Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly (Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Black Soldier Fly Larvae (BSFL) Preparation
- (I)
- Parabola dome drying procedure: First, 12 kg of BSFL were spread evenly in an aluminum tray, and they were then dried inside the parabola dome for 48 h until a moisture content of not more than 10% was achieved.
- (II)
- Hot-air oven procedure: The oven (30-UF1060, Memmert GmbH + Co. KG, Schwabach, Germany) was preheated for 15 min until it reached the required temperature. Afterward, 12 kg of BSFL were spread evenly in an aluminum tray and were then dried at 60 °C for 48 h until a moisture content of not more than 10% was achieved.
- (III)
- Microwave drying procedure: A sample of 1 kg of BSFL was placed in a plastic bucket (1 kg per bucket for a total of 12 times) and was dried until a moisture content of not more than 10% was achieved. This occurred inside a microwave (Microwave Vacuum Rotary Dryer, March Cool Industry Co., Ltd., Bangkok, Thailand) under vacuum conditions at a power level of 800 watts for 10 min, during which time the baking temperature did not exceed 60 °C.
2.2. Physical Characteristic Measurement
2.2.1. Color
2.2.2. Bulk Density
2.2.3. Angle of Repose
2.2.4. Particle Size and Distribution
2.2.5. Microscopy Compound
2.3. Chemical Composition Measurement
2.4. Statistical Analysis
3. Results
3.1. Physical Characteristics of BSFL
3.1.1. Color
3.1.2. Bulk Density
3.1.3. Angle of Repose
3.1.4. Particle Size and Distribution
3.1.5. Microscopic Characterization
3.2. Chemical Composition of BSFL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.-i.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mshayisa, V.V.; Van Wyk, J.; Zozo, B. Nutritional, techno-functional and structural properties of black soldier fly (Hermetia illucens) larvae flours and protein concentrates. Foods 2022, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in siberian sturgeon nutrition: The Effects on Physical Properties of the Feed, Animal Growth Performance, and Feed Acceptance and Utilization. Animals 2020, 10, 2119. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Singh, Y.; Michiels, J.; Cullere, M. Black soldier fly (Hermetia Illucens) as dietary source for laying quails: Live performance, and egg physico-chemical quality, sensory profile and storage stability. Animals 2019, 9, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumo, M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.M.; Subramanian, S.; Ekesi, S.; van Huis, A.; Borgemeister, C. Influence of temperature on selected life-history traits of black soldier fly (Hermetia illucens) reared on two common urban organic waste streams in Kenya. Animals 2019, 9, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Siva Raman, S.; Stringer, L.C.; Bruce, N.C.; Chong, C.S. Opportunities, challenges and solutions for black soldier fly larvae-based animal feed production. J. Clean. Prod. 2022, 373, 133802. [Google Scholar] [CrossRef]
