Behavioural Indicators of Pain and Suffering in Arthropods and Might Pain Bite Back?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Possible Criteria for Pain
- (1)
- Swift avoidance learning (including forming preferences for analgesics or local anaesthetics);
- (2)
- Anxiety and risk aversion;
- (3)
- Long-term changes in behaviour not easily ascribed to associative learning;
- (4)
- Trade-offs between avoidance of the noxious stimulus and other motivational requirements;
- (5)
- Activities directed specifically towards the site of damage (rubbing) and reduction in the use of specific appendages (as in limping);
- (6)
- Protection from further damage by limb autotomy.
3. Evidence
3.1. Mandibulata
3.1.1. Crustaceans
3.1.2. Insects
3.1.3. Centipedes and Millipedes
3.2. Chelicerata
3.2.1. Spiders
3.2.2. Scorpions
3.2.3. Horseshoe Crabs
4. Discussion
5. Do Animals Inflict Pain on Others to Gain an Advantage?
5.1. Tissue Damage Caused during Mating
5.2. Possible Pain Inflicted to Win Fights over Resources
5.3. Chemical Warfare and Possible Pain
6. Cognitive Ability and Possible Evolution of Pain in Arthropods
7. Evolution
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giribet, G.; Edgecombe, G.D. The phylogeny and evolutionary history of arthropods. Curr. Biol. 2019, 29, R592–R602.2. [Google Scholar] [CrossRef]
- Zhang, J.; Walker, W.B.; Wang, G. Pheromone reception in moths: From molecules to behaviors. Prog. Mol. Biol. Transl. Sci. 2015, 130, 109–128. [Google Scholar] [CrossRef]
- Barr, S.; Laming, P.R.; Dick, J.T.; Elwood, R.W. Nociception or pain in a decapod crustacean? Anim. Behav. 2008, 75, 745–751. [Google Scholar] [CrossRef]
- Puri, S.; Faulkes, Z. Can crayfish take the heat? Procambarus clarkii show nociceptive behaviour to high temperature stimuli, but not low temperature or chemical stimuli. Biol. Open 2015, 4, 441–448. [Google Scholar] [CrossRef]
- Gibbons, M.; Chittka, L. A framework for evaluating evidence of pain in animals. Anim. Sentience 2022, 7, 28. [Google Scholar] [CrossRef]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Crook, R.J. Behavioral and neurophysiological evidence suggests affective pain experience in octopus. iScience 2021, 24, 102229. [Google Scholar] [CrossRef]
- Elwood, R.W. Pain and Suffering in Invertebrates? ILAR J. 2011, 52, 175–184. [Google Scholar] [CrossRef]
- Crump, A.; Browning, H.; Schnell, A.; Burn, C.; Birch, J. Sentience in decapod crustaceans: A general framework and review of the evidence. Anim. Sentience 2022, 7, 1. [Google Scholar] [CrossRef]
- Diggles, B.K. Food for thought: Review of some scientific issues related to crustacean welfare. ICES J. Mar. Sci. 2019, 76, 66–81. [Google Scholar] [CrossRef]
- Adamo, S. Is it pain if it does not hurt? On the unlikelihood of insect pain. Can. Entomol. 2019, 151, 685–695. [Google Scholar] [CrossRef]
- Bateson, P. Assessment of pain in animals. Anim. Behav. 1991, 42, 827–839. [Google Scholar] [CrossRef]
- Smith, J.A.; Boyd, K.M. Lives in the Balance: The Ethics of Using Animals in Biomedical Research; The Report of a Working Party of the Institute of Medical Ethics; Oxford University Press: Oxford, UK, 1991. [Google Scholar] [CrossRef]
- Birch, J.; Burn, C.; Schnell, A.K.; Browning, H.; Crump, A. Review of the Evidence of Sentience in Cephalopod Molluscs and Decapod Crustaceans; Department for Environment, Food & Rural Affairs (Defra): London, UK, 2021. [Google Scholar]
