, Z.; Rosický, B.; Sixl, W. The occurrence of Babesiasis affecting small terrestrial mammals and the importance of this zoonosis in Europe. Folia Parasitol. Praha 1977, 24, 211–228. [Google Scholar]
  4. Majazki, J.; Wüppenhorst, N.; Hartelt, K.; Birtles, R.; von Loewenich, F.D. Anaplasma phagocytophilum strains from voles and shrews exhibit specific ankA gene sequences. BMC Vet. Res. 2013, 9, 235. [Google Scholar] [CrossRef]
  5. Bown, K.J.; Lambin, X.; Telford, G.; Heyder-Bruckner, D.; Ogden, N.H.; Birtles, R.J. The common shrew (Sorex araneus): A neglected host of tick-borne infections? Vector Borne Zoonotic Dis. 2011, 11, 947–953. [Google Scholar] [CrossRef]
  6. Obiegala, A.; Jeske, K.; Augustin, M.; Król, N.; Fischer, S.; Mertens-Scholz, K.; Imholt, C.; Suchomel, J.; Heroldova, M.; Tomaso, H.; et al. Highly prevalent bartonellae and other vector-borne pathogens in small mammal species from the Czech Republic and Germany. Parasit. Vectors 2019, 12, 332. [Google Scholar] [CrossRef]
  7. Yunger, J.A.; Brewer, R.; Snook, R. A method for decreasing trap mortality of Sorex. Can. Field-Nat. 1992, 106, 249–251. [Google Scholar]
  8. Rychlik, L.; Churchfield, S.; Taylor, J.R.E.; Kardynia, P.; Ołdakowski, Ł. Live-trapping small mammals under snow: A protocol for maximising captures and minimising mortality. Pol. J. Ecol. 2012, 60, 621–628. [Google Scholar]
  9. Eccard, J.A.; Klemme, I. Reducing mortality of shrews in rodent live trapping—A method increasing live-trap selectivity with shrew exits. Ann. Zool. Fenn. 2013, 50, 371–376. [Google Scholar] [CrossRef]
  10. Shonfield, J.; Do, R.; Brooks, R.J.; McAdam, A.G. Reducing accidental shrew mortality associated with small-mammal livetrapping I: An inter- and intrastudy analysis. J. Mammal. 2013, 94, 745–753. [Google Scholar] [CrossRef]
  11. Rychlik, L. Habitat preferences of four sympatric species of shrews. Acta Theriol. 2000, 45 (Suppl. S1), 173–190. [Google Scholar] [CrossRef]
  12. Skuratowicz, W. Klucze do Oznaczania Owadów Polski. XXIX. Pchły; PTP: Warszawa, Poland, 1967; 141p. [Google Scholar]
  13. Bregetova, N.G. Semejstvo Laelapitidae. In Opredelitel’ Obytayŝih v Pohve Kleŝej Mesostigmata; Gilarov, M.S., Bregetova, N.G., Eds.; Nauka: Saint Petersburg, Russia, 1977; pp. 483–554. [Google Scholar]
  14. Siuda, K. Kleszcze Polski (Acari: Ixodida). II. Systematyka i Rozmieszczenie; PTP: Warsaw, Poland, 1993; 375p. [Google Scholar]
  15. Mašán, P.; Fenďa, P. A review of the Laelapid Mites Associated with Terrestrial Mammals in Slovakia, with a Key to the European Species (Acari, Mesostigmata: Dermanyssoidea); NOI Press: Bratislava, Slovakia, 2010; 187p. [Google Scholar]
  16. Wegner, Z. Wszy—Anoplura. Katalog Fauny Polski; XIX; PWN: Warszawa, Poland, 1966. [Google Scholar]
  17. Pojmańska, T. Przegląd terminów ekologicznych stosowanych współcześnie w parazytologii. Wiad. Parazytol. 1993, 39, 285–297. [Google Scholar] [PubMed]
  18. Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar] [CrossRef]
  19. Czachorowski, S. Opisywanie Biocenozy—Zoocenologia, Skrypt Elektroniczny dla Magistrantów. 2004. Available online: www.uwm.edu.pl/czachor/publik/pdf-inne/zoocenozy.pdf (accessed on 15 July 2023).