- Shah, A.A.; Totakul, P.; Matra, M.; Cherdthong, A.; Hanboonsong, Y.; Wanapat, M. Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Anim. Biosci. 2022, 35, 317–331. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Ottoboni, M.; Spranghers, T.; Pinotti, L.; Baldi, A.; De Jaeghere, W.; Eeckhout, M. Inclusion of Hermetia Illucens larvae or prepupae in an experimental extruded feed: Process optimisation and impact on in vitro digestibility. Ital. J. Anim. Sci. 2017, 17, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Schiavone, A.; De Marco, M.; Martinez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Bußler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2016, 2, e00218. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; He, L.; Ma, S.; Wu, W.; Yang, H.; Sun, X.; Peng, A.; Wang, L.; Jin, G.; Zhang, J.; et al. Effect of irradiation modification on conformation and gelation properties of pork myofibrillar and sarcoplasmic protein. Food Hydrocoll. 2018, 84, 181–192. [Google Scholar] [CrossRef]
- Tanpong, S.; Cherdthong, A.; Tengjaroenkul, B.; Tengjaroenkul, U.; Wongtangtintharn, S. Evaluation of physical and chemical properties of citric acid industrial waste. Trop. Anim. Health Prod. 2019, 105, 323–331. [Google Scholar] [CrossRef]
- Oryza, S.M.; Wongtangtintharn, S.; Tengjaroenkul, B.; Cherdthong, A.; Tanpong, S.; Bunchalee, P.; Pootthachaya, P.; Reungsang, A.; Polyorach, S. Physico-chemical characteristics and amino acid content evaluation of citric acid by-product produced by microbial fermentation as a potential use in animal feed. Fermentation 2021, 7, 149. [Google Scholar] [CrossRef]
- Purschke, B.; Brüggen, H.; Scheibelberger, R.; Jäger, H. Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). Eur. Food Res. Technol. 2018, 244, 269–280. [Google Scholar] [CrossRef] [Green Version]
- American Society of Agricultural Engineers (ASAE). Method of Determining and Expressing Fineness of Feed Materials by Sieving; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008. [Google Scholar]
- Carr, R.L. Classifying flow properties of solids. Chem. Eng. J. 1965, 72, 69–72. [Google Scholar]
- Vasconcelos, L.M.; Brito, A.C.; Carmo, C.D.; Oliveira, P.H.G.A.; Oliveira, E.J. Phenotypic diversity of starch granules in cassava germplasm. Genet. Mol. Res. 2017, 16, gmr16029276. [Google Scholar] [CrossRef]
- (AOAC) Association of Official Analytical Chemists. Official Methods of Analysis, 20th ed.; Association of Analytical Chemists: Rockville, MD, USA, 2016. [Google Scholar]
- Syamsu, J.A.; Yusuf, M.; Abdullah, A. Evaluation of physical properties of feedstuffs in supporting the development of feed mill at farmers group scale. J. Adv. Agric. Technol. 2015, 2, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, J. Feeding of Non-Ruminant Livestock; Butterworth and Co., Ltd.: London, UK, 1987.
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; Arts, N.J.G.; Fogliano, V.; Lakemond, C.M.M. Effect of endogenous phenoloxidase on protein solubility and digestibility after processing of Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Food Res. Int. 2019, 121, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Zozo, B.; Wicht, M.M.; Mshayisa, V.V.; van Wyk, J. Characterisation of black soldier fly larva protein before and after conjugation by the Maillard reaction. J. Insects Food Feed. 2022, 8, 169–184. [Google Scholar] [CrossRef]