- Sneddon, L.U.; Elwood, R.W.; Adamo, S.A.; Leach, M.C. Defining and assessing animal pain. Anim. Behav. 2014, 97, 201–212. [Google Scholar] [CrossRef]
- Elwood, R.W. Pros and cons of a framework for evaluating potential pain in decapods. Anim. Sentience 2022, 7, 29. [Google Scholar] [CrossRef]
- Irvine, E. Independence, weight and priority of evidence for sentience. Anim. Sentience 2022, 32, 423. [Google Scholar] [CrossRef]
- Jablonka, E.; Ginsburg, S. Pain sentience criteria and their grading. Anim. Sentience 2022, 7, 4. [Google Scholar] [CrossRef]
- Crook, R.J.; Dickson, K.; Hanlon, R.T.; Walters, E.T. (2014) Nociceptive sensitization reduces predation risk. Curr. Biol. 2014, 24, 1121–1125. [Google Scholar] [CrossRef]
- Seymour, B.; Crook, R.J.; Chen, Z.S. Post-injury pain and behaviour: A control theory perspective. Nat. Rev. Neurosci. 2023, 24, 378–392. [Google Scholar] [CrossRef]
- Appel, M.; Elwood, R.W. Motivational trade-offs and potential pain experience in hermit crabs. Appl. Anim. Behav. Sci. 2009, 119, 120–124. [Google Scholar] [CrossRef]
- Elwood, R.W.; Appel, M. Pain experience in hermit crabs? Anim. Behav. 2009, 77, 1243–1246. [Google Scholar] [CrossRef]
- Sneddon, L.U. Evolution of nociception in vertebrates: Comparative analysis of lower vertebrates. Brain Res. Rev. 2004, 46, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, M.; Crump, A.; Barrett, E.; Sarlak, S.; Birch, J.; Chittka, L. Can insects feel pain? A review of the neural and behavioural evidence. Adv. Insect Physiol. 2022, 63, 155–229. [Google Scholar] [CrossRef]
- Farnsworth, K.D.; Elwood, R.W. Why it hurts: With freedom comes the biological need for pain. Anim. Cogn. 2023, 26, 1259–1275. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Hirano, N.; Abe, T.; Nagayama, T. Aversive operant conditioning alters the phototactic orientation of the marbled crayfish. J. Exp. Biol. 2021, 224 Pt 6, jeb242180. [Google Scholar] [CrossRef] [PubMed]
- Magee, B.; Elwood, R.W. Shock avoidance by discrimination learning in the shore crab (Carcinus maenas) is consistent with a key criterion for pain. J. Exp. Biol. 2013, 216, 353–358. [Google Scholar] [CrossRef]
- Magee, B.T.; Elwood, R.W. No discrimination shock avoidance with sequential presentation of stimuli but shore crabs still reduce shock exposure. Biol. Open 2016, 5, 883–888. [Google Scholar] [CrossRef]
- Dyer, A.G.; Neumeyer, C. Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J. Comp. Physiol. A 2005, 191, 547–557. [Google Scholar] [CrossRef]
- Fossat, P.; Bacqué-Cazenave, J.; De Deurwaerdère, P.; Delbecque, J.-P.; Cattaert, D. Anxiety-like behavior in crayfish is controlled by serotonin. Science 2014, 344, 1293–1297. [Google Scholar] [CrossRef]
- Fossat, P.; Bacqué-Cazenave, J.; De Deurwaerdere, P.; Cattaert, D.; Delbecque, J.-P. Serotonin, but not dopamine, controls the stress response and anxiety-like behavior in the crayfish Procambarus clarkii. J. Exp. Biol. 2015, 218, 2745–2752. [Google Scholar] [CrossRef]
- Maza, F.J.; Urbano, F.J.; Delorenzi, A. Aversive memory conditioning induces fluoxetine-dependent anxiety-like states in the crab Neohelice ranulate. J. Exp. Biol. 2023, 226, jeb245590. [Google Scholar] [CrossRef]
- Perrot-Minnot, M.-J.; Banchetry, L.; Cézilly, F. Anxiety-like behaviour increases safety from fish predation in an amphipod crustacea. R. Soc. Open Sci. 2017, 4, 171558. [Google Scholar] [CrossRef] [PubMed]
