Reduced Nitric Oxide Synthase Involvement in Aigamo Duck Basilar Arterial Relaxation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Preparation
2.2. Reagents
2.3. Functional Study
2.4. Statistical Analysis
3. Results
3.1. Spontaneous Nitric Oxide and Prostaglandin Release
3.2. Responsiveness to Vasoactive Substances
3.3. Involvement of 5-Hydroxytryptamine Receptor Subtype
3.4. Involvement of Histamine Receptor Subtypes
3.5. Responsiveness to β-Adrenergic Receptor Agonists
3.6. Involvement of β-Adrenergic Receptor Subtype
3.7. Involvement of Muscarinic Receptor Subtype
3.8. Effects of Nitric Oxides Synthase and Cyclooxygenase Inhibitors on Ornithokinin-Induced Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, R.L.; Choi, G.; Kuiken, T.; Quéré, P.; Trapp, S.; Short, K.R.; Richard, M. The culture of primary duck endothelial cells for the study of avian influenza. BMC Microbiol. 2018, 18, 138. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, A.C.; Spronken, M.I.; Bestebroer, T.M.; Fouchier, R.A.; Richard, M. Reduced replication of highly pathogenic avian influenza virus in duck endothelial cells compared to chicken endothelial cells is associated with stronger antiviral responses. Viruses 2022, 14, 165. [Google Scholar] [CrossRef]
- Keawcharoen, J.; van Riel, D.; van Amerongen, G.; Bestebroer, T.; Beyer, W.E.; van Lavieren, R.; Osterhaus, A.D.; Fouchier, R.A.; Kuiken, T. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 2008, 14, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kobayashi, Y.; Morita, T.; Horimoto, T.; Kawaoka, Y. Virulent influenza A viruses induce apoptosis in chickens. Virus Res. 2002, 84, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Vreman, S.; Bergervoet, S.A.; Zwart, R.; Stockhofe-Zurwieden, N.; Beerens, N. Tissue tropism and pathology of highly pathogenic avian influenza H5N6 virus in chickens and Pekin ducks. Res. Vet. Sci. 2022, 146, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Burggraaf, S.; Bingham, J.; Payne, J.; Kimpton, W.G.; Lowenthal, J.W.; Bean, A.G. Increased inducible nitric oxide synthase expression in organs is associated with a higher severity of H5N1 influenza virus infection. PLoS ONE 2011, 6, e14561. [Google Scholar] [CrossRef] [PubMed]
- Cirino, G.; Fiorucci, S.; Sessa, W.C. Endothelial nitric oxide synthase: The Cinderella of inflammation? Trends Pharmacol. Sci. 2003, 24, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Redington, A.E. Modulation of nitric oxide pathways: Therapeutic potential in asthma and chronic obstructive pulmonary disease. Eur. J. Pharmacol. 2006, 533, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Rahamt, S.; Gilland, E. Comparative anatomy of the carotid-basilar arterial trunk and hindbrain penetrating arteries in vertebrates. Open Anat. J. 2014, 6, 1–26. [Google Scholar] [CrossRef]
- Matsumoto, F.; Watanabe, Y.; Obi, T.; Islam, M.Z.; Yamazaki-Himeno, E.; Shiraishi, M.; Miyamoto, A. Characterization of 5-hydroxytryptamine-induced contraction and acetylcholine-induced relaxation in isolated chicken basilar artery. Poult. Sci. 2012, 91, 1158–1164. [Google Scholar] [CrossRef]
- Okuno, T.; Yabuki, A.; Shiraishi, M.; Obi, T.; Miyamoto, A. Histamine-induced modulation of vascular tone in the isolated chicken basilar artery: A possible involvement of endothelium. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 147, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ootawa, T.; Sekio, R.; Smith, H.; Islam, M.Z.; Uno, Y.; Shiraishi, M.; Miyamoto, A. Involvement of beta3-adrenergic receptors in relaxation mediated by nitric oxide in chicken basilar artery. Poult. Sci. 2023, 102, 102633. [Google Scholar] [CrossRef]
- Ramirez, V.; Savoie, P.; Morais, R. Molecular characterization and evolution of a duck mitochondrial genome. J. Mol. Evol. 1993, 37, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Skinner, B.M.; Robertson, L.B.W.; Tempest, H.G.; Langley, E.J.; Ioannou, D.; Fowler, K.E.; Crooijmans, R.P.M.A.; Hall, A.D.; Griffin, D.K.; Völker, M. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis. BMC Genom. 2009, 10, 357. [Google Scholar] [CrossRef]
- Short, K.R.; Veldhuis Kroeze, E.J.B.; Reperant, L.A.; Richard, M.; Kuiken, T. Influenza virus and endothelial cells: A species specific relationship. Front. Microbiol. 2014, 5, 653. [Google Scholar] [CrossRef]
