Effect of Parity, Body Condition Score at Calving, and Milk Yield on the Metabolic Profile of Gyr Cows in the Transition Period
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals and Management
2.2. BCS Assessment and Sample Collection and Processing
2.3. Definition of Diseases and Metabolic Imbalances
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santana, M.L., Jr.; Pereira, R.J.; Bignardi, A.B.; El Faro, L.; Tonhati, H.; Albuquerque, L.G. History, structure and genetic diversity of Brazilian Gyr cattle. Livest. Sci. 2014, 163, 26–33. [Google Scholar] [CrossRef]
- Fernandes, A.R.; El Faro, L.; Filho, A.E.V.; Machado, C.H.C.; Barbero, L.M.; Bittar, E.R.; Igarasi, M.S. Genetic evolution of milk yield, udder morphology and behavior in gyr dairy cattle. Rev. Bras. Zootec. 2019, 48, e20180056. [Google Scholar] [CrossRef] [Green Version]
- Hortolani, B.; Bernardes, P.A.; Filho, A.E.V.; Panetto, J.C.C.; Faro, L.E. Genetic parameters for body weight and milk production of dairy Gyr herds. Trop. Anim. Health Prod. 2022, 54, 84. [Google Scholar] [CrossRef] [PubMed]
- Toro-Ospina, A.M.; Faria, R.A.; Castana, P.D.; Santana, M.L.; Gonzalez, L.G.; Espasandin, A.C.; Silva, J.A.V. Geno-type-environment interaction for milk production of Gyr cattle in Brazil and Colombia. Genes Genom. 2023, 45, 135–143. [Google Scholar] [CrossRef] [PubMed]
- da Costa, M.D.; dos Reis, A.F.; Ruas, J.R.M.; Bispo, G.E.; Rocha Júnior, V.R.; Gomes, V.M.; Fuíza, T.L.; Rodríguez, M.A.O.; Mourthé, M.H.F.; Pires, D.A.A. Productive and reproductive performance of females F1 Holsteins × Gir daughters of proven bulls. Trop. Anim. Health Prod. 2021, 53, 10. [Google Scholar] [CrossRef]
- Daros, R.R.; Hotzel, M.J.; Bran, J.A.; LeBlanc, S.J.; Keyserlingk, A.G.V. Prevalence and risk factors for transition period diseases in grazing dairy cows in Brazil. Prev. Vet. Med. 2017, 14, 16–22. [Google Scholar] [CrossRef]
- Pascottini, O.B.; Leroy, J.L.M.R.; Opsomer, G. Maladaptation to the transition period and consequences on fertility of dairy cows. Reprod. Domest. Anim. 2022, 57, 21–32. [Google Scholar] [CrossRef]
- Cattaneo, L.; Lopreiato, V.; Trevisi, E.; Minuti, A. Association of postpartum uterine diseases with lying time and metabolic profiles of multiparous Holtein dairy cows in the transition period. Vet. J. 2020, 263, 105533. [Google Scholar] [CrossRef]
- Jiang, L.-Y.; Sun, H.-Z.; Guan, R.-W.; Shi, F.; Zhao, F.-Q.; Liu, J.-X. Formation of Blood Neutrophil Extracellular Traps Increases the Mastitis Risk of Dairy Cows During the Transition Period. Front. Immunol. 2022, 27, 1888. [Google Scholar] [CrossRef]
- Menta, P.R.; Machado, V.S.; Pineñeiro, J.M.; Thatcher, W.W.; Santos, J.E.P.; Vieira-Neto, A. Heat stress during the transition period is associated with impaired production, reproduction, and survival in dairy cows. J. Dairy Sci. 2022, 105, 4474–4489. [Google Scholar] [CrossRef]
- Jeong, J.K.; Choi, I.S.; Kang, H.G.; Hur, T.Y.; Jung, Y.H.; Kim, I.H. Relationship between serum magnesium concentration during the transition period, peri- and postpartum disorders, and reproductive performance in dairy cows. Livest. Sci. 2018, 213, 1–6. [Google Scholar] [CrossRef]
- Valldecabres, A.; Pires, J.A.; Silva-Del-Río, N. Cow-level factors associated with subclinical hypocalcemia at calving in multiparous Jersey cows. J. Dairy Sci. 2019, 102, 8367–8375. [Google Scholar] [CrossRef]