- Elwood, R.W.; Stewart, A. The timing of decisions during shell investigation by the hermit crab, Pagurus bernhardus. Anim. Behav. 1985, 33, 620–627. [Google Scholar] [CrossRef]
- Elwood, R.W. Motivational change during resource assessment by hermit crabs. J. Exp. Mar. Biol. Ecol. 1995, 193, 41–55. [Google Scholar] [CrossRef]
- Appel, M.; Elwood, R.W. Gender differences, responsiveness and memory of a potentially painful event in hermit crabs. Anim. Behav. 2009, 78, 1373–1379. [Google Scholar] [CrossRef]
- Elwood, R.W. Discrimination between nociceptive reflexes and more complex responses consistent with pain in crustaceans. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190368. [Google Scholar] [CrossRef]
- Magee, B.; Elwood, R.W. Trade-offs between predator avoidance and electric shock avoidance in hermit crabs demonstrate a non-reflexive response to noxious stimuli consistent with prediction of pain. Behav. Process. 2016, 130, 31–35. [Google Scholar] [CrossRef]
- Elwood, R.W.; Dalton, N.; Riddell, G. Aversive responses by shore crabs to acetic acid but not to capsaicin. Behav. Process. 2017, 140, 1–5. [Google Scholar] [CrossRef]
- McCambridge, C.; Dick, J.T.A.; Elwood, R.W. Effects of autotomy compared to manual declawing on contests between males for females in the edible crab Cancer pagurus: Implications for fishery practice and animal welfare. J. Shellfish. Res. 2016, 35, 1037–1044. [Google Scholar] [CrossRef]
- Dyuizen, I.V.; Kotsyuba, E.P.; Lamash, N.E. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, decapoda) CNS induced by a nociceptive stimulus. J. Exp. Biol. 2012, 215, 2668–2676. [Google Scholar] [CrossRef] [PubMed]
- Patterson, L.; Dick, J.T.A.; Elwood, R.W. Physiological stress responses in the edible crab, Cancer pagurus, to the fishery practice of de-clawing. Mar. Biol. 2007, 152, 265–272. [Google Scholar] [CrossRef]
- Fiorito, G. Is there ‘pain’ in invertebrates? Behav. Process. 1986, 12, 383–388. [Google Scholar] [CrossRef]
- Barr, S.; Elwood, R.W. No evidence of morphine analgesia to noxious shock in the shore crab, Carcinus maenas. Behav. Process. 2011, 86, 340–344. [Google Scholar] [CrossRef]
- Pitman, J.L.; DasGupta, S.; Krashes, M.J.; Leung, B.; Paola, N.; Perrat, P.N.; Waddell, S. There are many ways to train a fly. Fly 2009, 3, 3–9. [Google Scholar] [CrossRef]
- Tully, T.; Quinn, W.G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 1985, 157, 263–277. [Google Scholar] [CrossRef]
- Barraco, D.A.; Lovell, K.L.; Eisenstein, E.M. Effects of cycloheximide and puromycin on learning and retention in the cockroach, P. americana. Pharmacol. Biochem. Behav. 1981, 15, 489–494. [Google Scholar] [CrossRef]
- Abramson, C.I.; Morris, A.W.; Michaluk, L.M.; Squire, J. Antistatic foam as a shocking surface for behavioral studies with honeybees (Hymenoptera: Apidae) and American cockroaches (Orthoptera: Blattelidae). J. Entomol. Sci. 2004, 39, 562–566. [Google Scholar]
- Dylla, K.V.; Raiser, G.; Galizia, C.G.; Szyszka, P. Trace conditioning in Drosophila induces associative plasticity in mushroom body Kenyon cells and dopaminergic neurons. Front. Neural Circuits 2017, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Groening, J.; Venini, D.; Srinivasan, M.V. In search of evidence for the experience of pain in honeybees: A self-administration study. Sci. Rep. 2017, 7, 45825. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, M.; Sarlak, S.; Chittka, L. Descending control of nociception in insects? Proc. R. Soc. B. 2022, 289, 20220599. [Google Scholar] [CrossRef]