- Tong, Z.W.M.; Karawita, A.C.; Kern, C.; Zhou, H.; Sinclair, J.E.; Yan, L.; Chew, K.Y.; Lowther, S.; Trinidad, L.; Challagulla, A.; et al. Primary chicken and duck endothelial cells display a differential response to infection with highly pathogenic avian influenza virus. Genes 2021, 12, 901. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Aoki, N.; Mori, C.; Homma, K.J.; Yamaguchi, S. Molecular biology of serotonergic systems in avian brains. Front. Mol. Neurosci. 2023, 16, 1226645. [Google Scholar] [CrossRef] [PubMed]
- Miki, H.; Inagaki, N.; Yamatodani, A.; Wada, H. Regional distribution of histamine in the brain of non-mammalian vertebrates. Brain Res. 1992, 571, 129–132. [Google Scholar] [CrossRef]
- Perry, S.F.; Capaldo, A. The autonomic nervous system and chromaffin tissue: Neuroendocrine regulation of catecholamine secretion in non-mammalian vertebrates. Auton. Neurosci. 2011, 165, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Wächtler, K. The regional production of acetylcholine in the brains of lower and higher vertebrates. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1980, 65, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Ito, K.; Nishio, A. Characterization of β-adrenoceptors in pig basilar artery from functional and radioligand binding studies. Jpn. J. Pharmacol. 1993, 61, 93–99. [Google Scholar] [CrossRef]
- Dauphin, F.; Hamel, E. Muscarinic receptor subtype mediating vasodilation feline middle cerebral artery exhibits M3 pharmacology. Eur. J. Pharmacol. 1990, 178, 203–213. [Google Scholar] [CrossRef]
- Kovács, A.; Hársing, L.G., Jr.; Szénási, G. Vasoconstrictor 5-HT receptors in the smooth muscle of the rat middle cerebral artery. Eur. J. Pharmacol. 2012, 689, 160–164. [Google Scholar] [CrossRef]
- Miyamoto, A.; Nishio, A. Characterization of histamine receptors in isolated pig basilar artery by functional and radioligand binding studies. Life Sci. 1993, 53, 1259–1266. [Google Scholar] [CrossRef]
- Miyamoto, A.; Nishio, A. Vasomotor effects of histamine on bovine and equine basilar arteries in vitro. Vet. Res. Commun. 1994, 18, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Kojima, S.; Sameshima, M.; Obi, T.; Yamazaki-Himeno, E.; Shiraishi, M.; Miyamoto, A. Vasomotor effects of noradrenaline, 5-hydroxytryptamine, angiotensin II, bradykinin, histamine, and acetylcholine on the bat (Rhinolophus ferrumequinum) basilar artery. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 250, 109190. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.E.; Kronquist, E.K.; Chinen, K.T.; Reihl, K.D.; Li, D.Y.; Lesniewski, L.A.; Donato, A.J. Cerebral and skeletal muscle feed artery vasoconstrictor responses in a mouse model with greater large elastic artery stiffness. Exp. Physiol. 2019, 104, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Ishiguro, S.; Nishio, A. Stimulation of bradykinin B2-receptors on endothelial cells induces relaxation and contraction in porcine basilar artery in vitro. Br. J. Pharmacol. 1999, 128, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Watanabe, Y.; Nguyen, H.T.T.; Yamazaki-Himeno, E.; Obi, T.; Shiraishi, M.; Miyamoto, A. Vasomotor effects of acetylcholine, bradykinin, noradrenaline, 5-hydroxytryptamine, histamine and angiotensin II on the mouse basilar artery. J. Vet. Med. Sci. 2014, 76, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Arunlakshana, O.; Schild, H.O. Some quantitative uses of drug antagonists. Br. J. Pharmacol. Chemother. 1959, 14, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Shirahase, H.; Usui, H.; Kurahashi, K.; Fujiwara, M.; Fukui, K. Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries. J. Cardiovasc. Pharmacol. 1987, 10, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Hashiguchi, Y.; Obi, T.; Ishiguro, S.; Nishio, A. Ibuprofen or ozagrel increases NO release and l-nitro arginine induces TXA2 release from cultured porcine basilar arterial endothelial cells. Vasc. Pharmacol. 2007, 46, 85–90. [Google Scholar] [CrossRef] [PubMed]
- van Heuven-Nolsen, D.; Tysse Klasen, T.H.; Luo, Q.F.; Saxena, P.R. 5-HT1-like receptors mediate contractions of the rabbit saphenous vein. Eur. J. Pharmacol. 1990, 191, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Horinouchi, T.; Yamamoto, Y.; Koike, K. Effect of SR59230A on atypical β-adrenoceptor mediating relaxation in the guinea pig gastric fundus. Pharmacology 2001, 62, 98–102. [Google Scholar] [CrossRef]
