Clinical Evaluation of Medical Ozone Use in Domestic Feline Cutaneous Wounds—A Short Case Series
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ozone Preparation and Administration
2.3. Methods of Evaluation
2.4. Statistical Analysis
3. Results
3.1. Clinical Evaluation
3.2. Planimetry
Epithelialization, Contraction and Healing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Öztürk, F.; Ermertcan, A.T. Wound Healing: A New Approach to the Topical Wound Care. Cutan. Ocul. Toxicol. 2010, 30, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Grose, R. Regulation of Wound Healing by Growth Factors and Cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef]
- Tsioli, V.; Gouletsou, P.G.; Galatos, A.D.; Psalla, D.; Lymperis, A.; Sideri, A.I.; Papazoglou, L.G. The Effect of a Hydrocolloid Dressing on Second Intention Wound Healing in Cats. J. Am. Anim. Hosp. Assoc. 2018, 54, 125–131. [Google Scholar] [CrossRef]
- International Scientific Committee of Ozone Therapy. 2019. Available online: https://isco3.org/wp-content/uploads/2015/09/ISCO3-QAU-00-04-Definitios-and-terms-in-O3-Final.pdf (accessed on 5 July 2023).
- WFOT’s Review on Evidence Based Ozone Therapy; World Federation of Ozone Therapy—WFOT. 2015. Available online: https://www.wfoot.org/libray/WFOT-OZONE-2015-ENG.pdf (accessed on 16 August 2023).
- Bocci, V.; Borrelli, E.; Travagli, V.; Zanardi, I. The Ozone Paradox: Ozone Is a Strong Oxidant as well as a Medical Drug. Med. Res. Rev. 2009, 29, 646–682. [Google Scholar] [PubMed]
- Viebahn-Haensler, R.; León Fernández, O.S. Ozone in Medicine. The Low-Dose Ozone Concept and Its Basic Biochemical Mechanisms of Action in Chronic Inflammatory Diseases. Int. J. Mol. Sci. 2021, 22, 7890. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.B.M.; Lesher, E.C. Effect of Ozone on Survival and Permeability of Escherichia coli. J. Bacteriol. 1963, 85, 567–576. [Google Scholar] [CrossRef]
- Wentworth, P.; McDunn, J.E.; Wentworth, A.D.; Takeuchi, C.; Nieva, J.; Jones, T.; Bautista, C.; Ruedi, J.M.; Gutierrez, A.; Janda, K.D.; et al. Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation. Science 2002, 298, 2195–2199. [Google Scholar] [CrossRef]
- Yamayoshi, T.; Tatsumi, N. Microbicidal Effects of Ozone Solution on Methicillin-Resistant Staphylococcus Aureus. Drugs Under Exp. Clin. Res. 1993, 19, 59–64. [Google Scholar]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Luo, J.; Chen, A.F. Nitric Oxide: A Newly Discovered Function on Wound Healing. Acta Pharmacol. Sin. 2005, 26, 259–264. [Google Scholar] [CrossRef]
- Bocci, V. OZONE; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 17–24, 62. [Google Scholar] [CrossRef]
- Bocci, V.; Luzzi, E.; Corradeschi, F.; Silvestri, S. Studies on the Biological Effects of Ozone: 6. Production of Transforming Growth Factor 1 by Human Blood after Ozone Treatment. J. Biol. Regul. Homeost. Agents 1994, 8, 108–112. [Google Scholar]
- Valacchi, G.; Bocci, V. Studies on the Biological Effects of Ozone: 10. Release of Factors from Ozonated Human Platelets. Mediat. Inflamm. 1999, 8, 205–209. [Google Scholar] [CrossRef]
- Kim, H.S.; Noh, S.U.; Han, Y.W.; Kim, K.M.; Kang, H.; Kim, H.O.; Park, Y.M. Therapeutic Effects of Topical Application of Ozone on Acute Cutaneous Wound Healing. J. Korean Med. Sci. 2009, 24, 368. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, M.; Xie, C.; Luo, X.; Zhang, Q.; Xue, Y. Increased Growth Factors Play a Role in Wound Healing Promoted by Noninvasive Oxygen-Ozone Therapy in Diabetic Patients with Foot Ulcers. Oxidative Med. Cell. Longev. 2014, 2014, 273475. [Google Scholar] [CrossRef] [PubMed]
- ISCO3: Madrid Declaration on Ozone Therapy, 3rd ed.; International Scientific Committee of Ozone Therapy: Madrid, Spain, 2020.