- Ha, S.; Kang, S.; Han, M.; Lee, J.; Chung, H.; Oh, S.I.; Kim, S.; Park, J. Predicting ketosis during the transition period in Holstein Friesian cows using hematological and serum biochemical parameters on the calving date. Sci. Rep. 2022, 12, 853. [Google Scholar] [CrossRef]
- Silva Filho, A.P.; Mendonça, C.L.; Souto, R.J.C.; Silva, R.J.; Soares, P.C.; Afonso, J.A.B. Biochemical and hormonal indicators of crossbred and sick cows during late pregnancy and early lactation. Pesq. Vet. Bras. 2017, 37, 1229–1240. [Google Scholar] [CrossRef] [Green Version]
- Daibert, E.; De Alvarenga, P.B.; Rezende, A.L.; Fagundes, N.S.; Krüger, B.C.; Dos Santos, R.M.; Mundim, A.V.; Saut, J.P.E. Metabolites able to predict uterine diseases in crossbred dairy cows during the transition period. Semin. Ciências Agrárias 2018, 39, 1037–1048. [Google Scholar] [CrossRef] [Green Version]
- Moreira, T.F.; Filho, E.J.F.; Belli, A.L.S.A.C.; Meneses, R.M.; Leme, F.O.P.; Uribe, J.A.Z.; Rodrigues, L.M.; Carvalho, A.U. Metabolic status of crossbreed F1 Holstein × Gyr dairy cows during the transition period in two different seasons in Brazil. Semin. Ciências Agrárias 2018, 39, 2487–2500. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.G.C.; Breda, J.C.S.; Cerri, F.M.; Flaiban, K.K.M.C.; Filho, E.J.F.; Lisboa, J.A.N. Effect of change in body condition during the dry period, milk yield and genetic groups on the metabolic profiles of high-producing Holstein × Gyr cows. Livest. Sci. 2022, 265, 105097. [Google Scholar] [CrossRef]
- Lages, H.F. Partition and Mandatory Requirements without Final Energy Profile Assessment during the Transition Period of Vacancies Gyr and F1 Holstein × Gyr. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2015. [Google Scholar]
- Angelo, I.D.V.; Stivanin, S.C.B.; Vizzotto, E.F.; Bettencourt, A.F.; Lopes, M.G.; Corrêa, M.N.; Pereira, L.G.R.; Fischer, V. Feed intake, milk production and metabolism of Holstein, Gyr and Girolando-F1 heifers with high body condition score during the transition period. Res. Veter. Sci. 2022, 152, 127–133. [Google Scholar] [CrossRef]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal Descriptors of Body Condition Score in Holstein Cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Lewis, G.S.; LeBlanc, S.; Gilbert, R.O. Defining postpartum uterine disease in cattle. Theriogenology 2006, 65, 1516–1530. [Google Scholar] [CrossRef]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of nonesterified fatty acids and β-hydroxybutyrate in tran-sition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 2010, 93, 546–554. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.; Nydam, D.V.; Oetzel, G.R.; Overton, T.R.; Ospina, P.A. Elevated non-esterified fatty acids and β-hydroxybutyrate and their association with transition dairy cow performance. Veter. J. 2013, 198, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Mair, B.; Drillich, M.; Klein-Jöbstl, D.; Kanz, P.; Borchardt, S.; Meyer, L.; Schwendenwein, I.; Iwersen, M. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices. BMC Vet. Res. 2016, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oetzel, G.R. Oral Calcium Supplementation in Peripartum Dairy Cows. Vet. Clin. Food Anim. Pract. 2013, 29, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Farnia, S.A.; Rasooli, A.; Nouri, M.; Shahryari, A.; Bakhtiary, M.K.; Constable, P.D. Effect of postparturient oral calcium administration on serum total calcium concentration in Holstein cows fed diets of different dietary cation-anion difference in late gestation. Res. Vet. Sci. 2018, 117, 118–124. [Google Scholar] [CrossRef]