- Kibar, H.; Öztürk, T. Physical and mechanical properties of soybean. Int. Agrophys. 2008, 22, 239–244. [Google Scholar] [CrossRef]
- McDonald, D.E.; Pethick, D.W.; Mullan, B.P.; Hapson, D.J. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br. J. Nutr. 2001, 86, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Ndou, S.P.; Archibold, G.B.; Chimonyo, M. Prediction of voluntary feed intake from physicochemical properties of bulky feeds in finishing pigs. Livest. Sci. 2013, 155, 277–284. [Google Scholar] [CrossRef]
- Basava Raj, B.V.; Saritha, N.; Bharath, S.; Deveswaran, R.; Madhavan, V. Vigna mungo mucilage—A natural polymer in the design of matrix based SR tablet of aceclofenac. Int. J. Pharm. Sci. Rev. Res. 2013, 21, 125–130. [Google Scholar]
- Paulk, C.B.; Hancock, J.D.; Behnke, K.C.; Hines, R.H. Influence of grinding method and grinding intensity of corn on mill energy consumption and pellet quality. J. Animal Sci. 2008, 86, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Svihus, B. The gizzard: Function, influence of diet structure and effects on nutrient availability. World’s Poultry Sci. J. 2011, 67, 207–224. [Google Scholar] [CrossRef]
- Gao, Q.; Zhao, F.; Dang, F.; Zhang, H.; Wang, Y. Effect of corn particle size on the particle size of intestinal digesta or feces and nutrient digestibility of corn-soybean meal diets for growing pigs. Animals 2020, 10, 876. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G. Influence of feed particle size on the performance, energy utilization, digestive tract development, and digesta parameters of broiler starters fed wheat-and corn-based diets. Poult. Sci. 2007, 86, 2320–2331. [Google Scholar] [CrossRef]
- Vu, T.V.; Delgado-Saborit, J.M.; Harrison, R.M. Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos. Environ. 2015, 122, 114–132. [Google Scholar] [CrossRef]
- Saucier, L.; M’ballou, C.; Ratti, C.; Deschamps, M.H.; Lebeuf, Y.; Vandenberg, G.E. Comparison of black soldier fly larvae pre-treatments and drying techniques on the microbial load and physico-chemical characteristics. J. Insects Food Feed 2022, 8, 45–64. [Google Scholar] [CrossRef]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Effects of microwave and hot air oven drying on the nutritional, microbiological load, and color parameters of the house crickets (Acheta domesticus). J. Food Process. Preserv. 2020, 44, e14407. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Damgaard, H.; Greve-Poulsen, M.; Sunds, A.V.; Larsen, L.B.; Hammershøj, M. Gel properties of potato protein and the isolated fractions of patatins and protease inhibitors: Impact of drying method, protein concentration, pH and ionic strength. Food Hydrocoll. 2019, 96, 246–258. [Google Scholar] [CrossRef]
- Huang, C.; Feng, W.; Xiong, J.; Wang, T.; Wang, W.; Wang, C.; Yang, F. Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: Amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. Eur. Food Res. Technol. 2019, 245, 11–21. [Google Scholar] [CrossRef]