  20. Kisielewska, K. Ecological organization of intestinal helminth groupings in Clethrionomys glareolus (Schreb.) (Rodentia). I. Structure and seasonal dynamics of helminth groupings in a host population in the Białowieża Park. Acta Parasitol. Pol. 1970, 18, 121–147. [Google Scholar]
  21. Margolis, L.; Esch, G.W.; Holmes, J.C.; Kuris, A.M.; Schad, G.A. The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). J. Parasitol 1982, 68, 131–133. [Google Scholar] [CrossRef]
  22. Baláž, I.; Zigová, M. Flea communities on small mammals in lowland environment. Ekológia (Bratislava) 2020, 39, 260–269. [Google Scholar] [CrossRef]
  23. Mysterud, A.; Byrkjelandm, R.; Qviller, L.; Viljugrein, H. The generalist tick Ixodes ricinus and the specialist tick Ixodes trianguliceps on shrews and rodents in a northern forest ecosystem—A role of body size even among small hosts. Parasit. Vectors 2015, 8, 639. [Google Scholar] [CrossRef]
  24. Baláž, I.; Ševčík, M.; Tulis, F.; Zigová, M.; Dudich, A. Diversity, distribution and changes in communities of fleas on small mammals along the elevational gradient from the Pannonian Plain to the Carpathian Mountains. Parasitology 2020, 148, 63–73. [Google Scholar] [CrossRef]
  25. Guglielmone, A.A.; Robbins, R.G.; Apanaskevich, D.A.; Petney, T.; Estrada-Peña, A.; Horak, I.G. The Hard Ticks of the World (Acari: Ixodida: Ixodidae); Springer Science & Business Media: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2014; 738p. [Google Scholar]
  26. Haitlinger, R. Siphonaptera drobnych ssaków północnej Polski. Przegl. Zool 1977, 21, 218–226. [Google Scholar]
  27. Labrzycka, A. Pasożytnicze roztocze z rodzin Myocoptidae i Listrophoridae (Acari: Astigmata) ssaków Polski. Wiad. Parazyt. 2004, 50, 117–124. [Google Scholar]
  28. Vas, Z.; Rékási, J.; Rozsa, L. A checklist of lice of Hungary (Insecta: Phthiraptera). Ann. Hist.-Nat. Mus. Nat. Hung. 2012, 104, 5–109. [Google Scholar]
  29. Bitkowska, E.; Żukowski, K. Roztocze drobnych ssaków niektórych okolic północnej i wschodniej Polski (Acari: Ixodides, Mesostigmata, Trombidiformes, Sarcoptiformes). Fragm. Faun. 1975, 20, 307–321. [Google Scholar] [CrossRef]
  30. Gutowski, J.M.; Jaroszewicz, B. Catalogue of the Fauna of Białowieża Primeval Forest; Forestry Research Institute: Warsaw, Poland, 2001; 404p. [Google Scholar]
  31. Földvári, G.; Široký, P.; Szekeres, S.; Majoros, G.; Sprong, H. Dermacentor reticulatus: A vector on the rise. Parasit. Vectors 2016, 9, 314. [Google Scholar] [CrossRef]
  32. Stanko, M. Ektoparazity drobných cicavcov (Insectivora, Rodentia) NPR Latorický luh (Východoslovenská nížina). 1. Blchy (Siphonaptera) a kliešte (Ixodida). Nat. Carp. 1998, 39, 111–120. [Google Scholar]
  33. Stanko, M. Fleas synusy (Siphonaptera) of small mammals from the central part of East-Slovakian lowlands. Biologia 1994, 49, 239–246. [Google Scholar]
  34. Rosický, B. On the structure of the distribution area of flea species (Aphaniptera) of the superfamily Ceratophylloidea. Folia Parasitol. 1966, 13, 64–72. [Google Scholar]
  35. Rosický, B.; Černý, V. Blechy (Aphaniptera) přirodního ohniska tularemie na Jižní Morave. Čs. Parasit. 1956, 3, 143–160. [Google Scholar]
  36. Ambros, M.; Dudich, A. Mites (Acari, Mesostigmata) Occurring on Neomys fodiens (Pennant, 1771) and Neomys anomalus Cabrera, 1907 (Mammalia, Insectivora) from the Territory of the Western Carpathians; Covention for the Conservation of European Widlife and Natural Habitats: Ordesa, Spain, 1995; Volume 2. [Google Scholar]
  37. Szabó, I. On the coexistence of fleas (Siphonaptera) on mammals in Hungary. Parasit. Hung. 1969, 2, 79–118. [Google Scholar]