- Bateson, M.; Desire, S.; Gartside, S.E.; Wright, G.A. Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 2011, 21, 1070–1073. [Google Scholar] [CrossRef]
- Ings, T.C.; Chittka, L. Speed-accuracy tradeoffs and false alarms in bee responses to cryptic predators. Curr. Biol. 2008, 18, 1520–1524. [Google Scholar] [CrossRef] [PubMed]
- Khuong, T.M.; Wang, Q.-P.; Manion, J.; Oyston, L.J.; Lau, M.-T.; Towler, H.; Lin, Y.Q.; Neely, G.G. Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila. Sci. Adv. 2019, 5, eaaw4099. [Google Scholar] [CrossRef]
- Gibbons, M.; Versace, E.; Andrew Crump, A.; Baran, B.; Chittka, L. Motivational trade-offs and modulation of nociception in bumblebees. Proc. Natl. Acad. Sci. USA 2022, 119, e2205821119. [Google Scholar] [CrossRef]
- Gibbons, M. Neural and Behavioural Indicators of Pain in Insects. Ph.D. Thesis, Queen Mary University of London, London, UK, 2023. [Google Scholar]
- Emberts, Z.; St. Mary, C.M.; Howard, C.C.; Forthman, M.; Bateman, P.W.; Somjee, U.; Hwang, W.S.; Li, D.; Kimball, R.T.; Miller, C.W. The evolution of autotomy in leaf-footed bugs. Evolution 2020, 74, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Maginnis, T.L. Autotomy in a stick insect (Insecta: Phasmida): Predation versus molting. Fla. Entomol. 2008, 91, 126–127. [Google Scholar] [CrossRef]
- Mikhalevich, I.; Powell, R. Minds without spines: Evolutionarily inclusive animal ethics. Anim. Sentience 2020, 5, 1. [Google Scholar] [CrossRef]
- Elwood, R.W. Do arthropods respond to noxious stimuli purely by reflex? Anim. Sentience 2020, 5, 10. [Google Scholar] [CrossRef]
- Dunoyer, L.A.; Seifert, A.W.; Van Cleve, J. Evolutionary bedfellows: Reconstructing the ancestral state of autotomy and regeneration. J. Exp. Zool. B Mol. Dev. Evol. 2021, 336, 94–115. [Google Scholar] [CrossRef] [PubMed]
- Punzo, F. Leg autotomy and avoidance behavior in response to a predator in the wolf spider, Schizocosa avida (Araneae, Lycosidae). J. Arachnol. 1997, 25, 202–205. [Google Scholar]
- Nakamura, T.; Yamashita, S. Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae). J. Comp. Physiol. A 2000, 186, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Bednarski, J.V.; Taylor, P.; Jakob, E.M. Optical cues used in predation by jumping spiders, Phidippus audax (Araneae, Salticidae). Anim. Behav. 2012, 84, 1221–1227. [Google Scholar] [CrossRef]
- Peckmezian, T.; Taylor, P.W. Electric shock for aversion training of jumping spiders: Towards an arachnid model of avoidance learning. Behav. Process. 2015, 113, 99–104. [Google Scholar] [CrossRef]
- Kralj-Fišer, S.; Gregorič, M. Spider Welfare. In The Welfare of Invertebrate Animals. Animal Welfare; Carere, C., Mather, J., Eds.; Springer: Cham, Switzerland, 2019; Volume 18, pp. 105–122. [Google Scholar] [CrossRef]
- Eisner, T.; Camazine, S. Spider leg autotomy induced by prey venom injection: An adaptive response to ‘‘pain’’? Proc. Natl. Acad. Sci. USA 1983, 80, 3382–3385. [Google Scholar] [CrossRef]
- Punzo, F. Habituation, avoidance learning, and spatial learning in the giant whipscorpion, Mastigoproctus giganteus (Lucas) (Arachnida, Uropygi). Bull. Br. Arachnol. Soc. 2005, 13, 138–144. [Google Scholar]
- Gorman, R. Atlantic horseshoe crabs and endotoxin testing: Perspectives on alternatives, sustainable methods, and the 3Rs (Replacement, Reduction and Refinement). Front. Mar. Sci. 2020, 7, 582132. [Google Scholar] [CrossRef]
