Dietary Supplementation with Different Types of Potassium and Magnesium during Late Gestation and Lactation Modulates the Reproductive Performance, Antioxidant Capacity, and Immune Function of Sows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Animals and Experimental Designs
2.3. Data and Sample Collection
2.4. Chemical Analysis of Diets
2.5. Concentration of Potassium and Magnesium in Plasma Determination
2.6. Milk Composition Determination
2.7. Colostrum Immunoglobulin Determination
2.8. Determination of Plasma Hormones and Immunological and Antioxidant Parameters
2.9. Statistical Analysis
3. Results
3.1. Reproductive Performance and the Influence of Fecal Score
3.2. Hormone, Potassium, and Magnesium Levels in Plasma
3.3. The Composition of and Immunoglobulin in Sow Milk
3.4. Antioxidant Index and Immune Cytokines in Plasma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campos, P.H.R.F.; Silva, B.A.N.; Donzele, J.L.; Oliveira, R.F.M.; Knol, E.F. Effects of sow nutrition during gestation on within-litter birth weight variation: A review. Animal 2012, 6, 797–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.Z.; Hu, R.Z.; Shi, M.K.; Wang, L.; Yan, J.H.; Gong, J.T.; Zhang, Q.J.; He, J.H.; Wu, S.S. Placental malfunction, fetal survival and development caused by sow metabolic disorder: The impact of maternal oxidative stress. Antioxidants 2023, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.Q.; Ji, Y.C.; Zhao, X.C.; Xin, Z.Q.; Li, J.Y.; Huang, S.B.; Cui, Z.Y.; Wen, L.J.; Liu, C.H.; Kim, S.W.; et al. Effects of dietary supplementation of nucleotides from late gestation to lactation on the performance and oxidative stress status of sows and their offspring. Anim. Nutr. 2021, 7, 111–118. [Google Scholar] [CrossRef]
- Berchieri-Ronchi, C.B.; Zhao, Y.; Correa, C.R.; Ferreira, A.L.D.; Yeum, K.J.; Kim, S.W. Oxidative stress status of high prolific sows during pregnancy and lactation. FASEB J. 2010, 24, 535.8. [Google Scholar] [CrossRef]
- Luo, Z.; Yao, J.B.; Xu, J.X. Reactive oxygen and nitrogen species regulate porcine embryo development during pre-implantation period: A mini-review. Anim. Nutr. 2021, 7, 823–828. [Google Scholar] [CrossRef]
- Pereira, A.C.; Martel, F. Oxidative stress in pregnancy and fertility pathologies. Cell Biol. Toxicol. 2014, 30, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Stone, M.S.; Martyn, L.; Weaver, C.M. Potassium intake, bioavailability, hypertension, and glucose control. Nutrients 2016, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef]
- Guerrera, M.P.; Volpe, S.L.; Mao, J.J. Therapeutic Uses of Magnesium. Am. Fam. Physician 2009, 80, 157–162. [Google Scholar]
- Siener, R.; Jahnen, A.; Hesse, A. Bioavailability of magnesium from different pharmaceutical formulations. Urol. Res. 2011, 39, 123–127. [Google Scholar] [CrossRef]
- Caspi, R.; Billington, R.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Midford, P.E.; Ong, Q.; Ong, W.K.; et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018, 46, D633–D639. [Google Scholar] [CrossRef] [Green Version]
- Fanni, D.; Gerosa, C.; Nurchi, V.M.; Manchia, M.; Saba, L.; Coghe, F.; Crisponi, G.; Gibo, Y.; Van Eyken, P.; Fanos, V.; et al. The role of magnesium in pregnancy and in fetal programming of adult diseases. Biol. Trace Elem. Res. 2021, 199, 3647–3657. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Z.L.; Chen, Y.; Qiao, J.; Gao, M.Y.; Yuan, J.M.; Nie, W.; Guo, Y.M. Magnesium deficiency enhances hydrogen peroxide production and oxidative damage in chick embryo hepatocyte in vitro. Biometals 2006, 19, 71–81. [Google Scholar] [CrossRef]
- Guo, G.L.; Zhou, T.T.; Ren, F.Y.; Sun, J.Z.; Deng, D.; Huang, X.G.; Wassie, T.; Qazi, I.H.; Wu, X. Effect of maternal catalase supplementation on reproductive performance, antioxidant activity and mineral transport in sows and piglets. Animals 2022, 12, 828. [Google Scholar] [CrossRef]
- Gupta, M.; Solanki, M.H.; Chatterjee, P.K.; Xue, X.Y.; Roman, A.; Desai, N.; Rochelson, B.; Metz, C.N. Maternal magnesium deficiency in mice leads to maternal metabolic dysfunction and altered lipid metabolism with fetal growth restriction. Mol. Med. 2014, 20, 332–340. [Google Scholar] [CrossRef]
- Hou, W.X.; Cheng, S.Y.; Liu, S.T.; Shi, B.M.; Shan, A.S. Dietary supplementation of magnesium sulfate during late gestation and lactation affects the milk composition and immunoglobulin levels in sows. Asian Australas. J. Anim. Sci. 2014, 27, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Trawńska, B.; Polonis, A.; Lechowski, J.; Tymczyna, L.; Borowski, R.; Gizińska, K. Effect of the addition of magnesium salt to a feed mixture on intestinal microflora, health, and production of sows. Bull. Vet. Inst. Pulawy 2013, 57, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Ansari, I.; Khalaji, S.; Hedayati, M. Potassium phosphate and potassium carbonate administration by feed or drinking water improved broiler performance, bone strength, digestive phosphatase activity and phosphorus digestibility under induced heat stress conditions. Trop. Anim. Health Prod. 2020, 52, 591–600. [Google Scholar] [CrossRef]
- Cao, S.T.; Huang, K.Y.; Wen, X.L.; Gao, J.C.; Cui, B.L.; Yao, K.; Zhan, X.L.; Hu, S.L.; Wu, Q.W.; Xiao, H.; et al. Dietary supplementation with potassium-magnesium sulfate modulates the antioxidant capacity, immunity, and gut microbiota in weaned piglets. Front. Microbiol. 2022, 13, 961989. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine; National Research Council: Washington, DC, USA, 2012. [Google Scholar]
- Li, Q.; Yang, S.; Chen, F.; Guan, W.; Zhang, S. Nutritional strategies to alleviate oxidative stress in sows. Anim. Nutr. 2022, 9, 60–73. [Google Scholar] [CrossRef]
- Zang, J.J.; Chen, J.S.; Tian, J.; Wang, A.N.; Liu, H.; Hu, S.D.; Che, X.R.; Ma, Y.X.; Wang, J.J.; Wang, C.L.; et al. Effect of magnesium on the performance of sows and their piglets. J. Anim. Sci. Biotechnol. 2014, 5, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Rio-Aviles, A.D.; Correa-Calderon, A.; Avendano-Reyes, L.; Macias-Cruz, U.; Thomas, M.G.; Enns, R.M.; Speidel, S.E.; Sanchez-Castro, M.A.; Zamorano-Algandar, R.; Lopez-Castro, P.A.; et al. Mineral supplementation (injectable) improved reproductive performance in Holstein cows managed in a warm summer environment. Reprod. Domest. Anim. 2022, 57, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Jamin, A.; D’Inca, R.; Le Floc’h, N.; Kuster, A.; Orsonneau, J.L.; Darmaun, D.; Boudry, G.; Le Huerou-Luron, I.; Seve, B.; Gras-Le Guen, C. Fatal effects of a neonatal high-protein diet in low-birth-weight piglets used as a model of intrauterine growth restriction. Neonatology 2010, 97, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Harmon, B.G.; Liu, C.T.; Jensen, A.H.; Baker, D.H. Dietary magnesium levels for sows during gestation and lactation. J. Anim. Sci. 1976, 42, 860–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svajgr, A.J.; Peo, E.R., Jr.; Vipperman, P.E., Jr. Effect of dietary levels of manganese and magnesium on performance of growing-finishing swine raised in confinement and on pasture. J. Anim. Sci. 1969, 29, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Luqman, A.; Kazmi, A.; Wall, B.M. Bartter’s syndrome in pregnancy: Review of potassium homeostasis in gestation. Am. J. Med. Sci. 2009, 338, 500–504. [Google Scholar] [CrossRef]
- Stockdale, C. Effect of feeding magnesium sulfate to dry pregnant dairy cows with different body condition scores on intake in late gestation, periparturient blood calcium concentrations and production in early lactation. Anim. Prod. Sci. 2004, 44, 539–546. [Google Scholar] [CrossRef]
- Liang, R.Y.; Wu, W.; Huang, J.; Jiang, S.P.; Lin, Y. Magnesium affects the cytokine secretion of CD4(+) T lymphocytes in acute asthma. J. Asthma 2012, 49, 1012–1015. [Google Scholar] [CrossRef]
- Han, T.; Bjorkman, S.; Soede, N.M.; Oliviero, C.; Peltoniemi, O.A.T. IGF-1 concentrations after weaning in young sows fed different pre-mating diets are positively associated with piglet mean birth weight at subsequent farrowing. Animal 2021, 15, 100029. [Google Scholar] [CrossRef]
- Lopez-Baltanas, R.; Encarnacion Rodriguez-Ortiz, M.; Canalejo, A.; Diaz-Tocados, J.M.; Herencia, C.; Leiva-Cepas, F.; Torres-Pena, J.D.; Ortiz-Morales, A.; Munoz-Castaneda, J.R.; Rodriguez, M.; et al. Magnesium supplementation reduces inflammation in rats with induced chronic kidney disease. Eur. J. Clin. Investig. 2021, 51, e13561. [Google Scholar] [CrossRef]
- Berchieri-Ronchi, C.B.; Kim, S.W.; Zhao, Y.; Correa, C.R.; Yeum, K.J.; Ferreira, A.L. Oxidative stress status of highly prolific sows during gestation and lactation. Animal 2011, 5, 1774–1779. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.Q.; Li, J.Y.; Ji, Y.C.; Yang, Y.Y.; Zhao, X.C.; Chen, M.X.; Xin, Z.Q.; Wen, L.J.; Cui, Z.Y.; Shu, G.; et al. Effects of dietary supplementation of different amounts of yeast extract on oxidative stress, milk components, and productive performance of sows. Anim. Feed. Sci. Technol. 2021, 274, 114648. [Google Scholar] [CrossRef]
- Liu, M.; Dudley, S.C., Jr. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants 2020, 9, 907. [Google Scholar] [CrossRef]
Items | Gestation | Lactation | ||||
---|---|---|---|---|---|---|
CON | PM | PMS | CON | PM | PMS | |
Corn | 66.34 | 66.34 | 66.34 | 62.37 | 62.37 | 62.37 |
Soybean meal, 46% CP | 15.50 | 15.50 | 15.50 | 18.50 | 18.50 | 18.50 |
Fish meal | - | - | - | 3.00 | 3.00 | 3.00 |
Extruded soybean | 7.00 | 7.00 | 7.00 | 6.70 | 6.70 | 6.70 |
Wheat bran | 8.00 | 7.65 | 7.55 | 5.00 | 4.65 | 4.55 |
Calcium dihydrogen phosphate | 0.85 | 0.85 | 0.85 | 0.95 | 0.95 | 0.95 |
Limestone | 1.50 | 1.50 | 1.50 | 1.15 | 1.15 | 1.15 |
Soybean oil | - | - | - | 1.00 | 1.00 | 1.00 |
Sodium chloride | 0.40 | 0.40 | 0.40 | 0.30 | 0.30 | 0.30 |
Sodium bicarbonate | - | - | - | 0.10 | 0.10 | 0.10 |
Sodium sulfate | - | - | - | 0.10 | 0.10 | 0.10 |
L-Lysine HCl, 98.5% | 0.08 | 0.08 | 0.08 | 0.35 | 0.35 | 0.35 |
L-Threonine | - | - | - | 0.05 | 0.05 | 0.05 |
Choline chloride, 60% | 0.07 | 0.07 | 0.07 | 0.10 | 0.10 | 0.10 |
Phytase | 0.01 | 0.01 | 0.01 | - | - | - |
Antioxidant | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Vitamin premix 1 | 0.03 | 0.03 | 0.03 | 0.06 | 0.06 | 0.06 |
Mineral premix 2 | 0.20 | 0.20 | 0.20 | 0.25 | 0.25 | 0.25 |
Magnesium sulfate | - | 0.20 | - | - | 0.20 | - |
Potassium chloride | - | 0.15 | - | - | 0.15 | - |
Potassium-magnesium sulfate | - | - | 0.45 | - | - | 0.45 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Analyzed nutrient levels, % | ||||||
Dry matter | 87.30 | 87.50 | 87.10 | 86.80 | 87.70 | 87.80 |
Crude protein | 15.75 | 16.19 | 15.80 | 19.05 | 18.63 | 20.33 |
Total calcium | 0.80 | 0.76 | 0.78 | 0.76 | 0.78 | 0.73 |
Total phosphorus | 0.50 | 0.50 | 0.50 | 0.64 | 0.64 | 0.64 |
Total potassium | 0.99 | 1.18 | 1.46 | 1.17 | 1.35 | 1.31 |
Total magnesium | 0.18 | 0.21 | 0.18 | 0.17 | 0.22 | 0.22 |
Calculated nutrient levels, kcal/kg | ||||||
Metabolizable energy | 3108 | 3108 | 3108 | 3183 | 3183 | 3183 |
Lysine, % | 0.63 | 0.63 | 0.63 | 0.95 | 0.95 | 0.95 |
Methionine + cysteine, % | 0.48 | 0.48 | 0.48 | 0.56 | 0.56 | 0.56 |
Threonine, % | 0.51 | 0.51 | 0.51 | 0.65 | 0.65 | 0.65 |
Tryptophan, % | 0.16 | 0.16 | 0.16 | 0.20 | 0.20 | 0.20 |
Items | Treatments 3 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | PM | PMS | |||
Piglets born, n | 13.77 | 15.17 | 13.83 | 0.600 | 0.579 |
Piglets born alive, n | 11.31 | 12.42 | 12.33 | 0.636 | 0.724 |
Stillbirths, n | 2.23 | 1.58 | 1.42 | 0.272 | 0.439 |
Mummy, n | 0.23 | 1.17 | 0.08 | 0.262 | 0.196 |
Live birth rate, % | 79.19 | 81.88 | 89.29 | 2.957 | 0.363 |
Stillborn rate, % | 19.43 | 10.11 | 10.25 | 2.550 | 0.228 |
Mummy rate, % | 1.39 | 8.00 | 0.46 | 1.838 | 0.198 |
Average birth weight, kg | 1.52 | 1.50 | 1.57 | 0.035 | 0.724 |
Litter birth weight, kg | 17.09 | 19.95 | 18.32 | 0.789 | 0.351 |
IUGR piglets 1, n | 0.57 b | 1.54 a | 0.54 b | 0.193 | 0.055 |
IUGR piglet rate, % | 4.39 b | 11.73 a | 5.04 b | 1.368 | 0.050 |
Within-litter birth weight CV 2, % | 16.23 b | 20.28 a | 15.16 b | 0.937 | 0.063 |
Items | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | PM | PMS | |||
Average litter size, n | 9.90 | 10.17 | 10.82 | 0.355 | 0.582 |
Average litter weight, kg | 84.62 | 87.06 | 87.33 | 3.061 | 0.930 |
Average body weight, kg | 8.65 | 8.18 | 8.28 | 0.225 | 0.682 |
Items | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | PM | PMS | |||
Gestation stage | 1.44 | 1.60 | 1.52 | 0.076 | 0.754 |
Lactation stage | 1.65 | 1.93 | 1.81 | 0.098 | 0.598 |
Whole trial period | 1.55 | 1.78 | 1.69 | 0.068 | 0.471 |
Items | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | PM | PMS | |||
Gestation 107 d, mmol/L | |||||
Potassium | 1.88 b | 2.54 a | 2.35 a | 0.112 | 0.047 |
Magnesium | 3.58 | 3.8 | 3.28 | 0.202 | 0.613 |
Lactation 0 d, mmol/L | |||||
Potassium | 1.99 b | 2.15 ab | 2.72 a | 0.125 | 0.040 |
Magnesium | 2.16 b | 2.51 ab | 2.98 a | 0.156 | 0.089 |
Lactation 7 d, mmol/L | |||||
Potassium | 1.55 c | 2.02 b | 2.61 a | 0.124 | 0.001 |
Magnesium | 2.41 b | 3.93 a | 3.36 a | 0.205 | 0.005 |
Lactation 28 d, mmol/L | |||||
Potassium | 2.46 | 2.55 | 2.41 | 0.128 | 0.900 |
Magnesium | 3.80 | 4.06 | 3.66 | 0.115 | 0.362 |
Items | Treatments 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | PM | PMS | |||
Colostrum | |||||
Fat, % | 5.31 | 4.72 | 4.11 | 0.300 | 0.265 |
Protein, % | 16.05 | 15.82 | 15.17 | 0.379 | 0.651 |
Lactose, % | 1.98 | 2.00 | 2.18 | 0.107 | 0.754 |
Total solids, % | 24.24 | 23.44 | 22.36 | 0.493 | 0.304 |
Solids-not-fat, % | 18.93 | 18.72 | 18.24 | 0.293 | 0.652 |
Milk | |||||
Fat, % | 7.43 | 7.51 | 6.99 | 0.242 | 0.646 |
Protein, % | 4.39 | 4.49 | 4.45 | 0.049 | 0.720 |
Lactose, % | 5.75 | 5.71 | 5.82 | 0.061 | 0.775 |
Total solids, % | 18.46 | 18.61 | 18.15 | 0.210 | 0.664 |
Solids-not-fat, % | 11.04 | 11.10 | 11.17 | 0.065 | 0.748 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Xu, L.; Bai, R.; Cui, L.; Han, H.; Han, Y.; Sun, W.; Li, Y.; Jiang, X.; Li, X.; et al. Dietary Supplementation with Different Types of Potassium and Magnesium during Late Gestation and Lactation Modulates the Reproductive Performance, Antioxidant Capacity, and Immune Function of Sows. Animals 2023, 13, 2183. https://doi.org/10.3390/ani13132183
Wei Z, Xu L, Bai R, Cui L, Han H, Han Y, Sun W, Li Y, Jiang X, Li X, et al. Dietary Supplementation with Different Types of Potassium and Magnesium during Late Gestation and Lactation Modulates the Reproductive Performance, Antioxidant Capacity, and Immune Function of Sows. Animals. 2023; 13(13):2183. https://doi.org/10.3390/ani13132183
Chicago/Turabian StyleWei, Zixi, Lei Xu, Rong Bai, Limin Cui, Huigang Han, Yulong Han, Wenjuan Sun, Yanpin Li, Xianren Jiang, Xilong Li, and et al. 2023. "Dietary Supplementation with Different Types of Potassium and Magnesium during Late Gestation and Lactation Modulates the Reproductive Performance, Antioxidant Capacity, and Immune Function of Sows" Animals 13, no. 13: 2183. https://doi.org/10.3390/ani13132183
APA StyleWei, Z., Xu, L., Bai, R., Cui, L., Han, H., Han, Y., Sun, W., Li, Y., Jiang, X., Li, X., & Pi, Y. (2023). Dietary Supplementation with Different Types of Potassium and Magnesium during Late Gestation and Lactation Modulates the Reproductive Performance, Antioxidant Capacity, and Immune Function of Sows. Animals, 13(13), 2183. https://doi.org/10.3390/ani13132183