  38. Dudich, A. Ektoparazitofauna cicavcov a vtákov južnej časti Podunajskej nížiny sozreteľom na Žitný ostrov. 1. Siphonaptera. Žitnoostrovské Múzeum Dunajská Streda 1985, 9, 61–96. [Google Scholar]
  39. Karbowiak, G.; Stanko, M.; Rychlik, L.; Werszko, J. Communities of ectoparasitic arthropods associated with the root vole Microtus oeconomus in north-eastern Poland. Biologia 2022, 77, 1661–1666. [Google Scholar] [CrossRef]
  40. Szabó, I. A Kisbalaton és a Velencei tó nyugati partszegélyének siphonapterológiai viszonyai. Parasit Hung 1973, 6, 189–204. [Google Scholar]
  41. Dudich, A. K poznaniu mikromammálií a ektoparazitov Ponitria. Rosalia (Nitra) 1993, 9, 241–272. [Google Scholar]
  42. Rosický, B. Prodromus našich blech. Prodromus aphanipterorum patriae nostrae. Acta Entomol. Mus. Nat. Pragae 1944, 21–22, 10–56. [Google Scholar]
  43. Kowalski, K.; Eichert, U.; Bogdziewicz, M.; Rychlik, L. Differentiation of flea communities infesting small mammals across selected habitats of the Baltic coast, central lowlands and southern mountains of Poland. Parasitol. Res. 2014, 113, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
  44. Rosický, B. Dodatek k prodromu blech (Aphaniptera). Čsr. Acta Entomol. Mus. Nat. Pragae 1953, 28, 5–18. [Google Scholar]
  45. Kováčik, J. Kliešte (Ixodoidea), roztoče čeľade Trombiculidae a vši (Anoplura) drobných zemných cicavcov lesných ekosystémov Chránenej krajinnej oblasti Muránska planina. Ochrana Prírody 1986, 7, 187–193. [Google Scholar]
  46. Kocianová, E. Akarofauna drobných zemných cicavcov zo Západných Tatier—Roháčov. I. časť. Biológia Bratislava 1980, 35, 567–575. [Google Scholar]
  47. Kováčik, J. Ticks (Ixodida), larval trombiculids (Trombidida) and lice (Anoplura) from small mammals in the Čergov Mountains (Western Carpathians, Czechoslovakia). Misc. Zool. Hung. 1984, 2, 39–42. [Google Scholar]
  48. Mahnert, V. Zum auftreten von Kleinsäuger-Flöhen auf ihren wirten in Abhängigkeit von Jahreszeit und Höhenstufen. Oecologia 1972, 8, 400–418. [Google Scholar] [CrossRef]
  49. Nosek, J. The ecology, bionomics and behavior of Haemaphysalis (Haemaphysalis) concinna tick. Z. Parasitenkde 1971, 36, 233–241. [Google Scholar] [CrossRef] [PubMed]
  50. Nosek, J. The ecology and public health importance of Dermacentor marginatus and D. reticulatus in Central Europe. Folia Parasitol. 1972, 19, 93–102. [Google Scholar]
  51. Labuda, M.; Lysý, J.; Krippel, E. Kliešte Ixodes ricinus, Haemaphysalis concinna a Dermacentor reticulatus (Acarina, Ixodidae) na drobných cicavcoch vybraných lokalít západného Slovenska. Biológia 1989, 44, 897–909. [Google Scholar]
  52. Szymański, S. Seasonal activity of Dermacentor reticulatus (Fabricius, 1794) (Acarina, Ixodidae) in Poland. III. Larvae and nymphs. Acta Parasitol. Pol. 1987, 32, 265–280. [Google Scholar]
  53. Nowak-Chmura, M. Fauna of Ticks (Ixodida) of Central Europe; Scientific Publishing house of the Pedagogical University of Cracow: Cracow, Poland, 2013; 290p. [Google Scholar]
  54. Karbowiak, G.; Wieczorek, M.; Borowski, Z.; Wita, I. The new locality of Ixodes apronophorus Schulze, 1924 in Biebrza National Park, Poland. Wiad. Parazytol. 2007, 53, 343–345. [Google Scholar]
  55. Pucek, Z. Keys to Vertebrates of Poland. Mammals; PWN—Polish Scientific Publishers: Warszawa, Poland, 1981; 367p. [Google Scholar]
  56. Andersson, M.O.; Radbe, G.; Frangoulidis, D.; Tomaso, H.; Rubel, F.; Nava, S.; Chitimia-Dobler, L. New records and host associations of the tick Ixodes apronophorus and the first detection of Ehrlichia sp. HF in Romania. Parasitol. Res. 2018, 117, 1285–1289. [Google Scholar] [CrossRef]