- Lopera, C.; Zimpel, R.; Vieira-Neto, A.; Lopes, F.R.; Ortiz, W.; Poindexter, M.; Faria, B.N.; Gambarini, M.L.; Block, E.; Nelson, C.D.; et al. Effects of level of dietary cation-anion difference and duration of prepartum feeding on performance and metabolism of dairy cows. J. Dairy Sci. 2018, 101, 7907–7929. [Google Scholar] [CrossRef]
- Negrão, J.A.; Marnet, P.-G. Milk yield, residual milk, oxytocin and cortisol release during machine milking in Gir, Gir × Holstein and Holstein cows. Reprod. Nutr. Dev. 2006, 46, 77–85. [Google Scholar] [CrossRef]
- dos Reis, C.B.M.; Barreiro, J.R.; Moreno, J.F.G.; Porcionato, M.A.F.; Santos, M.V. Evaluation of somatic cell count thresholds to detect subclinical mastitis in Gyr cows. J. Dairy Sci. 2011, 94, 4406–4412. [Google Scholar] [CrossRef] [Green Version]
- Santana, M.; Pereira, R.; Bignardi, A.; Filho, A.V.; Menéndez-Buxadera, A.; El Faro, L. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends. J. Dairy Sci. 2015, 98, 9035–9043. [Google Scholar] [CrossRef]
- Ferreira, G.; Teets, C.L. Performance and income over feed costs when feeding alfafa or grass hays and corn or wheat grains to high-producing dairy cows. Appl. Anim. Sci. 2020, 36, 583–591. [Google Scholar] [CrossRef]
- Nemati, M.; Hashemzadeh, F.; Ghorbani, G.R.; Ghasemi, E.; Khorvash, M.; Ghaffari, M.H.; Nasrollahi, S.M. Effects of sub-stitution of beet pulp for barley or corn in the diet of high-producing dairy cows on feeding behavior, performance, and ruminal fermentation. J. Dairy Sci. 2020, 103, 8829–8840. [Google Scholar] [PubMed]
- Burch, A.; Pineda, A.; Lock, A. Effect of palmitic acid-enriched supplements containing stearic or oleic acid on nutrient digestibility and milk production of low- and high-producing dairy cows. J. Dairy Sci. 2021, 104, 8673–8684. [Google Scholar] [CrossRef] [PubMed]
- Valldecabres, A.; Silva-Del-Río, N. Effects of postpartum oral calcium supplementation on milk yield, milk composition, and reproduction in multiparous Jersey and Jersey × Holstein crossbreed cows. J. Dairy Sci. 2021, 104, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.; Visentin, G. Satyability in Simmental cattle as affected by muscularity and body condition score between calvings. Front. Vet. Sci. 2023, 10, 1141286. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, A.P.S.; da Gloria, J.R.; Costa, A.L.B.D.S.A.; Martins, R.A.; Amaral, T.F.; de Azevedo, R.A.; Campos, E.F.; Coelho, S.G. Metabolic and hormone profiles of Holstein × Gyr cows during pre- and postpartum. Pesqui. Agropecuária 2018, 53, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Kida, K. The metabolic profile test: Its praticability in assessing feeding management and periparturient diseases in high yielding comercial dairy herds. J. Vet. Med. Sci. 2002, 64, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Kuczyńska, B.; Puppel, K.; Gołębiewski, M.; Wisniewski, K.; Przysucha, T. Metabolic profile according to the parity and stage of lactation of high-performance Holstein-Friesian cows. Anim. Biosci. 2021, 34, 575–583. [Google Scholar] [CrossRef]