- Anderson, R.L.; Watson, W.H.; Chabot, C.C. Sublethal behavioral and physiological effects of the biomedical bleeding process on the American horseshoe crab, Limulus polyphemus. Biol. Bull. 2013, 225, 137–151. [Google Scholar] [CrossRef]
- Owings, M.; Chabot, C.; Watson, W. Effects of the biomedical bleeding process on the behavior and hemocyanin levels of the American horseshoe crab (Limulus polyphemus). Fish.Bull. 2020, 118, 225–239. [Google Scholar] [CrossRef]
- Makous, W.L. Conditioning in the horseshoe crab. Psychon. Sci. 2013, 14, 4–5. [Google Scholar] [CrossRef]
- Barron, A.B.; Klein, C. What insects can tell us about the origins of consciousness. Proc. Natl. Acad. Sci. USA 2016, 113, 4900–4908. [Google Scholar] [CrossRef] [PubMed]
- Sandeman, D.C.; Kenning, M.; Harzsch, S. Adaptive trends in malacostracan brain form and function related to behavior. In Crustacean Nervous System and Their Control of Behaviour; Derby, C., Thiel, M., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 11–48. [Google Scholar]
- Strausfeld, N.J.; Wolff, G.H.; Sayre, M.E. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. eLife 2020, 9, e52411. [Google Scholar] [CrossRef]
- Webster, S.G. Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress. J. Exp. Biol. 1996, 199, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Even, N.; Devaud, J.-M.; Barron, A.B. General stress responses in the honeybee. Insects 2012, 3, 1271–1298. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Chang, E.S.; Chang, S.A.; Neil, D.M. Carbohydrate dynamics and the crustacean hyperglycemic hormone (CHH): eVects of parasitic infection in Norway lobsters (Nephrops norvegicus). Gen. Comp. Endocrinol. 2001, 121, 13–22. [Google Scholar] [CrossRef]
- Elwood, R.W.; Adams, L. Electric shock causes physiological stress responses in shore crabs, consistent with prediction of pain. Biol. Lett. 2015, 11, 20150800. [Google Scholar] [CrossRef]
- Lessells, C.M. The evolutionary outcome of sexual conflict. Philos. Trans. R. Soc. B: Biol. Sci. 2006, 361, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.A.; Keller, L. How males can gain by harming their mates: Sexual conflict, seminal toxins, and the cost of mating. Am. Nat. 2000, 156, 368–377. [Google Scholar] [CrossRef]
- Crudgington, H.; Siva-Jothy, M. Genital damage, kicking and early death. Nature 2000, 407, 855–856. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Gong, D.; Mao, A.; Zhao, Y.; Jiao, X.; Liu, J.; Peng, Y.; Zhang, S. Traumatic mating causes strict monandry in a wolf spider. Zool Res. 2023, 44, 101–104. [Google Scholar] [CrossRef]
- Simone, Y.; van der Meijden, A. Armed stem to stinger: A review of the ecological roles of scorpion weapons. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20210002. [Google Scholar] [CrossRef] [PubMed]
- Sentenská, L.; Graber, F.; Richard, M.; Kropf, C. Sexual dimorphism in venom gland morphology in a sexually stinging scorpion. Biol. J. Linn. Soc. 2017, 122, 429–443. [Google Scholar] [CrossRef]
- Rivas-Torres, A.; Di Pietro, V.; Cordero-Rivera, A. Sex wars: A female genital spine forces male damselflies to shorten copulation duration. Evolution 2023, 77, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Crump, A.; Bethell, E.J.; Earley, R.; Lee, V.E.; Mendl, M.; Oldham, L.; Turner, S.P.; Arnott, G. Emotion in animal contests. Proc. Roy. Soc. B 2020, 287, 20201715. [Google Scholar] [CrossRef]
- Green, P.A.; Patek, S.N. Mutual assessment during ritualized fighting in mantis shrimp (Stomatopoda). Proc. R. Soc. B 2018, 285, 20172542. [Google Scholar] [CrossRef]