  57. Haitlinger, R. Zgrupowania stawonogów występujące na Sorex araneus L. i S. minutus L. w środowisku leśnym i bezleśnym Wzgórz Niemczańskich. Wiad. Parazytol. 1984, 30, 345–367. [Google Scholar]
  58. Haitlinger, R. Haemogamasidae Oudemans, 1926 (Acari, Mesostigmata) Polski. Pol. Pismo Entomol. 1988, 58, 635–661. [Google Scholar]
  59. Bartkowska, K. Hystrichopsyllinae (Siphonaptera, Hystrichopsyllidae) Polski. Fragm. Faun. 1986, 29, 405–474. [Google Scholar] [CrossRef]
  60. Haitlinger, R. Stawonogi występujące w Polsce na Neomys fodiens (Penn.) i Neomys anomalus Cabr. (Mammalia, Insectivora). Wiad. Parazytol. 1984, 30, 603–616. [Google Scholar]
  61. Wojtanowicz, J. Europa Środkowa jako region fizycznogeograficzny–podstawy wydzielenia, granice. Przegl. Geog. 1999, 71, 212–223. [Google Scholar]
  62. Krasnov, B. Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology; Cambridge University Press: Cambridge, UK, 2008; p. 610. [Google Scholar] [CrossRef]
  63. Krantz, G.W.; Walter, D.E. A Manual of Acarology, 3rd ed.; Texas Tech University Press: Lubbock, TX, USA, 2009; p. 816. [Google Scholar]
  64. Mačička, O.; Nosek, J.; Rosický, B. Poznámky k bionómii, vývoju a hospodárskemu významu pijaka lužného (Dermacentor pictus Herm.) w strednej Európe; Biologické práce SAV; Vydavateľstvo SAV: Bratislava, Slovakia, 1956; pp. 1–49. [Google Scholar]
  65. Sixl, W.; Nosek, J. Zur Medizinische Bedeutung der Zecken Österreichs. Mitt. Abt. Zool. Landesmus Joanneum 1972, 1, 29–50. [Google Scholar]
  66. Stanko, M.; Ambros, M. Poznámky k výskytu kliešťov (Acarina) na drobných cicavcoch v Pohorí Tríbeč, vtáčnik a Pohronský Inovec. Rosalia (Nitra) 1985, 2, 159–170. [Google Scholar]
  67. Černý, V. The tick fauna of Czechoslovakia. Folia Parasitol. 1972, 19, 87–92. [Google Scholar]
  68. De Pelsmaeker, N.; Korslund, L.; Steifetten, Ø. Host in reserve: The role of common shrews (Sorex araneus) as a supplementary source of tick hosts in small mammal communities influenced by rodent population cycles. Ecol. Evol. 2022, 12, e8776. [Google Scholar] [CrossRef] [PubMed]
  69. Zwolski, W. Badania nad ektoparazytofauną drobnych ssaków w ogniskach naturalnych gorączki błotnej. Wiad. Parazytol. 1960, 6, 519–527. [Google Scholar]
  70. Haitlinger, R. The mites (Acarina) of small mammals of the Pieniny Mts., Poland. Acta Zool. Cracov. 1983, 26, 355–386. [Google Scholar]
  71. Haitlinger, R. Arthropod communities occurring on small mammals from non-wooded areas of urban agglomeration of Wrocław. Acta Parasitol. Pol. 1989, 34, 45–66. [Google Scholar]
  72. Haitlinger, R. Arthropods (Siphonaptera, Anoplura, Acari, Coleoptera) of small mammals of East Sudetes and east part of Middle Sudetes. Zesz. Nauk. UP Wroc. Biol. Hod. Zwierz LIV 2006, 548, 7–34. [Google Scholar]
  73. Haitlinger, R. Arthropods (Acari, Anoplura, Coleoptera, Siphonaptera) of small mammals of the Podkarpackie Province (south-east Poland). Zesz. Nauk. UP Wroc. Biol. Hod. Zwierz LVII 2008, 567, 57–99. [Google Scholar]
  74. Rosický, B.; Černý, V. Drobní středoevropští ssavci jako hostitelé klíštéte Ixodes ricinus L. Zool. Entomol. Listy 1954, 3, 37–46. [Google Scholar]
  75. Kováčik, J.; Dudich, A. Ektoparazitofauna drobných zemných cicavcov (Insectivora, Rodentia) južnej časti Podunajskej nížiny so zreteľom na Žitný ostrov. 2. Ixodidae, Anoplura, Trombiculidae. Spr Žitnoostrovského Muz Dunajska Streda 1990, 13, 51–74. [Google Scholar]
  76. Stanko, M.; Mošanský, L. Náčrt fauny drobných cicavcov (Insectivora, Rodentia) a ich ektoparazitov Národnej prírodnej rezervácie Sivec (Čierna hora). Nat. Carp. 1996, 37, 201–208. [Google Scholar]