- Wathes, D.C.; Cheng, Z.; Bourne, N.; Taylor, V.J.; Coffey, M.P.; Brotherstone, S. Differences between primiparous and multiparous dairy cows in the inter-relationships between metabolic traits, milk yield and body condition score in the periparturient period. Domest. Anim. Endocrinol. 2007, 33, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.L.C.; Iverson, S.J.; Don Bowen, W.D. Primiparous and multiparous females differ in mammary gland alveolar de-velopment: Implications for milk production. J. Exp. Biol. 2012, 215, 2904–2911. [Google Scholar] [CrossRef] [Green Version]
- Marumo, J.L.; Lusseau, D.; Speakman, J.R.; Mackie, M.; Hambly, C. Influence of environmental factors and parity on milk yield dynamics in bar-housed dairy cattle. J. Dairy Sci. 2022, 105, 1225–1241. [Google Scholar]
- Alharthi, A.; Zhou, Z.; Lopreiato, V.; Trevisi, E.; Loor, J.J. Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. J. Anim. Sci. Biotechnol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.; Mellado, M.; Leyva, C.; García, J.E.; Véliz, F.G.; Hernández-Bustamante, J. Serum metabolites and body condition score associated with metritis, endometritis, ketosis, and mastitis in Holstein cows. Pesqui. Agropecuária Bras. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Barletta, R.; Filho, M.M.; Carvalho, P.; Del Valle, T.; Netto, A.; Rennó, F.; Mingoti, R.; Gandra, J.; Mourão, G.; Fricke, P.; et al. Association of changes among body condition score during the transition period with NEFA and BHBA concentrations, milk production, fertility, and health of Holstein cows. Theriogenology 2017, 104, 30–36. [Google Scholar] [CrossRef]
- Freitas Júnior, J.E.; Rocha Júnior, V.R.; Rennó, F.P.; Mello, M.T.P.; Carvalho, A.P.; Caldeira, L.A. Effect of body condition at calving on the productive performance of Holstein × Zebu crossbred cows. Rev. Bras. Zootec. 2008, 1, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Mansouryar, M.; Mirzaei-Alamouti, H.; Banadaky, M.D.; Nielsen, M.O. Calving body condition score combined with milk test data and rectal temperature improved the prognostic value of non-invasive markers for infectious diseases in Holestein cows. Livest. Sci. 2018, 212, 69–74. [Google Scholar] [CrossRef]
- Gobikrushanth, M.; Macmillan, K.; Behrouzi, A.; Hoff, B.; Colazo, M.G. The factors associated with postpartum body condition score change and its relationship with serum analytes, milk production and reproductive performance in dairy cows. Livest. Sci. 2019, 228, 151–160. [Google Scholar] [CrossRef]
- Cozzi, G.; Ravarotto, L.; Gottardo, F.; Stefani, A.; Contiero, B.; Moro, L.; Brscic, M.; Dalvit, P. Reference values for blood parameters in Holstein dairy cows: Effects of parity, stage of lactation, and season of production. J. Dairy Sci. 2011, 94, 3895–3901. [Google Scholar] [CrossRef]
- Ruprechter, G.; Adrien, M.d.L.; Larriestra, A.; Meotti, O.; Batista, C.; Meikle, A.; Noro, M. Metabolic predictors of peripartum diseases and their association with parity in dairy cows. Res. Vet. Sci. 2018, 118, 191–198. [Google Scholar] [CrossRef]