- Zulkifli, N.F.N.M.; Seok-Kian, A.Y.; Seng, L.L.; Mustafa, S.; Kim, Y.S.; Shapawi, R. Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLoS ONE 2022, 17, e0263924. [Google Scholar] [CrossRef]
- Onsongo, V.O.; Osuga, I.M.; Gachuiri, C.K.; Wachira, A.M.; Miano, D.M.; Tanga, C.M.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econ. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef]
- Svihus, B.; Itani, K. Intestinal passage and its relation to digestive processes. J. Appl. Poult. Res. 2019, 28, 546–555. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.K.; Cha, J.Y.; Ku, S.K.; Jung, S.; Choi, Y.S. Effect of drying methods on physicochemical characteristics and functional properties of duck blood gel. Food Sci. Anim. Resour. 2022, 42, 861–873. [Google Scholar] [CrossRef]
Items | Color | Bulk Density | Angle of Repose | |||
---|---|---|---|---|---|---|
L* | a* | b* | ΔE 1 | (g/L) | (°) | |
Raw material | 54.96 | 4.74 | 20.64 | - | - | - |
Non-defatted BSFL | ||||||
Parabola dome (NDP) | 29.74 b | 0.40 d | 9.04 c | 28.10 a | 385.64 d | 41.30 c |
Hot-air oven (NDH) | 49.34 a | 4.38 ab | 20.24 b | 5.65 b | 381.54 d | 42.60 c |
Microwave (NDM) | 54.07 a | 3.01 bc | 25.57 a | 5.30 b | 418.24 c | 45.40 a |
Defatted BSFL | ||||||
Parabola dome (DP) | 52.54 a | 2.13 c | 19.54 b | 3.73 d | 469.52 b | 43.00 bc |
Hot-air oven (DH) | 51.14 a | 4.28 b | 23.71 ab | 4.92 c | 494.58 a | 44.70 ab |
Microwave (DM) | 52.54 a | 5.95 a | 22.92 ab | 3.54 e | 469.70 b | 41.30 c |
SEM | 1.341 | 0.410 | 1.238 | 0.043 | 0.934 | 0.171 |
BSFL type means | ||||||
Non-defatted | 44.38 b | 2.60 b | 18.28 b | 13.02 a | 395.14 b | 43.10 |
Defatted | 52.07 a | 4.11 a | 22.06 a | 4.06 b | 477.93 a | 43.00 |
Drying method means | ||||||
Parabola dome | 41.14 c | 1.26 b | 14.29 b | 15.91 a | 427.58 c | 42.15 b |
Hot-air oven | 50.24 b | 4.33 a | 21.98 a | 5.29 b | 438.06 b | 43.65 a |
Microwave | 53.31 a | 4.48 a | 24.25 a | 4.42 c | 443.97 a | 43.35 a |
Significance of main effect and interaction | ||||||
BSFL types (A) | <0.001 | 0.769 | ||||
Drying methods (B) | <0.001 | 0.002 | ||||
A × B | <0.001 | <0.001 |
Items | Sample (g) | Retain (%) | ||||||||||||||||||||||||
20 (850 μm) | 40 (425 μm) | 60 (250 μm) | 80 (180 μm) | 100 (150 μm) | Pan | Total | 20 (850 μm) | 40 (425 μm) | 60 (250 μm) | 80 (180 μm) | 100 (150 μm) | Pan | Total | |||||||||||||
Non-defatted BSFL | ||||||||||||||||||||||||||
Parabola dome (NDP) | 25.09 b | 71.01 a | 4.19 c | 0.00 c | 0.00 b | 0.00 b | 100.29 | 25.01 b | 70.80 a | 4.18 c | 0.00 c | 0.00 b | 0.00 b | 100.00 | ||||||||||||
Hot-air oven (NDH) | 21.53 b | 73.93 a | 4.44 c | 0.42 c | 0.00 b | 0.00 b | 100.32 | 21.47 b | 73.69 a | 4.43 c | 0.41 c | 0.00 b | 0.00 b | 100.00 | ||||||||||||
Microwave (NDM) | 42.15 a | 54.59 b | 3.58 c | 0.04 c | 0.00 b | 0.00 b | 100.36 | 42.00 a | 54.40 b | 3.56 c | 0.04 c | 0.00 b | 0.00 b | 100.00 | ||||||||||||
Defatted BSFL | ||||||||||||||||||||||||||
Parabola dome (DP) | 4.21 c | 27.32 c | 45.55 a | 20.87 b | 2.05 b | 0.35 b | 100.34 | 4.20 c | 27.23 c | 45.39 a | 20.80 b | 2.04 b | 0.35 b | 100.00 | ||||||||||||