  77. Stanko, M. Roztoče (Acarina, Mesostigmata) drobných zemných cicavcov (Insectivora, Rodentia) Pohoria Javorie. Zbor. Slov. nár. Múz. Prír. Vedy 1990, 36, 107–119. [Google Scholar]
  78. Walter, G. Zur Saisondynamik und Biologie von Ixodes trianguliceps Birula, 1895 (Ixodoidea, Ixodidae) in Norddeutschland1. J. Appl. Entomol. 2009, 92, 433–440. [Google Scholar] [CrossRef]
  79. Mahnert, V. Parasitologische Untersuchungen an alpinen Kleinsäugern: Ixodoidea (Acari). Mitt. Schweiz. Entomol. Ges. 1971, 44, 323–332. [Google Scholar] [CrossRef]
  80. Lichard, M. Poznámky k výskytu a ekológii kliešťa Ixodes trianguliceps Bir. 1895. Biológia 1965, 20, 348–358. [Google Scholar]
  81. Kováčik, J. Príspevok k poznaniu ektoparazitov drobných zemných cicavcov Západných Tatier. 3. Ixodoidea, Trombiculidae, Anoplura. Stredné Slovensko. 1989, 8, 221–228. [Google Scholar]
  82. Mészáros, F.; Stollmann, A. Results of complex parasitological investigations on small mammals in the Cergov Mountains (Western Carpathians, Czechoslovakia). Misc. Zool. Hung. 1984, 2, 7–11. [Google Scholar]
  83. Ambros, M.; Dudich, A.; Krištofík, J. Kvantitativna charakteristika synuzie drobnych zemných cicavcov (Insectivora, Rodentia) a ich ektoparazitov (Acarina, Ixodidae, Anoplura, Siphonaptera) horského lesa štátnej prírodnej rezervácie Vtáčnik. Rosalia 1995, 10, 157–171. [Google Scholar]
  84. Ambros, M. Mesostigmatic mites (Acarina) from small mammals in the Cergov Mountains (Western Carpathians, Czechoslovakia). Misc. Zool. Hung. 1984, 2, 35–38. [Google Scholar]
  85. Stanko, M. Roztoče (Acarina, Mesostigmata) drobných cicavcov dvoch územných celkov západných Karpát. Biologia 1989, 44, 499–512. [Google Scholar]
  86. Stanko, M. Ektoparazity (Acarina, Mesostigmata, Ixodoidea) drobných zemných cicavcov zoologickej záhrady v Košiciach. Zbor. Východoslov. Múz. v Košiciach. Prírodné Vedy 1990, 31, 159–172. [Google Scholar]
  87. Poláčiková, Z.; Ambros, M. Roztoče (Acarina: Mesostigmata) drobných zemných cicavcov (Eulipotyphla, Rodentia) horského masívu Rokoša. Rosalia (Nitra) 2009, 20, 37–48. [Google Scholar]
  88. Willmann, C. Parasitische Milben an Kleinsäugern. Z. ParasitenKde 1952, 15, 392–428. [Google Scholar] [CrossRef]
  89. Stanko, M. Ektoparazity drobných cicavcov územia dolného toku Ondavy (Východoslovenská Nížina) 4. Roztoče (Mesostigmata). Nat. Carp. 1997, 38, 85–94. [Google Scholar]
  90. Ambros, M. Poznámky k výskytu roztočov (Acari Mesostigmata) drobných cicavcov (Insectivora, Rodentia) pohoria Tríbeč. Rosalia 1984, 1, 33–46. [Google Scholar]
  91. Ambros, M. Mites (Acari, Mesostigmata from small mammals (Insectivora and Rodentia) in the Bükk Mts. (Hungary). In The fauna of the Bükk National Park; The Hungarian Natural History Museum: Budapest, Hungary, 1993; pp. 449–456. [Google Scholar]
  92. Mrciak, M.; Rosický, B. K fauné roztočù řádu čmelíkovcù (Parasitiformes) z území ČSR. Zool. Listy 1956, 5, 143–148. [Google Scholar]
  93. Ambros, M.; Dudich, A.; Stollmann, A. Poznámky k faune roztočov (Acarina: Mesostigmata) drobných cicavcov (Insectivora, Rodentia) starohorských vrchov. Folia Faun. Slov. 2001, 6, 33–45. [Google Scholar]
  94. Mahnert, V. Parasitologische Untersuchungen an alpinen Kleinsängern: Parasitische Milben (Acari). Rev. Suiss. Zool. 1971, 78, 909–935. [Google Scholar] [CrossRef]
  95. Ambros, M. Fauna roztočov (Acari: Mesostigmata) drobných zemných cicavcov (Insectivora, Rodentia) Slánskych a Zemplínskych vrchov. Zbor. Slov. nár. Múz. Prír. Vedy 1987, 27, 89–103. [Google Scholar]