- Meikle, A.; Kulcsar, M.; Chilliard, Y.; Febel, H.; Delavaud, C.; Cavestany, D.; Chilibroste, P. Effects of parity and body condition at parturition on endocrine and reproductive parameters of the cow. Reproduction 2004, 127, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Van, Q.C.D.; Knapp, E.; Hornick, J.L.; Dufrasne, I. Influence of days in milk and parity on milk and blood fatty acid concentrations, blood metabolites and hormones in early lactation Holstein cows. Animal 2020, 10, 2081. [Google Scholar] [CrossRef]
- Adewuyi, A.A.; Gruyisi, E.; Ferdenburg, F.J.C.M.V. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 2005, 27, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.; Lindberg, M.; Akerlind, M.; Holtenius, K. Feed intake, milk yield and metabolic status of early-lactation Swedish Holstein and Swedish Red dairy cows of different parities fed grass silage and two levels of by product-based concentrate. Livest. Sci. 2020, 242, 104304. [Google Scholar] [CrossRef]
- Sheehy, M.R.; Fahey, A.G.; Aungier, S.P.M.; Carter, F.; Crowe, M.A.; Mulligan, F.J. A comparison of serum metabolic and production profiles of dairy cows that maintained or lost body condition 15 days before calving. J. Dairy Sci. 2017, 100, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Chen, X.; Xiao, J.; Chen, X.H.; Zhang, X.F.; Wang, T.; Zhen, Y.-G.; Qin, G.X. Prepartum body condition score affects milk yield, lipid metabolism, and oxidation status of Holstein cows. Asian Australas. J. Anim. Sci. 2019, 32, 1889–1896. [Google Scholar] [CrossRef] [Green Version]
- Souissi, W.; Bouraoui, R. Relationship between Body Condition Score, Milk Yield, Reproduction, and Biochemical Parameters in Dairy Cows. In Lactation in Farm Animals—Biology, Physiological Basis, Nutritional Requirements, and Modelization; IntechOpen: London, UK, 2020; Volume 1, p. 6. [Google Scholar]
- Djoković, R.; Kurćubić, V.; Ilić, Z.; Cincović, M.; Lalović, M.; Jašović, B.; Bojkovski, J. Correlation between Blood Biochemical Metabolites Milk Yield, Dry Matter Intake and Energy Balance in Dairy Cows during Early and Mild Lactation. Adv. Diab. Metab. 2017, 5, 26–30. [Google Scholar] [CrossRef]
- Puppel, K.; Kuczyńska, B. Metabolic profiles of cow’s blood, a review. J. Sci. Food Agric. 2016, 96, 4321–4328. [Google Scholar] [CrossRef]
- Ceciliani, F.; Lecchi, C.; Urh, C.; Sauerwein, H. Proteomics and metabolomics characterizing the pathophysiology of adap-tative reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J. Proteom. 2018, 178, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; Bruckmaier, R. Invited review: Metabolic challenges and adaptation during different functional stages of the mammary gland in dairy cows. J. Dairy Sci. 2019, 102, 2828–2843. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.K.; Choi, I.S.; Kang, H.G.; Hur, T.Y.; Jung, Y.H.; Kim, I.H. Relationship between serum metabolites, body condition, peri and postpartum health and resumption of postpartum cyclicity in dairy cows. Livest. Sci. 2015, 181, 31–37. [Google Scholar]