- Briffa, M.; Elwood, R.W. The power of shell rapping influences rates of eviction in hermit crabs. Behav. Ecol. 2000, 11, 288–293. [Google Scholar] [CrossRef]
- Elwood, R.W. Hermit crabs, shells, and sentience. Anim. Cogn. 2022, 25, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Arnott, G.; Elwood, R.W. Information-gathering and decision-making about resource value in animal contests. Anim. Behav. 2008, 76, 529–542. [Google Scholar] [CrossRef]
- LeBrun, E.G.; Jones, N.T.; Gilbert, L.E. Chemical warfare among invaders: A detoxification interaction facilitates an ant invasion. Science 2014, 343, 1014–1017. [Google Scholar] [CrossRef]
- Dashevsky, D.; Baumann, K.; Undheim, E.A.B.; Nouwens, A.; Ikonomopoulou, M.P.; Schmidt, J.O.; Ge, L.; Kwok, H.F.; Rodriguez, J.; Fry, B.G. Functional and Proteomic Insights into Aculeata Venoms. Toxins 2023, 15, 224. [Google Scholar] [CrossRef]
- Branstetter, M.G.; Danforth, B.N.; Pitts, J.P.; Faircloth, B.C.; Ward, P.S.; Buffington, M.L.; Gates, M.W.; Kula, R.R.; Brady, S.G. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr. Biol. 2017, 27, 1019–1025. [Google Scholar] [CrossRef]
- Koludarov, I.; Velasque, M.; Timm, T.; Greve, C.; Hamadou, A.B.; Gupta, D.K.; Lochnit, G.; Heinzinger, M.; Vilcinskas, A.; Gloag, R.; et al. A common venomous ancestor? Prevalent bee venom genes evolved before the aculeate stinger while few major toxins are bee-specific. bioRxiv 2022. [Google Scholar] [CrossRef]
- Evans, E.R.J.; Northfield, T.D.; Norelle, L.; Daly, N.L.; Wilson, D.T. Venom costs and optimization in scorpions. Front. Ecol. Evol. 2019, 7, 196. [Google Scholar] [CrossRef]
- Niermann, C.N.; Tate, T.G.; Suto, A.L.; Barajas, R.; White, H.A.; Guswiler, O.D.; Secor, S.M.; Rowe, A.H.; Rowe, M.P. Defensive Venoms: Is Pain Sufficient for Predator Deterrence? Toxins 2020, 12, 260. [Google Scholar] [CrossRef]
- Walker, A.A.; Mayhew, M.L.; Jin, J.; Herzig, V.; Undheim, E.A.; Sombke, A.; Fry, B.G.; Meritt, D.J.; King, G.F. The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nat. Commun. 2018, 9, 755. [Google Scholar] [CrossRef]
- Rügen, N.; Jenkins, T.P.; Wielsch, N.; Vogel, H.; Hempel, B.-F.; Süssmuth, R.D.; Ainsworth, S.; Cabezas-Cruz, A.; Vilcinskas, A.; Tonk, M. Hexapod assassins’ potion: Venom composition and bioactivity from the Eurasian assassin bug Rhynocoris iracundus. Biomedicines 2021, 9, 819. [Google Scholar] [CrossRef]
- Diochot, S. Pain-related toxins in scorpion and spider venoms: A face to face with ion channels. J. Venom. Anim. Toxins incl. Trop. Dis. 2021, 27, e20210026. [Google Scholar] [CrossRef]
- Herzig, V.; Sunagar, K.; Wilson, D.T.R.; Pineda, S.S.; Israel, M.R.; Dutertre, S.; McFarland, B.S.; Undheim, E.A.B.; Hodgson, W.C.; Alewood, P.F.; et al. Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators. Proc. Natl. Acad. Sci. USA 2020, 117, 24920–24928. [Google Scholar] [CrossRef]
- Eisner, T.; Aneshansley, D.; del Campo, M.L.; Eisner, M.; Frank, J.H.; Deyrup, M. Effect of bombardier beetle spray on a wolf spider: Repellency and leg autotomy. Chemoecology 2006, 16, 185–189. [Google Scholar] [CrossRef]
- Sugiura, S. Beetle bombing always deters praying mantises. PeerJ 2021, 9, e11657. [Google Scholar] [CrossRef]
- Eisner, T.; Aneshansley, D.J. Spray aiming in the bombardier beetle: Photographic evidence. Proc. Natl. Acad. Sci. USA 1999, 96, 9705–9709. [Google Scholar] [CrossRef]