  96. Ambros, M. Roztoče (Acarina, Mesostigmata) drobných zemných cicavcov Vihorlatu. Zbor. Slov. Nár. Múz. Prír. Vedy 1983, 23, 137–152. [Google Scholar]
  97. Kováčik, J. Poznámky k ekológii lariev trombikúl (Acari: Trombiculidae) Záhorskej nížiny a Malých Karpát. Biológia 1985, 40, 613–620. [Google Scholar]
  98. Daniel, M. The bionomics and developmental cycle of some chiggers (Acariformes, Trombiculidae) in the Slovak Carpathians. Českoslov. Parasit. 1961, 4, 85–111. [Google Scholar]
  99. Haitlinger, R. Neotrombicula vulgaris (Schluger, 1955) i N. talmiensis (Schluger, 1955) (Acarina; Trombiculidae) w Polsce. Przegl. Zool. 1981, 25, 527–530. [Google Scholar]
  100. Lukoschus, F.S.; de Cock, A.W.A.M.; Driessen, F.M. Four new species of the genus Psorergates Tyrell, from European hosts (Acari, Psorergatidae). Tijdsch. Ent. 1971, 114, 185–200. [Google Scholar]
  101. Stanko, M. Blchy (Siphonaptera) drobných zemných cicavcov Pohoria Javorie. Zbor. Slov. Nár. Múz. Prír. Vedy 1987, 33, 95–108. [Google Scholar]
  102. Stanko, M. Blchy (Siphonaptera) drobných zemných cicavcov východnej časti Volovských Vrchov (Slovenské Rudohorie). Zbor. Slov. Nár. Múz. Prír. Vedy 1988, 34, 29–40. [Google Scholar]
  103. Frűhbauer, Z. Výskyt blech na drobných savcích v západní časti Krušných Hor. Čs Parasit. 1965, 12, 315–318. [Google Scholar]
  104. Lachmajer, J.; Skierska, B. Fleas occurring on Microtus arvalis Pall. and other small mammals and birds in the northern districts of the Szczecin Province. Biul. Inst. Med. Morsk. Gdansk 1957, 8, 131–135. [Google Scholar]
  105. Haitlinger, R. Fleas (Siphonaptera) of small mammals of the Pieniny, Poland. Pol. Pismo Entomol. 1974, 44, 765–788. [Google Scholar]
  106. Ryba, J.; Rosický, B.; Daniel, M.; Mrciak, M. Siphonaptera of small terrestrial mammals and their nests in the Western Carpathians. Folia Parasitol. 1975, 22, 45–56. [Google Scholar]
  107. Stanko, M. Blchy (Siphonaptera) drobných cicavcov severnej časti krupinskej planiny. Stredné Slovensko. Zbor. Stredoslov. Múz. v Banskej Bystrici 1987, 6, 108–116. [Google Scholar]
  108. Dudich, A. Blchy (Siphonaptera, Insecta) parazitujúce na drobných zemných cicavcoch žijúcich v Ľubochnianskej doline vo Veľkej Fatre (Západné Karpaty). Ochr. Prírody 1983, 4, 223–244. [Google Scholar]
  109. Cyprich, D.; Krumpál, M.; Dúha, J. Blchy (Siphonaptera) cicavcov (Mammalia) Štátnej prírodnej rezervácie Šúr. Ochr. Prírody 1987, 8, 241–253. [Google Scholar]
  110. Gubányi, A.; Murai, É.; Dudich, S.; Hajdú, É.; Matskási, I.F. On the parasite fauna of mammals from the Fertő–Hanság National Park and its surroundings (Cestoda, Trematoda, Nematoda, Acanthocephala, Siphonaptera). In The Fauna of the Fertő-Hanság National Park; Hungarian Natural History Museum: Budapest, Hungary, 2002; pp. 99–110. [Google Scholar]
  111. Szabó, I. Adatok Sopron és környéke Siphonaptera-faunájához. Parasit. Hung. 1972, 5, 329–348. [Google Scholar]
  112. Artz, V. Zur Synökologie der Ektoparasiten von Kleinsäugern in Norddeutschland (Siphonaptera, Phthiraptera, Acarina, Coleoptera: Leptinidae). [Synecology of Ectoparasites of Small Mammals in Northern Germany (Siphonaptera, Phthiraptera, Acarina, Coleoptera: Leptinidae)]. Entomol. Ger. 1975, 1, 105–143. [Google Scholar] [CrossRef]
  113. Bartkowska, K. Siphonaptera drobnych ssaków Łysogór (Góry Świętokrzyskie). Fragm. Faun 1981, 25, 411–422. [Google Scholar] [CrossRef]
  114. Szabó, I. To the knowledge of the Siphonaptera fauna in Tyrol (Austria). Parasit. Hung. 1975, 8, 71–74. [Google Scholar]
  115. Stanko, M. Súčasný stav poznania fauny bľch (Siphonaptera) drobných cicavcov Košickej aglomerácie. Zbor. Slov. Nár. Múz. Prír. Vedy 1992, 32–33, 87–95. [Google Scholar]