- Oliveira, S.B.R.; Moura, A.R.F.; Pádua, M.F.S.; Barbon, I.S.; Silva, E.M.M.; Santos, R.M.; Mundel, A.V.; Saut, J.P.E. Metabolic profile of crossbred dairy cows with low peripartum body condition score. Pesq. Vet. Bras. 2014, 34, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, P.B.; Rezende, A.L.; Justo, F.B.; Rezende, S.R.; Cesar, J.C.G.; Santos, R.M.; Mundel, A.V.; Saut, J.P.E. Metabolic profile of clinically healthy Jersey cows. Pesq. Vet. Bras. 2017, 37, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Neves, R.C.; Leno, B.M.; Stokol, T.; Overton, T.R.; McArt, J.A.A. Risk factors associated with postpartum subclinical hypocalcemia in dairy cows. J. Dairy Sci. 2017, 100, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Moreira, T.F.; Facury Filho, E.J.; Meneses, R.M.; Mendonça, F.L.M.; Lima, J.A.M.; Carvalho, A.U. Energetic status of cross-breed dairy cows during transition period in two different seasons. Arq. Bras. Med. Vet. Zootec. 2015, 67, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Cavestany, D.; Blanc, J.E.; Kulcsar, M.; Uriarte, G.; Chilibroste, P.; Meikle, A.; Febel, H.; Ferraris, A.; Krall, E. Studies of the Transition Cow Under a Pasture-based Milk Production System: Metabolic Profiles. J. Veter Med. Ser. A 2005, 52, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Varas, P.; Weary, D.; Noro, M.; von Keyserlingk, M. Transition Diseases in Grazing Dairy Cows Are Related to Serum Cholesterol and Other Analytes. PLoS ONE 2015, 10, e0122317. [Google Scholar] [CrossRef] [Green Version]
- Lean, I.J.; Van Saun, R.; DeGaris, P.J. Energy and Protein Nutrition Management of Transition Dairy Cows. Veter Clin. North Am. Food Anim. Pract. 2013, 29, 337–366. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: Cambridge, MA, USA, 2008; p. 886. [Google Scholar]
- Goff, J.P. Calcium and Magnesium Disorders. Vet. Clin. Food Anim. Pract. 2014, 30, 359–381. [Google Scholar] [CrossRef]
- Moreira, t.F.; Facury Filho, E.J.; Costa, A.L.B.S.A.; Meneses, R.M.; Casagrande, F.P.; Leme, F.O.P.; Uribe, J.A.Z.; Carvalho, A.U. Mineral profile of crossbreed F1 Holteins x Gyr dairy cows during the transition period in summer and winter. Arq Bras. Med. Vet. Zootec 2017, 69, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.A.; Neves, R.C. Association of transient, persistent, or delayed subclinical hypocalcemia with early lactation disease, removal, and milk yield in Holstein cows. J. Dairy Sci. 2020, 103, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Seely, C.R.; Leno, B.M.; Kerwin, A.L.; Overton, T.R.; McArt, J.A.A. Associations of subclinical hypocalcemia dynamics with dry matter intake, milk yield, and blood minerals during the periparturient period. J. Dairy Sci. 2021, 104, 4692–4702. [Google Scholar] [CrossRef]
- Hernández-Castellano, L.E.; Hernandez, L.L.; Bruckmaier, R.M. Review: Endocrine pathways to regulate calcium homeostasis around parturition and the prevention of hypocalcemia in periparturient dairy cows. Animal 2020, 14, 330–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venjakob, P.; Staufenbiel, R.; Heuwieser, W.; Borchardt, S. Serum calcium dynamics within the first 3 days in milk and the associated risk of acute puerperal metritis. J. Dairy Sci. 2019, 102, 11428–11438. [Google Scholar] [CrossRef] [PubMed]
- DeGaris, P.J.; Lean, I.J. Milk fever in dairy cows: A review of pathophysiology and control principles. Vet. J. 2008, 176, 58–69. [Google Scholar] [CrossRef] [PubMed]
Prepartum * | Postpartum | |||
---|---|---|---|---|
(kg/d) | (%) | (kg/d) | (%) | |
Components | ||||
Corn silage | 22.90 | 65.64 | 20.88 | 65.58 |