- Obara, K.; Suzuki, S.; Shibata, H.; Yoneyama, N.; Hamamatsu, S.; Yamaki, F.; Higai, K.; Tanaka, Y. Noradrenaline-induced relaxation of urinary bladder smooth muscle is primarily triggered through the β3-adrenoceptor in rats. Biol. Pharm. Bull. 2019, 42, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Dauphin, F.; Ting, V.; Payette, P.; Dennis, M.; Hamel, E. Vasocontractile muscarinic M1 receptors in cat cerebral arteries: Pharmacological identification and detection of mRNA. Eur. J. Pharmacol. 1991, 207, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, B.; Elisabeth, K.; Jürgen, S.; Walter, R.K. Characterization of muscarinic receptors of bovine coronary artery by functional and radioligand binding studies. Eur. J. Pharmacol. 1991, 196, 247–255. [Google Scholar]
- Jovanović, A.; Grbović, L.; Tulić, I. Endothelium-dependent relaxation in response to acetylcholine in the human uterine artery. Eur. J. Pharmacol. 1994, 256, 131–139. [Google Scholar] [CrossRef]
- Kimura, M.; Sueyoshi, T.; Morita, T.; Tanaka, K.; Iwanaga, S. Ornitho-kininogen and ornitho-kinin: Isolation, characterization and chemical structure. Adv. Exp. Med. Biol. 1989, 247, 359–367. [Google Scholar]
- Islam, M.Z.; Miyagi, K.; Matsumoto, T.; Nguyen, H.T.T.; Yamazaki-Himeno, E.; Shiraishi, M.; Miyamoto, A. Bradykinin induces NO and PGF2α production via B2 receptor activation from cultured porcine basilar arterial endothelial cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014, 387, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Schmaier, A.H. The contact activation and kallikrein/kinin systems: Pathophysiologic and physiologic activities. J. Thromb. Haemost. 2016, 14, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Guabiraba, R.; Garrido, D.; Bailleul, G.; Trotereau, A.; Pinaud, M.; Lalmanach, A.C.; Chanteloup, N.K.; Schouler, C. Unveiling the participation of avian kinin ornithokinin and its receptors in the chicken inflammatory response. Vet. Immunol. Immunopathol. 2017, 188, 34–47. [Google Scholar] [CrossRef] [PubMed]
Agonists | Effect (Receptor Subtype) | Species |
---|---|---|
Noradrenaline | Contraction (α) | Chicken [12] |
Relaxation (β1, β2) | Pig [21] | |
Acetylcholine | Relaxation (M3) | Chicken [10], Cat [22] |
5-Hydroxytryptamine | Contraction (5-HT1, 5-HT2) | Chicken [10], Rat [23] |
Histamine | Contraction (H1) | Pig [24], Cattle [25] |
Relaxation (H1, H2) | Chicken [11] | |
Angiotensin II | Contraction (AT1) | Bat [26], Mouse [27] |
Bradykinin | Contraction and relaxation (B2) | Pig [28] |
Relaxation (B2) | Mouse [29] |
Agonists | pEC50 | Emax (%) |
---|---|---|
Resting tension | ||
5-Hydroxytryptamine | 5.84 ± 0.06 | 143.2 ± 9.3 a |
Histamine | 4.37 ± 0.09 | 104.3 ± 14.0 a |
Noradrenaline | - | No response |
Noradrenaline + Propranolol | - | No response |
Angiotesin II | - | No response |
Precontracted condition | ||
Acetylcholine | 6.18 ± 0.17 | −81.0 ± 5.4 b |
Noradrenaline | 6.28 ± 0.05 | −69.7 ± 3.7 b |
Noradrenaline + Phentolamine | 6.30 ± 0.11 | −68.8 ± 6.3 b |
Ornithokinin | 6.20 ± 0.25 | −85.4 ± 2.7 b |
Isoproterenol | 7.22 ± 0.11 | −82.8 ± 9.2 b |
Adrenaline | 5.89 ± 0.10 | −60.9 ± 9.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Ootawa, T.; Sekio, R.; Smith, H.; Islam, M.Z.; Nguyen, H.T.T.; Uno, Y.; Shiraishi, M.; Miyamoto, A. Reduced Nitric Oxide Synthase Involvement in Aigamo Duck Basilar Arterial Relaxation. Animals 2023, 13, 2740. https://doi.org/10.3390/ani13172740
Wu S, Ootawa T, Sekio R, Smith H, Islam MZ, Nguyen HTT, Uno Y, Shiraishi M, Miyamoto A. Reduced Nitric Oxide Synthase Involvement in Aigamo Duck Basilar Arterial Relaxation. Animals. 2023; 13(17):2740. https://doi.org/10.3390/ani13172740
Chicago/Turabian StyleWu, Siyuan, Tomoki Ootawa, Ryoya Sekio, Henry Smith, Md. Zahorul Islam, Ha Thi Thanh Nguyen, Yasuhiro Uno, Mitsuya Shiraishi, and Atsushi Miyamoto. 2023. "Reduced Nitric Oxide Synthase Involvement in Aigamo Duck Basilar Arterial Relaxation" Animals 13, no. 17: 2740. https://doi.org/10.3390/ani13172740
APA StyleWu, S., Ootawa, T., Sekio, R., Smith, H., Islam, M. Z., Nguyen, H. T. T., Uno, Y., Shiraishi, M., & Miyamoto, A. (2023). Reduced Nitric Oxide Synthase Involvement in Aigamo Duck Basilar Arterial Relaxation. Animals, 13(17), 2740. https://doi.org/10.3390/ani13172740