  116. Dudich, A. Synúzie bĺch (Siphonaptera, Insecta) Západných Karpát. Biológia 1987, 42, 603–616. [Google Scholar]
  117. Ryba, J. Fleas (Siphonaptera) of small mammals in western Hungary. Parasitol. Hung. 1978, 11, 101–106. [Google Scholar]
  118. Dudich, A. Siphonaptera (Insecta) drobných zemných cicavcov pohoria Vihorlat (Východné Karpaty). Zbor. Slov. Nár. Múz. Prír. Vedy 1983, 23, 153–181. [Google Scholar]
  119. Dudich, A. Fleas (Insecta: Siphonaptera) of small mammals in the Slánske vrchy and and Zemplén Mountains (West Carpathians). Parasitol. Hung. 1984, 17, 83–96. [Google Scholar]
  120. Dudich, A. Blchy (Siphonaptera, Insecta)–ektoparazity drobných zemných cicavcov Chránenej krajinnej oblasti Muránska planina. Ochrana Prír 1986, 7, 149–168. [Google Scholar]
  121. Dudich, A.; Szabó, I. Über die Verbreitung der Hystrichopsylla Taschenberg, 1880 (Siphonaptera) in Ungarn. Folia Entomol. Hung. 1984, 45, 27–32. [Google Scholar]
  122. Dudich, A. Príspevok k poznaniu fauny bĺch (Siphonaptera, Insecta) drobných zemných cicavcov Kremnických vrchov (Západné Karpaty). Kmetianum 1987, 8, 333–350. [Google Scholar]
  123. Smetana, A. Beitrag zur Kenntnis der Bionomie der mitteleuropäischen Kleinsäugerläuse (Anoplura). Čs Parasit. 1962, 9, 375–411. [Google Scholar]
  124. Krištofík, J.; Dudich, A. Sucking lice of the Enderleinellus, Hoplopleura, Schizophthirus and Neohaematopinus genera (Phthiraptera) on small mammals (Insectivora, Rodentia) in Slovakia. Biol. Bratisl. 2000, 55, 487–499. [Google Scholar]
  125. Fričová, J.; Stanko, M. Ektoparazity drobných cicavcov (Insectivora, Rodentia) oblasti dolného toku Ondavy (Východoslovenská Nižína). 2. Vší (Anoplura). Zbor. Slov. nár. Múz. Prír. Vedy 1994, 35, 97–104. [Google Scholar]
  126. Szczęśniak, N. Badania nad ektoparazytofauną (Anoplura) drobnych ssaków na terenie Bieszczadów. Wiad. Parazytol 1963, 9, 243–248. [Google Scholar]
  127. Haitlinger, R. Wszy (Anoplura) drobnych ssaków Pienin. Wiad. Parazytol 1974, 20, 559–568. [Google Scholar] [PubMed]
  128. Štefan, P.; Dudich, A.; Štollmann, A. Príspevok k poznaniu vší (Anoplura) drobných zemných cicavcov projektovanej Štátnej prírodnej rezervácie Ivachnovský luh. Liptov 1981, 6, 295–301. [Google Scholar]
Table 1. Parasitic arthropods on Sorex araneus.
Table 1. Parasitic arthropods on Sorex araneus.
Irc LIrc NDrt LDrt NPsrPsmCagCasCbsCunPbdMetMwlHorDdsLahHhlHanEstAnf
Białowieża
August 2005
N = 40ni
nc
1
2
1
1
1
3
16
26
1
1
7
9
1
2
2
2
1
1
4
4
5
5
3
3
4
5
1
1
Prevalence P %2.5 2.52.540.02.517.52.55.02.510.012.57.510.02.5
Intensity I2.0 1.03.01.61.03.02.01.01.01.01.01.01.21.0
dominance D2.9 1.54.538.81.513.43.03.01.56.07.54.57.51.5
abundance A0.1 0.00.10.60.00.20.00.00.00.10.10.10.10.0
Białowieża
July 2007
N = 24ni
nc
2
2
4
8
2
6
1
1
4
6
1
2
1
1
prevalence P %9.1 18.19.1 4.6 18.24.64.6
intensity I1.0 2.03.0 1.0 1.52.01.0
dominance D7.7 30.0823.1 3.8 23.17.73.8
abundance A0.1 0.40.3 0.1 0.30.10.1
Białowieża
July 2008
N = 10ni
nc
2
2
2
2
1
2
1
2
1
2
1
2
prevalence P % 20.020.010.0 10.010.0 10.0
intensity I 1.01.02.0 2.02.0 2.0
dominance D 16.716.716.7 16.716.7 16.7
abundance A 0.20.20.2 0.20.2 0.2
Kosewo
August 2004
N = 14ni
nc
3
3
2
2
2
2
4
12
3
4
2
3
3
3
2
3
2
2
prevalence P %21.4 14.3 14.328.621.4 14.321.4 14.314.3
intensity I1.0 1.0 1.07.01.0 1.00.7 1.01.0
dominance D15.8 10.5 10.563.221.0 15.815.8 15.810.5
abundance A0.2 0.1 0.10.90.3 0.20.2 0.20.1
Kosewo
July 2009
N = 11ni
nc
8
49
1
7
3
5
3
6
1
1
2
2
1
1
2
3
1
1
prevalence P %72.79.1 27.327.3 9.1 18.2 9.118.29.1
intensity I6.17.0 1.72.0 1.0 1.0 1.01.51.0