- Murphy, S.M.; Leahy, S.M.; Williams, L.S.; Lill, J.T. Stinging spines protect slug caterpillars (Limacodidae) from multiple generalist predators. Behav. Ecol. 2010, 21, 153–160. [Google Scholar] [CrossRef]
- Braithwaite, V.A. Do Fish Feel Pain? Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Chandroo, K.P.; Duncan, I.J.H.; Moccia, R.D. Can fish suffer? Perspectives on sentience, pain, fear and stress. Appl. Anim. Behav. Sci. 2004, 86, 225–250. [Google Scholar] [CrossRef]
- Duncan, I.J.H. Animal welfare defined in terms of feelings. Acta. Agric. Scand. A Suppl. 1996, 27, 29–35. [Google Scholar]
- Duncan, I.J.H.; Petherick, C. The implications of cognitive processes for animal welfare. J. Anim. Sci. 1991, 69, 5017–5022. [Google Scholar] [CrossRef]
- Dawkins, M.S. Through animal eyes: What behaviour tells us. Appl. Anim. Behav. Sci. 2006, 100, 4–10. [Google Scholar] [CrossRef]
- Broom, D.M. Cognitive ability and sentience: Which aquatic animals should be protected? Dis. Aquat. Org. 2007, 75, 99–108. [Google Scholar] [CrossRef]
- Dukas, R. Constraints on Information Processing and Their Effects on Behavior. In Cognitive Ecology; Dukas, R., Ed.; University of Chicago Press: Chicago, IL, USA, 1998; pp. 89–127. [Google Scholar]
- Jackson, N.W.; Elwood, R.W. How animals make assessments: Information gathering by the hermit crab, Pagurus bernhardus. Anim. Behav. 1989, 38, 951–957. [Google Scholar] [CrossRef]
- Krieger, J.; Hörnig, M.K.; Laidre, M.E. Shells as ‘extended architecture’: To escape isolation, social hermit crabs choose shells with the right external architecture. Anim. Cogn. 2020, 23, 1177–1187. [Google Scholar] [CrossRef]
- Sonoda, K.; Asakura, A.; Minoura, M.; Elwood, R.W.; Gunji, P. Hermit crabs perceive the extent of their virtual bodies. Biol. Lett. 2012, 8, 495–497. [Google Scholar] [CrossRef]
- Elwood, R.W.; Pothanikat, E.; Briffa, M. Honest and dishonest displays, motivational state, and subsequent decisions in hermit crab shell fights. Anim. Behav. 2006, 72, 853–859. [Google Scholar] [CrossRef]
- Arnott, G.; Elwood, R.W. Fighting for shells: How private information about resource value changes hermit crab pre-fight displays and escalated fight behaviour. Proc. Roy. Soc. B 2007, 274, 3011–3017. [Google Scholar] [CrossRef]
- Dowds, B.M.; Elwood, R.W. Shell wars: Assessment strategies and the timing of decisions in hermit crab fights. Behaviour 1983, 85, 1–24. Available online: https://psycnet.apa.org/doi/10.1163/156853983X00011 (accessed on 7 August 2023). [CrossRef]
- Briffa, M.; Elwood, R.W.; Dick, J.T.A. Analyses of repeated signals during hermit crab shell fights. Proc. Roy. Soc. B 1998, 265, 1467–1474. [Google Scholar] [CrossRef]
- Briffa, M.; Elwood, R.W. Decision rules, energy metabolism and vigour in hermit crab fights. Proc. Roy. Soc. B 2001, 268, 1841–1847. [Google Scholar] [CrossRef]
- Briffa, M.; Elwood, R.W. Rapid change in energetic status in fighting animals: Causes and effects of strategic decisions. Anim. Behav. 2005, 70, 119–124. [Google Scholar] [CrossRef]
- Briffa, M.; Elwood, R.W. Use of energy reserves in fighting hermit crabs. Proc. Roy. Soc. B 2004, 271, 373–379. [Google Scholar] [CrossRef]
- Gherardi, F.; Atema, J. Memory of social partners in hermit crab dominance. Ethology 2005, 111, 271–285. [Google Scholar] [CrossRef]
- Hazlett, B.A. Assessments during shell exchanges by the hermit crab Clibanarius vittatus: The complete negotiator. Anim. Behav. 1996, 51, 567–573. [Google Scholar] [CrossRef]