Hot-air oven (DH) | 4.32 c | 16.34 d | 40.99 ab | 26.62 a | 12.21 a | 0.11 b | 100.58 | 4.30 c | 16.24 d | 40.75 ab | 26.47 a | 12.14 a | 0.11 b | 100.00 | ||||||||||||
Microwave (DM) | 4.27 c | 15.58 d | 37.76 b | 25.12 a | 15.17 a | 2.34 a | 100.24 | 4.26 c | 15.55 d | 37.67 b | 25.06 a | 15.13 a | 2.33 a | 100.00 | ||||||||||||
SEM | 1.396 | 1.351 | 1.418 | 0.788 | 1.660 | 0.273 | 1.385 | 1.360 | 1.396 | 0.800 | 1.655 | 0.273 | ||||||||||||||
BSFL types means | ||||||||||||||||||||||||||
Non-defatted | 29.59 a | 66.51 a | 4.07 b | 0.15 b | 0.00 b | 0.00 b | 100.32 | 23.49 a | 66.30 a | 4.06 b | 0.15 b | 0.00 b | 0.00 b | 100.00 | ||||||||||||
Defatted | 4.27 3 | 19.75 b | 41.43 a | 24.20 a | 9.81 a | 0.98 a | 100.44 | 4.25 b | 19.67 b | 41.27 a | 24.11 a | 9.77 a | 0.93 a | 100.00 | ||||||||||||
Drying methods means | ||||||||||||||||||||||||||
Parabola dome | 14.65 b | 49.16 a | 24.87 b | 10.44 b | 1.02 b | 0.17 b | 100.31 | 14.61 b | 49.01 a | 24.78 a | 10.40 b | 1.02 b | 0.17 b | 100.00 | ||||||||||||
Hot-air oven | 12.93 b | 45.13 b | 22.71 a | 13.52 a | 6.10 a | 0.06 b | 100.45 | 12.88 b | 44.97 b | 22.59 ab | 13.44 a | 6.07 a | 0.06 b | 100.00 | ||||||||||||
Microwave | 23.21 a | 35.09 c | 20.67 c | 12.58 a | 7.59 a | 1.17 a | 100.31 | 23.12 a | 34.97 c | 20.61 a | 12.55 a | 7.57 a | 1.17 a | 100.00 | ||||||||||||
Significance of main effect and interaction | ||||||||||||||||||||||||||
BSFL types (A) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||||||||||
Drying methods (B) | <0.001 | <0.001 | 0.011 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.010 | <0.001 | <0.001 | <0.001 | ||||||||||||||
A × B | <0.001 | <0.001 | 0.028 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | 0.026 | 0.003 | <0.001 | <0.001 | ||||||||||||||
Items | Cumulative (%) | Passing (%) | Dgw 1 (μm) | |||||||||||||||||||||||
20 (850 μm) | 40 (425 μm) | 60 (250 μm) | 80 (180 μm) | 100 (150 μm) | Pan | 20 (850 μm) | 40 (425 μm) | 60 (250 μm) | 80 (180 μm) | 100 (150 μm) | Pan | |||||||||||||||
Non-defatted BSFL | ||||||||||||||||||||||||||
Parabola dome (NDP) | 25.01 | 95.82 | 99.99 | 100.00 | 100.00 | 100.00 | 74.99 | 4.18 | 0.01 | 0.00 | 0.00 | 0.00 | 373.11 b | |||||||||||||
Hot-air oven (NDH) | 21.47 | 95.16 | 99.59 | 100.00 | 100.00 | 100.00 | 78.53 | 4.84 | 0.41 | 0.00 | 0.00 | 0.00 | 363.67 c | |||||||||||||
Microwave (NDM) | 42.00 | 96.40 | 99.96 | 100.00 | 100.00 | 100.00 | 58.00 | 3.60 | 0.04 | 0.00 | 0.00 | 0.00 | 414.98 a | |||||||||||||
Defatted BSFL | ||||||||||||||||||||||||||
Parabola dome (DP) | 4.20 | 31.43 | 76.82 | 97.61 | 99.65 | 100.00 | 95.80 | 68.57 | 23.18 | 2.39 | 0.35 | 0.00 | 233.03 d | |||||||||||||
Hot-air oven (DH) | 4.30 | 20.54 | 61.29 | 87.75 | 99.89 | 100.00 | 95.70 | 79.46 | 38.71 | 12.25 | 0.11 | 0.00 | 208.52 e | |||||||||||||
Microwave (DM) | 4.26 | 19.81 | 57.48 | 82.53 | 97.67 | 100.00 | 95.74 | 80.19 | 42.52 | 17.47 | 2.33 | 0.00 | 201.43 f | |||||||||||||
SEM | 1.102 | |||||||||||||||||||||||||
p-value | <0.001 |
Items | Nutrional Compositions (% of DM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Moisture | Ash | CP | CF | EE | NFE | Ca | P | GE (kcal/kg) | pH | |