- Bohling, M.W.; Henderson, R.A.; Swaim, S.F.; Kincaid, S.A.; Wright, J.C. Comparison of the role of the subcutaneous tissues in cutaneous wound healing in the dog and cat. Vet. Surg. 2006, 35, 3–14. [Google Scholar] [CrossRef]
- Sen, C.K.; Roy, S. Redox Signals in Wound Healing. Biochim. Biophys. Acta-Gen. Subj. 2008, 1780, 1348–1361. [Google Scholar] [CrossRef]
- Romary, D.J.; Landsberger, S.A.; Bradner, K.N.; Ramirez, M.; Leon, B.R. Liquid Ozone Therapies for the Treatment of Epithelial Wounds: A Systematic Review and Meta-Analysis. Int. Wound J. 2023, 20, 1235–1252. [Google Scholar] [CrossRef] [PubMed]
- Pchepiorka, R.; Moreira, M.S.; Lascane, N.A.d.S.; Catalani, L.H.; Allegrini, S., Jr.; de Lima, N.B.; Gonçalves, F. Effect of Ozone Therapy on Wound Healing in the Buccal Mucosa of Rats. Arch. Oral Biol. 2020, 119, 104889. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; Sticozzi, C.; Zanardi, I.; Belmonte, G.; Cervellati, F.; Bocci, V.; Travagli, V. Ozone Mediators Effect on “in Vitro” Scratch Wound Closure. Free Radic. Res. 2016, 50, 1022–1031. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.H.-C. Fibroblasts and Myofibroblasts in Wound Healing: Force Generation and Measurement. J. Tissue Viability 2011, 20, 108–120. [Google Scholar] [CrossRef]
- Huth, K.C.; Saugel, B.; Jakob, F.M.; Cappello, C.; Quirling, M.; Paschos, E.; Ern, K.; Hickel, R.; Brand, K.D. Effect of Aqueous Ozone on the NF-ΚB System. J. Dent. Res. 2007, 86, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Re, L.; Mawsouf, M.N.; Menéndez, S.; León, O.S.; Sánchez, G.M.; Hernández, F. Ozone Therapy: Clinical and Basic Evidence of Its Therapeutic Potential. Arch. Med. Res. 2008, 39, 17–26. [Google Scholar] [CrossRef]
- Rilling, S.; Viebahn, R. The Use of Ozone in Medicine; Haug Publishers: Heidelberg, Germany, 1987; p. 17. [Google Scholar]
- Cisterna, B.; Costanzo, M.; Lacavalla, M.A.; Galiè, M.; Angelini, O.; Tabaracci, G.; Malatesta, M. Low Ozone Concentrations Differentially Affect the Structural and Functional Features of Non-Activated and Activated Fibroblasts in Vitro. Int. J. Mol. Sci. 2021, 22, 10133. [Google Scholar] [CrossRef]
- Valacchi, G.; Lim, Y.; Belmonte, G.; Miracco, C.; Zanardi, I.; Bocci, V.; Travagli, V. Ozonated Sesame Oil Enhances Cutaneous Wound Healing in SKH1 Mice. Wound Repair Regen. 2010, 19, 107–115. [Google Scholar] [CrossRef]
- Travagli, V.; Zanardi, I.; Valacchi, G.; Bocci, V. Ozone and Ozonated Oils in Skin Diseases: A Review. Mediat. Inflamm. 2010, 2010, 610418. [Google Scholar] [CrossRef] [PubMed]
- Elvis, A.M.; Ekta, J.S. Ozone Therapy: A Clinical Review. J. Nat. Sci. Biol. Med. 2011, 2, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Wainstein, J.; Feldbrin, Z.; Boaz, M.; Harman-Boehm, I. Efficacy of Ozone–Oxygen Therapy for the Treatment of Diabetic Foot Ulcers. Diabetes Technol. Ther. 2011, 13, 1255–1260. [Google Scholar] [CrossRef]
- Re, L.; Sanchez, G.M.; Mawsouf, N. Clinical Evidence of Ozone Interaction with Pain Mediators. Saudi Med. J. 2010, 31, 1363–1367. [Google Scholar]