- Vannini, M.; Cannicci, S. Homing behaviour and possible cognitive maps in crustacean decapods. J. Exp. Mar. Biol. Ecol. 1995, 193, 67–91. [Google Scholar] [CrossRef]
- von Hagen, H. Nachweis einer kinasthetischen Orientterung bei Uca rapax. Z. Morphol. Okol. Tiere 1967, 58, 301–320. [Google Scholar] [CrossRef]
- Lohmann, K.J.; Pentcheff, N.D.; Nevitt, G.A.; Stetten, G.D.; Zimmerfaust, R.K.; Jarrard, H.E.; Boles, L.C. Magnetic orientation of spiny lobsters in the ocean: Experiments with undersea coil systems. J. Exp. Biol. 1995, 198, 2041–2048. [Google Scholar] [CrossRef]
- Boles, L.C.; Lohmann, K.J. True navigation in spiny lobsters. Nature 2003, 421, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Chittka, L. The Mind of a Bee; Princeton University Press: Princeton, NJ, USA, 2022. [Google Scholar]
- Benard, J.; Stach, S.; Giurfa, M. Categorisation of visual stimuli in the honeybee Apis mellifera. Anim. Cogn. 2006, 9, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Giurfa, M.; Eichmann, B.; Menzel, R. Symmetry perception in an insect. Nature 1996, 382, 458–461. [Google Scholar] [CrossRef]
- Alem, S.; Perry, C.J.; Zhu, X.; Loukola, O.J.; Ingraham, T.; Søvik, E.; Chittka, L. Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLoS Biol. 2016, 14, e1002564. [Google Scholar] [CrossRef] [PubMed]
- Bartos, M. Alternative predatory tactics in a juvenile hunting spider. J. Arachnol. 2008, 36, 300–305. [Google Scholar] [CrossRef]
- Jackson, R.R.; Pollard, S.D.; Li, D.; Fijn, N. Interpopulation variation in the risk-related decisions of Portia labiata, an araneophagic jumping spider (Araneae, Salticidae), during predatory sequences with spitting spiders. Anim. Cogn. 2002, 5, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Tarsitano, M.S. Route selection by a jumping spider (Portia labiata) during the locomotory phase of a detour. Anim. Behav. 2006, 72, 1437–1442. [Google Scholar] [CrossRef]
- Sherwin, C.M. Can invertebrates suffer? Or how robust is argument-by-analogy? Anim. Welf. 2001, 10, 103–108. [Google Scholar] [CrossRef]
- Edgecombe, G.D.; Legg, D.A. Origins and early evolution of arthropods. Palaeontology 2014, 57, 457–468. [Google Scholar] [CrossRef]
- Godfrey-Smith, P. Metazoa: Animal Minds and the Birth of Consciousness; William Collins: London, UK, 2020. [Google Scholar]
- Lacalli, T. An evolutionary perspective on chordate brain organization and function: Insights from amphioxus, and the problem of sentience. Phil. Trans. R. Soc. B 2022, 377, 20200520. [Google Scholar] [CrossRef] [PubMed]
Behaviour | Mandibulata | Chelicerata | |||||
---|---|---|---|---|---|---|---|
Crustacean | Insect | Centipede | Millipede | Spider | Scorpion | Horseshoe Crab | |
Avoidance | √ | √ | √ | √ | |||
Anxiety | √ | √ | |||||
Long-term changes | √ | √ | |||||
Trade-offs | √ | √ | |||||
Directed activities | √ | √ | |||||
Autotomy | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elwood, R.W. Behavioural Indicators of Pain and Suffering in Arthropods and Might Pain Bite Back? Animals 2023, 13, 2602. https://doi.org/10.3390/ani13162602
Elwood RW. Behavioural Indicators of Pain and Suffering in Arthropods and Might Pain Bite Back? Animals. 2023; 13(16):2602. https://doi.org/10.3390/ani13162602
Chicago/Turabian StyleElwood, Robert W. 2023. "Behavioural Indicators of Pain and Suffering in Arthropods and Might Pain Bite Back?" Animals 13, no. 16: 2602. https://doi.org/10.3390/ani13162602