Non-defatted BSFL | ||||||||||
Parabola dome (NDP) | 9.16 a | 5.08 f | 42.19 f | 7.32 e | 30.56 c | 5.69 e | 1.68 | 0.68 b | 5628.89 b | 6.79 |
Hot-air oven (NDH) | 3.09 e | 5.76 d | 44.72 d | 7.20 e | 31.91 a | 7.32 d | 1.70 | 0.70 a | 5811.02 a | 6.82 |
Microwave (NDM) | 3.45 d | 5.27 e | 43.16 e | 8.23 d | 30.90 b | 8.99 b | 1.71 | 0.70 a | 5861.21 a | 6.82 |
Defatted BSFL | ||||||||||
Parabola dome (DP) | 4.77 b | 7.43 a | 57.18 b | 11.89 b | 12.94 d | 5.79 e | 1.68 | 0.70 a | 5035.33 d | 6.84 |
Hot-air oven (DH) | 4.11 c | 6.49 b | 53.49 c | 14.82 a | 12.89 d | 8.20 c | 1.70 | 0.70 a | 5155.07 c | 6.80 |
Microwave (DM) | 2.98 f | 6.07 c | 59.14 a | 9.84 c | 9.88 e | 12.09 a | 1.69 | 0.70 a | 5126.04 c | 6.82 |
SEM | 0.019 | 0.023 | 0.178 | 0.036 | 0.082 | 0.029 | 0.007 | NA | 19.210 | 0.013 |
BSFL types means | ||||||||||
Non-defatted | 5.23 a | 5.37 b | 43.36 b | 7.58 b | 31.12 a | 7.33 b | 1.70 | 0.70 a | 5767.04 a | 6.81 |
Defatted | 3.95 b | 6.66 a | 56.60 a | 12.18 a | 11.90 b | 8.69 a | 1.69 | 0.69 b | 5105.48 b | 6.82 |
Drying methods means | ||||||||||
Parabola dome | 6.97 a | 6.23 a | 49.68 b | 9.61 b | 21.75 b | 5.74 c | 1.68 b | 0.69 b | 5332.11 b | 6.80 |
Hot-air oven | 3.60 b | 6.13 b | 51.15 a | 11.01 a | 22.40 a | 7.76 b | 1.70 a | 0.70 a | 5483.04 a | 6.83 |
Microwave | 3.22 c | 5.67 c | 49.11 c | 9.03 c | 20.39 c | 10.54 a | 1.70 a | 0.70 a | 5498.62 a | 6.82 |
Significance of main effect and interaction | ||||||||||
BSFL types (A) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.183 | <0.001 | <0.001 | 0.342 |
Drying methods (B) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.006 | <0.001 | <0.001 | 0.115 |
A × B | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.178 | <0.001 | 0.003 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pornsuwan, R.; Pootthachaya, P.; Bunchalee, P.; Hanboonsong, Y.; Cherdthong, A.; Tengjaroenkul, B.; Boonkum, W.; Wongtangtintharn, S. Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly (Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed. Animals 2023, 13, 2244. https://doi.org/10.3390/ani13142244
Pornsuwan R, Pootthachaya P, Bunchalee P, Hanboonsong Y, Cherdthong A, Tengjaroenkul B, Boonkum W, Wongtangtintharn S. Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly (Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed. Animals. 2023; 13(14):2244. https://doi.org/10.3390/ani13142244
Chicago/Turabian StylePornsuwan, Rattanakorn, Padsakorn Pootthachaya, Pasakorn Bunchalee, Yupa Hanboonsong, Anusorn Cherdthong, Bundit Tengjaroenkul, Wuttigrai Boonkum, and Sawitree Wongtangtintharn. 2023. "Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly (Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed" Animals 13, no. 14: 2244. https://doi.org/10.3390/ani13142244
APA StylePornsuwan, R., Pootthachaya, P., Bunchalee, P., Hanboonsong, Y., Cherdthong, A., Tengjaroenkul, B., Boonkum, W., & Wongtangtintharn, S. (2023). Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly (Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed. Animals, 13(14), 2244. https://doi.org/10.3390/ani13142244