Corn | 4.00 | 12.56 | 2.85 | 8.95 |
Soybean meal | 3.74 | 11.74 | 2.30 | 7.22 |
Citrus pulp | 1.77 | 5.55 | 1.97 | 6.19 |
Protected fat | - | - | 0.33 | 1.03 |
Mineral core | 0.18 | 0.56 | 0.52 | 1.61 |
Ammonium chloride | 0.66 | 2.10 | - | - |
Magnesium sulfate | 0.54 | 1.70 | - | - |
Dicalcium phosphate | 0.05 | 0.15 | - | - |
Lactating concentrate feed | - | - | 3.00 | 9.42 |
Chemical composition | ||||
Dry matter (%) | 46.51 | 48.57 | ||
Net energy (Mcal/kg) | 2.21 | 2.36 | ||
Starch (%) | 31.22 | 34.55 | ||
Crude protein (%) | 12.33 | 14.92 | ||
NDF (%) | 34.39 | 34.13 | ||
ADF (%) | 18.57 | 19.30 | ||
EE (%) | 2.46 | 2.63 | ||
Ca (%) | 0.30 | 0.58 | ||
P (%) | 0.22 | 0.30 | ||
Mg (%) | 0.28 | 0.25 | ||
K (%) | 0.75 | 0.94 | ||
Na (%) | 0.03 | 0.22 | ||
S (%) | 0.28 | 0.20 | ||
Cl (%) | 0.20 | 0.42 | ||
DCAD (mEq/100 g DM) | −10.0 | 9.41 |
Groups | Milk Yield at 60 DIM (kg) | Average Daily Production (kg/d) | Total DIM | Total Milk Yielded (kg) |
---|---|---|---|---|
P | 20.31 ± 5.12 b | 19.50 ± 4.84 b | 255.76 ± 34.85 | 5025.95 ± 1540.37 b |
B | 26.94 ± 8.26 a | 24.97 ± 5.18 a | 256.85 ± 39.19 | 6476.70 ± 1955.57 ab |
M | 27.74 ± 11.16 a | 26.31 ± 8.63 a | 269.00 ± 40.39 | 7096.30 ± 2731.87 a |
HBCS | 28.12 ± 11.94 | 25.86 ± 8.25 | 274.42 ± 41.70 | 7241.83 ± 2852.56 |
NBCS | 27.17 ± 10.74 | 25.75 ± 8.10 | 261.40 ± 42.83 | 6781.47 ± 2658.28 |
HP | 37.80 ± 6.32 a | 33.23 ± 4.92 a | 284.22 ± 35.21 a | 9464.53 ± 1928.04 a |
MP | 22.25 ± 4.14 b | 21.63 ± 3.52 b | 258.06 ± 38.23 b | 5590.09 ± 1258.61 b |
Days Relative to Parturition | SEM * | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
−21 | −7 | 0 | 7 | 21 | 42 | G † | D | G × D | ||
BCS | 3.34 a | 3.35 a | 3.35 a | 3.27 ab | 3.19 bc | 3.16 c | 0.028 | 0.014 | <0.001 | 0.493 |
NEFA (mmol/L) | 0.31 d | 0.38 cd | 0.83 a | 0.79 ab | 0.52 c | 0.64 bc | 0.048 | 0.326 | <0.001 | 0.146 |
BHB (mmol/L) | 0.40 d | 0.45 cd | 0.45 cd | 0.67 a | 0.54 bc | 0.58 ab | 0.030 | 0.901 | <0.001 | 0.004 |
Glucose (mmol/L) | 3.03 b | 3.01 b | 6.30 a | 3.40 b | 3.47 b | 3.29 b | 0.162 | 0.400 | <0.001 | <0.001 |
Cholesterol (mmol/L) | 2.57 d | 2.58 d | 2.38 d | 2.94 c | 4.46 b | 5.80 a | 0.101 | 0.367 | <0.001 | 0.001 |
TP (g/L) | 77.42 b | 76.46 b | 76.35 b | 78.33 b | 83.70 a | 82.28 a | 0.868 | <0.001 | <0.001 | 0.196 |
Albumin (g/L) | 32.59 b | 33.20 b | 33.72 b | 33.57 b | 36.42 a | 35.57 a | 0.520 | 0.033 | <0.001 | 0.379 |
AST (U/L) | 65.40 b | 69.93 b | 73.52 b | 94.00 a | 73.06 b | 69.95 b | 3.165 | 0.030 | <0.001 | 0.428 |
GGT (U/L) | 28.43 b | 31.73 b | 43.10 a | 33.25 b | 32.72 b | 30.28 b | 1.689 | 0.217 | <0.001 | 0.009 |
Ca (mmol/L) | 2.21 b | 2.25 ab | 2.18 b | 2.23 ab | 2.27 a | 2.24 ab | 0.016 | 0.035 | <0.001 | 0.002 |
P (mmol/L) | 2.26 a | 2.29 a | 1.78 b | 2.14 a | 2.27 a | 2.19 a | 0.044 | 0.015 | <0.001 | 0.012 |
Mg (mmol/L) | 1.08 a | 1.04 a | 0.96 b | 0.96 b | 1.04 a | 1.03 a | 0.018 | 0.170 | <0.001 | 0.241 |
Days Relative to Parturition | SEM * | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
−21 | −7 | 0 | 7 | 21 | 42 | G † | D | G × D | ||
BCS | 3.72 a | 3.70 a | 3.69 a | 3.51 b | 3.36 c | 3.32 c | 0.038 | <0.001 | <0.001 | <0.001 |
NEFA (mmol/L) | 0.32 b | 0.49 b | 0.90 a | 0.80 a | 0.52 b | 0.89 a | 0.068 | 0.369 | <0.001 | 0.085 |
BHB (mmol/L) | 0.36 b | 0.44 b | 0.49 b | 0.69 a | 0.50 b | 0.76 a | 0.043 | 0.243 | <0.001 | 0.085 |
Glucose (mmol/L) | 3.08 b | 3.00 b | 6.52 a | 3.38 b | 3.46 b | 3.11 b | 0.239 | 0.934 | <0.001 | 0.932 |
Cholesterol (mmol/L) | 2.61 cd | 2.57 cd | 2.40 d | 2.90 c | 4.71 b | 6.54 a | 0.139 | 0.487 | <0.001 | 0.977 |
TP (g/L) | 80.86 bc | 79.28 c | 78.28 c | 79.81 c | 87.39 a | 84.08 ab | 1.306 | 0.224 | <0.001 | 0.811 |
Albumin (g/L) | 32.41 c | 33.14 bc | 34.37 bc | 34.15 bc | 37.17 a | 35.23 ab | 0.666 | 0.495 | <0.001 | 0.865 |
AST (U/L) | 61.40 c | 67.98 bc | 73.61 b | 89.75 a | 70.95 bc | 71.67 bc | 3.308 | 0.056 | <0.001 | 0.761 |
GGT (U/L) | 26.49 c | 32.49 bc | 41.93 a | 35.22 abc | 36.65 ab | 36.51 ab | 2.693 | 0.638 | <0.001 | 0.772 |
Ca (mmol/L) | 2.20 ab | 2.24 a | 2.15 b | 2.22 ab | 2.26 a | 2.26 a | 0.021 | 0.403 | <0.001 | 0.797 |
P (mmol/L) | 2.24 ab | 2.30 a | 1.73 c | 2.03 b | 2.16 ab | 2.13 ab | 0.055 | 0.710 | <0.001 | 0.976 |
Mg (mmol/L) | 1.07 a | 1.01 ab | 0.97 bc | 0.94 c | 1.02 ab | 1.01 ab | 0.018 | 0.564 | <0.001 | 0.996 |
Days Relative to Parturition | SEM * | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
−21 | −7 | 0 | 7 | 21 | 42 | G † | D | G × D | ||
BCS | 3.65 a | 3.64 a | 3.64 a | 3.48 b | 3.33 c | 3.28 c | 0.049 | 0.935 | <0.001 | 0.609 |
NEFA (mmol/L) | 0.30 c | 0.43 bc | 0.89 a | 0.89 a | 0.59 b | 0.89 a | 0.062 | 0.267 | <0.001 | 0.112 |
BHB (mmol/L) | 0.37 c | 0.43 bc | 0.48 bc | 0.70 ab | 0.57 b | 0.79 a | 0.038 | 0.033 | <0.001 | 0.112 |
Glucose (mmol/L) | 3.05 b | 2.96 b | 6.57 a | 3.30 b | 3.39 b | 3.10 b | 0.201 | 0.453 | <0.001 | 0.041 |
Cholesterol (mmol/L) | 2.64 d | 2.58 d | 2.47 d | 3.04 c | 4.89 b | 6.28 a | 0.112 | 0.014 | <0.001 | 0.004 |
TP (g/L) | 80.46 b | 79.27 b | 78.36 b | 79.31 b | 85.62 a | 84.13 a | 1.052 | 0.265 | <0.001 | 0.215 |
Albumin (g/L) | 32.50 d | 33.47 cd | 34.72 bc | 34.99 bc | 37.93 a | 36.25 ab | 0.594 | 0.658 | <0.001 | 0.057 |
AST (U/L) | 31.13 c | 35.33 bc | 69.87 b | 91.46 a | 70.75 b | 71.68 b | 2.538 | 0.486 | <0.001 | 0.436 |
GGT (U/L) | 26.53 c | 32.27 bc | 40.04 a | 31.17 bc | 32.77 b | 35.97 a | 1.808 | 0.402 | <0.001 | 0.589 |
Ca (mmol/L) | 2.21 b | 2.26 ab | 2.16 b | 2.22 ab | 2.28 a | 2.29 a | 0.017 | 0.184 | <0.001 | 0.268 |
P (mmol/L) | 2.27 a | 2.29 a | 1.76 c | 1.98 bc | 2.14 ab | 2.15 ab | 0.045 | 0.018 | <0.001 | <0.001 |
Mg (mmol/L) | 1.09 a | 1.03 b | 0.96 c | 0.96 c | 1.05 ab | 1.04 ab | 0.015 | 0.018 | <0.001 | 0.296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breda, J.C.d.S.; Facury Filho, E.J.; Flaiban, K.K.d.C.; Lisboa, J.A.N. Effect of Parity, Body Condition Score at Calving, and Milk Yield on the Metabolic Profile of Gyr Cows in the Transition Period. Animals 2023, 13, 2509. https://doi.org/10.3390/ani13152509
Breda JCdS, Facury Filho EJ, Flaiban KKdC, Lisboa JAN. Effect of Parity, Body Condition Score at Calving, and Milk Yield on the Metabolic Profile of Gyr Cows in the Transition Period. Animals. 2023; 13(15):2509. https://doi.org/10.3390/ani13152509
Chicago/Turabian StyleBreda, José Carlos dos Santos, Elias Jorge Facury Filho, Karina Keller da Costa Flaiban, and Julio Augusto Naylor Lisboa. 2023. "Effect of Parity, Body Condition Score at Calving, and Milk Yield on the Metabolic Profile of Gyr Cows in the Transition Period" Animals 13, no. 15: 2509. https://doi.org/10.3390/ani13152509