- Fuccio, C.; Luongo, C.; Capodanno, P.; Giordano, C.; Scafuro, M.; Siniscalco, D.; Lettieri, B.; Rossi, F.; Maione, S.; Berrino, L. A Single Subcutaneous Injection of Ozone Prevents Allodynia and Decreases the Over-Expression of Pro-Inflammatory Caspases in the Orbito-Frontal Cortex of Neuropathic Mice. Eur. J. Pharmacol. 2009, 603, 42–49. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, Y.; Zhang, X.-X. Gardenoside Combined with Ozone Inhibits the Expression of P2X3 and P2X7 Purine Receptors in Rats with Sciatic Nerve Injury. Mol. Med. Rep. 2018, 17, 7980–7986. [Google Scholar] [CrossRef]
- Fitzpatrick, E.; Holland, O.J.; Vanderlelie, J.J. Ozone Therapy for the Treatment of Chronic Wounds: A Systematic Review. Int. Wound J. 2018, 15, 633–644. [Google Scholar] [CrossRef]
- Al-Saadi, H.; Potapova, I.; Rochford, E.T.; Moriarty, T.F.; Messmer, P. Ozonated Saline Shows Activity against Planktonic and Biofilm Growing Staphylococcus Aureusin Vitro: A Potential Irrigant for Infected Wounds. Int. Wound J. 2015, 13, 936–942. [Google Scholar] [CrossRef]
- Oros, N.-V.; Repciuc, C.; Ober, C.; Mihai, M.; Oana, L.-I. Combined Oxygen-Ozone Therapy for Mesh Skin Graft in a Cat with a Hindlimb Extensive Wound. Animals 2023, 13, 513. [Google Scholar] [CrossRef]
- Soares, C.D.; Morais, T.M.L.; Araújo, R.M.F.G.; Meyer, P.F.; Oliveira, E.A.F.; Silva, R.M.V.; Carreiro, E.M.; Carreiro, E.P.; Belloco, V.G.; Mariz, B.A.L.A.; et al. Effects of Subcutaneous Injection of Ozone during Wound Healing in Rats. Growth Factors 2019, 37, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Repciuc, C.C.; Toma, C.G.; Ober, C.A.; Oana, L.I. Management of Surgical Wound Dehiscence by Oxygen-Ozone Therapy in a FIV-Positive Cat—A Case Report. Acta Vet. Brno 2020, 89, 189–194. [Google Scholar] [CrossRef]
- Bohling, M.W.; Henderson, R.A.; Swaim, S.F.; Kincaid, S.A.; Wright, J.C. Cutaneous Wound Healing in the Cat: A Macroscopic Description and Comparison with Cutaneous Wound Healing in the Dog. Vet. Surg. 2004, 33, 579–587. [Google Scholar] [CrossRef] [PubMed]
Case | Breed | Sex | Weight (kg) | Age (Years) | Etiology | Affected Area | Associated Pathologies | Microbiological Examination | Sensibility | Antibiotics Used (Days) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Domestic Shorthair cat | M | 4.2 | 18 | Chronic wound | Abdomino-inguinal | - FIV+ | - Streptococcus spp. alpha-hemolytic - Staphylococcus spp. - Bacillus spp. - bacilli G− | Marbofloxacin Doxycycline | Marbofloxacin (7) |
2 | Domestic Shorthair cat | F | 2.1 | 1 | Road accident | Left abdominal side | - Severe regenerative anemia - Sepsis | - Pseudomonas aeruginosa (multiresistant) - Staphylococcus spp. - Enterococcus spp. - Cocobacilli G− - lactose-positive (coliform) | Enrofloxacin Amikacin | Amikacin (7) Metronidazole (10) |
3 | Birman cat | M | 1.9 | 14 | Bitten by a dog | Both sides of the abdomen | - FIV+ - Bilateral phlegmon | - bacilli G− - Streptococcus spp. | Amoxicillin + Clavulanic acid Cephalexin Enrofloxacin | Amoxicillin + Clavulanic acid (5) |
4 | Domestic Shorthair cat | M | 2.7 | 4 | Hit by car | Ventral part of the abdomen | - FIV+ | - | - | - |
5 | Domestic Shorthair cat | F | 3.1 | 2 | Unknown | Right hind limb Tibio-tarso-metatarsal region | - Subluxation - Digital joint extensor and compromised collateral ligaments | - Escherichia coli | Enrofloxacin | Enrofloxacin (5) Metronidazole (7) |
6 | Domestic Shorthair cat | M | 3.6 | 6 | Hit by car | Left hind limb medial part | - Distal tibia fracture affected limb - Cominutive fractures at the level of phalanges II, III and IV | - | - | - |
7 | Domestic Shorthair cat | M | 4.1 | 2 | Unknown | Left hind limb medial part | - Avulsion of phalanges II and III of the finger 2 | Streptococcus spp. | Amoxicillin + Clavulanic acid | Amoxicillin + Clavulanic acid (5) |
Case | Method | Number of Treatment Sessions |
---|---|---|
1 | - bagging conc. 20–60 μg/mL for 5–20 min | 12 |
- perilesional infiltration with 15 μg/mL | 6 | |
- lavage with ozonized saline solution at 60 μg/mL | 12 | |
2 | - bagging conc. 20–60 μg/mL for 5–20 min | 16 |
- perilesional infiltration with 15 μg/mL | 6 | |
- lavage with ozonized saline solution at 60 μg/mL | 16 | |
3 | - bagging conc. 20–60 μg/mL for 5–20 min | 12 |
- perilesional infiltration with 15 μg/mL | 6 | |
- lavage with ozonized saline solution at 60 μg/mL | 12 | |
4 | - bagging conc. 20–60 μg/mL for 5–20 min | 8 |
- perilesional infiltration with 15 μg/mL | 6 | |
- lavage with ozonized saline solution at 60 μg/mL | 8 | |
5 | - bagging conc. 20–60 μg/mL for 5–20 min | 10 |
- perilesional infiltration with 15 μg/mL | 6 | |
- lavage with ozonized saline solution at 60 μg/mL | 10 | |
6 | - bagging conc. 20–60 μg/mL for 5–20 min | 8 |
- lavage with ozonized saline solution at 60 μg/mL | 8 | |
7 | - bagging conc. 20–60 μg/mL for 5–20 min | 10 |
- perilesional infiltration with 15 μg/mL | 4 | |
- lavage with ozonized saline solution at 60 μg/mL | 10 |
Planimetry | Day | |||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 35 | |
Contraction % | 0 | 16.031 ± 7.954 * | 36.998 ± 15.702 | 61.734 ± 13.269 | 79.482 ± 11.844 | 89.747 ± 9.880 |
Healing % | 0 | 19.714 ± 9.626 | 44.156 ± 15.262 | 72.985 ± 13.269 * | 91.960 ± 7.222 | 98.193 ± 2.066 |
Epithelialization % | 0 | 4.583 ± 3.678 | 12.045 ± 4.902 | 33.387 ± 18.247 | 68.652 ± 19.935 * | 89.104 ± 13.606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oros, N.-V.; Repciuc, C.; Ober, C.; Peștean, C.; Mircean, M.V.; Oana, L.-I. Clinical Evaluation of Medical Ozone Use in Domestic Feline Cutaneous Wounds—A Short Case Series. Animals 2023, 13, 2796. https://doi.org/10.3390/ani13172796
Oros N-V, Repciuc C, Ober C, Peștean C, Mircean MV, Oana L-I. Clinical Evaluation of Medical Ozone Use in Domestic Feline Cutaneous Wounds—A Short Case Series. Animals. 2023; 13(17):2796. https://doi.org/10.3390/ani13172796
Chicago/Turabian StyleOros, Nicuşor-Valentin, Călin Repciuc, Ciprian Ober, Cosmin Peștean, Mircea Valerian Mircean, and Liviu-Ioan Oana. 2023. "Clinical Evaluation of Medical Ozone Use in Domestic Feline Cutaneous Wounds—A Short Case Series" Animals 13, no. 17: 2796. https://doi.org/10.3390/ani13172796
APA StyleOros, N.-V., Repciuc, C., Ober, C., Peștean, C., Mircean, M. V., & Oana, L.-I. (2023). Clinical Evaluation of Medical Ozone Use in Domestic Feline Cutaneous Wounds—A Short Case Series. Animals, 13(17), 2796. https://doi.org/10.3390/ani13172796