dominance D65.39.3 6.78.0 1.3 2.7 0.3041.3
abundance A4.50.6 0.50.5 0.1 0.2 0.10.30.1
Warszawa
July 2011
N = 19ni
nc
4
6
2
10
4
6
1
1
1
1
prevalence P % 21.110.521.1 5.3 5.3
intensity I 2.05.01.5 1.0 1.0
dominance D 25.041.725.0 4.2 4.2
abundance A 0.30.50.3 0.1 0.1
In total
N = 118ni
nc
14
56
1
7
7
9
14
30
26.0
46
3
3
13
23
5
7
3
4
2
3
4
4
12
16
7
8
7
8
1
1
2
3
2
2
2
2
2
3
1
1
prevalence P %11.90.95.911.922.09.511.04.22.51.73.410.26.02.60.91.71.71.71.70.9
intensity I4.07.01.32.11.81.01.81.41.32.01.01.31.11.11.01.51.01.01.51.0
dominance D6.30.43.16.311.71.45.82.21.40.91.85.43.13.20.40.90.90.90.90.4
abundance A0.50.10.10.30.40.00.20.10.00.00.00.10.10.10.00.00.00.00.00.0
Abbreviations: N—total number of shrews investigated in a given year and locality; nc—number of parasite specimens collected; ni—number of shrews infested with a given ectoparasite; Anf—A. fahrenholzi; Cag—C. agyrtes; Cas—C. assimilis; Cbs—C. bisoctodentatus; Cun—C. uncinatus; Dds—D. dasycnema; Drt—D. reticulatus; Est—E. stabularis; Hhl—H. hirsutosimilis; Han—H. nidi; Hor—H. orientalis; Irc—I. ricinus; L—larvae; Lah—L. hilaris; Met—M. turbidus; Mwl—M. walkeri; N—nymphs; Pbd—P. bidentata; Psm—P. similis; Psr—P. soricis.
Table 2. Parasitic arthropods on Sorex minutus.
Table 2. Parasitic arthropods on Sorex minutus.
Iap LDrt NPsrPbdCagMetMwlHor
Białowieża
August 2005
N = 4ni
nc
1
1
1
1
1
1
Prevalence P % 25.025.0 25.0
Intensity I 1.01.0 1.0
dominance D 33.333.3 33.3
abundance A 0.250.25 0.25
Białowieża
July 2007
N = 13ni
nc
1
1
2
4
1
1
1
2
2
2
3
12
2
2
Prevalence P %7.715.47.7 7.715.423.115.4
Intensity I1.02.01.0 2.01.05.01.0
dominance D4.216.74.2 8.38.350.08.3
abundance A0.10.30.1 0.20.20.90.2
Total
N = 17ni
nc
1
1
2
4
2
2
1
1
1
2
2
2
3
12
3
3
Prevalence P %5.911.811.85.95.911.817.617.6
Intensity I1.02.01.01.02.01.04.01.0
dominance D3.77.47.43.73.77.411.111.1
abundance A0.10.20.10.10.10.10.70.2
Abbreviations: N—total number of shrews investigated in a given year and locality; nc—number of parasite specimens collected; ni—number of shrews infested with a given ectoparasite; Cag—C. agyrtes; Drt—D. reticulatus; Hor—H. orientalis; Iap—I. apronophorus; L—larvae; Met—M. turbidus; Mwl—M. walkeri; N—nymphs; Pbd—P. bidentata; Psr—P. soricis.
Table 3. Parasitic arthropods on Neomys fodiens and Neomys anomalus. Białowieża, July 2007.
Table 3. Parasitic arthropods on Neomys fodiens and Neomys anomalus. Białowieża, July 2007.
Iap LPsrMwal
Neomys fodiens
N = 11ni
nc
1
3
5
20
Prevalence P %9.145.5
Intensity I3.04.0
dominance D4.321.7
abundance A0.31.8
Neomys anomalus
N = 3ni
nc
2
7
1
1
Prevalence P % 66.733.3
Intensity I 4.01.0
dominance D 25.012.5
abundance A 2.30.3
N—total number of shrews investigated in a given year and locality; nc—number of parasite specimens collected; ni—number of shrews infested with a given ectoparasite; Iap—I. apronophorus; L—larvae; Mwl—M. walkeri; Psr—P. soricis.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Karbowiak, G.; Stanko, M.; Smahol, K.; Werszko, J.; Rychlik, L. Parasitic Arthropods of Soricinae Shrews in North-Eastern Poland. Animals 2023, 13, 2960. https://doi.org/10.3390/ani13182960

AMA Style

Karbowiak G, Stanko M, Smahol K, Werszko J, Rychlik L. Parasitic Arthropods of Soricinae Shrews in North-Eastern Poland. Animals. 2023; 13(18):2960. https://doi.org/10.3390/ani13182960

Chicago/Turabian Style

Karbowiak, Grzegorz, Michal Stanko, Katerina Smahol, Joanna Werszko, and Leszek Rychlik. 2023. "Parasitic Arthropods of Soricinae Shrews in North-Eastern Poland" Animals 13, no. 18: 2960. https://doi.org/10.3390/ani13182960

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop