Guanidine Acetic Acid Alters Tissue Bound Amino Acid Profiles and Oxidative Status in Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals and Diets
2.2. Slaughter Procedure and Sample Collection
2.3. Carcass Traits
2.4. Biochemical Plasma Parameters
2.5. GAA, Creatine, and Chemical Composition Analysis
2.6. Antioxidant Index Analysis
2.7. Hydrolyzed Amino Acid Analysis
2.8. Statistical Analysis
3. Results
3.1. Carcass Traits
3.2. Biochemical Plasma Parameters
3.3. GAA and Creatine Contents in Longissimus Thoracis Muscle and Heart
3.4. Antioxidant Capacity
3.5. Amino Acid Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Efsa, P.O.A.A.; Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Fašmon Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; et al. Safety and efficacy of a feed additive consisting of guanidinoacetic acid for all animal species (Alzchem Trostberg GmbH). EFSA J. 2022, 20, e7269. [Google Scholar] [CrossRef]
- Majdeddin, M.; Golian, A.; Kermanshahi, H.; Michiels, J.; De Smet, S. Effects of methionine and guanidinoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed corn-soybean diets. Br. Poult. Sci. 2019, 60, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, B.; La, K.V.; La, H.; Doan, V.; Carpena, E.M.; Rademacher, M.; Channarayapatna, G. Supplementation of guanidinoacetic acid to pig diets: Effects on performance, carcass characteristics, and meat quality. J. Anim. Sci. 2018, 96, 2332–2341. [Google Scholar] [CrossRef] [PubMed]
- He, D.T.; Gai, X.R.; Yang, L.B.; Li, J.T.; Lai, W.Q.; Sun, X.L.; Zhang, L.Y. Effects of guanidinoacetic acid on growth performance, creatine and energy metabolism, and carcass characteristics in growing-finishing pigs. J. Anim. Sci. 2018, 96, 3264–3273. [Google Scholar] [CrossRef]
- Lu, Y.; Zou, T.; Wang, Z.; Yang, J.; Li, L.; Guo, X.; He, Q.; Chen, L.; You, J. Dietary guanidinoacetic acid improves the growth performance and skeletal muscle development of finishing pigs through changing myogenic gene expression and myofibre characteristics. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1875–1883. [Google Scholar] [CrossRef]
- Zhu, Z.; Gu, C.; Hu, S.; Li, B.; Zeng, X.; Yin, J. Dietary guanidinoacetic acid supplementation improved carcass characteristics, meat quality and muscle fibre traits in growing-finishing gilts. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1454–1461. [Google Scholar] [CrossRef]
- de Souza, C.; Eyng, C.; Viott, A.M.; de Avila, A.S.; Pacheco, W.J.; Junior, N.R.; Kohler, T.L.; Tenorio, K.I.; Cirilo, E.H.; Nunes, R.V. Effect of dietary guanidinoacetic acid or nucleotides supplementation on growth performances, carcass traits, meat quality and occurrence of myopathies in broilers. Livest. Sci. 2021, 251, 104659. [Google Scholar] [CrossRef]
- Yang, L.; Wu, P.; Feng, L.; Jiang, W.; Liu, Y.; Kuang, S.; Tang, L.; Zhou, X. Guanidinoacetic acid supplementation totally based on vegetable meal diet improved the growth performance, muscle flavor components and sensory characteristics of on-growing grass carp (Ctenopharygodon idella). Aquaculture 2021, 531, 735841. [Google Scholar] [CrossRef]
- Cui, Y.; Tian, Z.; Yu, M.; Deng, D.; Lu, H.; Song, M.; Ma, X.; Wang, L. Guanidine acetic acid supplementation altered plasma and tissue free amino acid profiles in finishing pigs. Porc. Health Manag. 2022, 8, 24. [Google Scholar] [CrossRef]
- Wolfe, R.R. Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? J. Int. Soc. Sport. Nutr. 2017, 14, 30. [Google Scholar] [CrossRef]
- Pinckaers, P.J.M.; Trommelen, J.; Snijders, T.; van Loon, L.J.C. The anabolic response to plant-based protein ingestion. Sport. Med. 2021, 51, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Conde-Aguilera, J.A.; Le Floc’h, N.; Le Huërou-Luron, I.; Mercier, Y.; Tesseraud, S.; Lefaucheur, L.; van Milgen, J. Splanchnic tissues respond differently when piglets are offered a diet 30 % deficient in total sulfur amino acid for 10 days. Eur. J. Nutr. 2016, 55, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Chen, C.; Wang, G.N. Determination of guanidinoacetic acid by HPLC. Heilongjiang J. Anim. Sci. Vet. Med. 2016, 2, 254–257. [Google Scholar]
- Cui, Y.; Tian, Z.; Deng, D.; Liu, Z.; Wang, G.; Chen, W.; Ma, X. Effects of dietary citrus extract on growth performance, carcass characteristics and meat quality of pigs. J. Anim. Physiol. Anim. Nutr. 2021, 106, 813–824. [Google Scholar] [CrossRef]
- Ibrahim, D.; El Sayed, R.; Abdelfattah-Hassan, A.; Morshedy, A.M. Creatine or guanidinoacetic acid? Which is more effective at enhancing growth, tissue creatine stores, quality of meat, and genes controlling growth/myogenesis in Mulard ducks. J. Appl. Anim. Res. 2019, 47, 159–166. [Google Scholar] [CrossRef]
- Sestili, P.; Ambrogini, P.; Barbieri, E.; Sartini, S.; Fimognari, C.; Calcabrini, C.; Diaz, A.R.; Guescini, M.; Polidori, E.; Luchetti, F.; et al. New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation. Amino Acids 2016, 48, 1897–1911. [Google Scholar] [CrossRef]
- Sumien, N.; Shetty, R.A.; Gonzales, E.B. Creatine, Creatine Kinase, and Aging. In Biochemistry and Cell Biology of Ageing: Part I Biomedical Science; Harris, J.R., Korolchuk, V.I., Eds.; Springer: Singapore, 2018; pp. 145–168. ISBN 9789811328350. [Google Scholar]
- Tossenberger, J.; Rademacher, M.; Nemeth, K.; Halas, V.; Lemme, A. Digestibility and metabolism of dietary guanidino acetic acid fed to broilers. Poult. Sci. 2016, 95, 2058–2067. [Google Scholar] [CrossRef]
- Aziza, A.; Mahmoud, R.; Zahran, E.; Gadalla, H. Dietary supplementation of guanidinoacetic acid improves growth, biochemical parameters, antioxidant capacity and cytokine responses in Nile tilapia (Oreochromis niloticus). Fish Shellfish. Immun. 2020, 97, 367–374. [Google Scholar] [CrossRef]
- Mcbreairty, L.E.; Robinson, J.L.; Furlong, K.R.; Brunton, J.A.; Bertolo, R.F. Guanidinoacetate is more effective than creatine at enhancing tissue creatine stores while consequently limiting methionine availability in Yucatan miniature pigs. PLoS ONE 2015, 10, e131563. [Google Scholar] [CrossRef]
- Ardalan, M.; Miesner, M.D.; Reinhardt, C.D.; Thomson, D.U.; Armendariz, C.K.; Smith, J.S.; Titgemeyer, E.C. Effects of guanidinoacetic acid supplementation on nitrogen retention and methionine flux in cattle. J. Anim. Sci. 2021, 99, skab172. [Google Scholar] [CrossRef]
- Ardalan, M.; Batista, E.D.; Titgemeyer, E.C. Effect of post-ruminal guanidinoacetic acid supplementation on creatine synthesis and plasma homocysteine concentrations in cattle. J. Anim. Sci. 2020, 98, skaa072. [Google Scholar] [CrossRef] [PubMed]
- Speer, H.F.; Grant, M.S.; Miesner, M.D.; Titgemeyer, E.C. Effect of guanidinoacetic acid supplementation on nitrogen retention and methionine methyl group flux in growing steers fed corn-based diets. J. Anim. Sci. 2022, 100, c283. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Yang, L.; Li, J.; Dong, B.; Lai, W.; Zhang, L. Effects of guanidinoacetic acid on growth performance, creatine metabolism and plasma amino acid profile in broilers. J. Anim. Physiol. Anim. Nutr. 2019, 103, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Shuzhen, L.; Yang, L.; Wenhuan, C.; Zhimin, C.; Aijuan, Z.; Zedong, W.; Guohua, L. Supplementation of guanidinoacetic acid and betaine improve growth performance and meat quality of ducks by accelerating energy metabolism. Ital. J. Anim. Sci. 2021, 20, 1656–1663. [Google Scholar] [CrossRef]
- Jayasekhar Babu, P.; Tirkey, A.; Mohan Rao, T.J.; Chanu, N.B.; Lalchhandama, K.; Singh, Y.D. Conventional and nanotechnology based sensors for creatinine (a kidney biomarker) detection: A consolidated review. Anal. Biochem. 2022, 645, 114622. [Google Scholar] [CrossRef]
- Li, Z.; Liang, H.; Xin, J.; Xu, L.; Li, M.; Yu, H.; Zhang, W.; Ge, Y.; Li, Y.; Qu, M. Effects of dietary guanidinoacetic acid on the feed efficiency, blood measures, and meat quality of Jinjiang bulls. Front. Vet. Sci. 2021, 8, 775. [Google Scholar] [CrossRef]
- Wang, L.S.; Shi, B.M.; Shan, A.S.; Zhang, Y.Y. Effects of guanidinoacetic acid on growth performance, meat quality and antioxidation in growing-finishing pigs. J. Anim. Vet. Adv. 2012, 11, 631–636. [Google Scholar] [CrossRef]
- Ostojic, S.M.; Stojanovic, M.D.; Olcina, G. Oxidant-antioxidant capacity of dietary guanidinoacetic acid. Ann. Nutr. Metab. 2015, 67, 243–246. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Song, P.; Zhao, J.; Zhang, J.; Zhao, J. Skeletal muscle mass, meat quality and antioxidant status in growing lambs supplemented with guanidinoacetic acid. Meat Sci. 2022, 192, 108906. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Xing, T.; Zhang, L.; Gao, F. Effects of guanidinoacetic acid and complex antioxidant supplementation on growth performance, meat quality, and antioxidant function of broiler chickens. J. Sci. Food Agric. 2021, 101, 3961–3968. [Google Scholar] [CrossRef]
- Raei, A.; Karimi, A.; Sadeghi, A. Performance, antioxidant status, nutrient retention and serum profile responses of laying Japanese quails to increasing addition levels of dietary guanidinoacetic acid. Ital. J. Anim. Sci. 2020, 19, 75–85. [Google Scholar] [CrossRef]
- Pellegrino, M.A.; Patrini, C.; Pasini, E.; Brocca, L.; Flati, V.; Corsetti, G.; D’Antona, G. Amino acid supplementation counteracts metabolic and functional damage in the diabetic rat heart. Am. J. Cardiol. 2008, 101, 49E–56E. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020, 52, 329–360. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M. Guanidinoacetic acid as a performance-enhancing agent. Amino Acids 2016, 48, 1867–1875. [Google Scholar] [CrossRef]
- Prokic, V.Z.; Rankovic, M.R.; Draginic, N.D.; Andjic, M.M.; Sretenovic, J.Z.; Zivkovic, V.I.; Jeremic, J.N.; Milinkovic, M.V.; Bolevich, S.; Jakovljevic, V.L.J.; et al. Guanidinoacetic acid provides superior cardioprotection to its combined use with betaine and (or) creatine in HIIT-trained rats. Can. J. Physiol. Pharm. 2022, 100, 772–786. [Google Scholar] [CrossRef]
- Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-chain amino acids: Catabolism in skeletal muscle and implications for muscle and whole-body metabolism. Front. Physiol. 2021, 12, 702826. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac energy metabolism in heart failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef]
- Fagundes, N.S.; Milfort, M.C.; Williams, S.M.; Da Costa, M.J.; Fuller, A.L.; Menten, J.F.; Rekaya, R.; Aggrey, S.E. Dietary methionine level alters growth, digestibility, and gene expression of amino acid transporters in meat-type chickens. Poult. Sci. 2020, 99, 67–75. [Google Scholar] [CrossRef]
- White, J.P. Amino acid trafficking and skeletal muscle protein synthesis: A case of supply and demand. Front. Cell Dev. Biol. 2021, 9, 656604. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.L.; Li, Y.J.; Gao, T.; Zhang, L.; Gao, F.; Zhou, G.H. Effects of dietary supplementation of guanidinoacetic acid and combination of guanidinoacetic acid and betaine on postmortem glycolysis and meat quality of finishing pigs. Anim. Feed Sci. Technol. 2015, 205, 82–89. [Google Scholar] [CrossRef]
- Michiels, J.; Maertens, L.; Buyse, J.; Lemme, A.; Rademacher, M.; Dierick, N.A.; De Smet, S. Supplementation of guanidinoacetic acid to broiler diets: Effects on performance, carcass characteristics, meat quality, and energy metabolism. Poult. Sci. 2012, 91, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, M. Role of creatine in the heart: Health and disease. Nutrients 2021, 13, 1215. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sport. Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Patra, S.; Ghosh, A.; Roy, S.S.; Bera, S.; Das, M.; Talukdar, D.; Ray, S.; Wallimann, T.; Ray, M. A short review on creatine–creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids 2012, 42, 2319–2330. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, L.; Fu, Y.; Li, Y.; Jiang, Y.; Zhou, G.; Gao, F. Creatine monohydrate and guanidinoacetic acid supplementation affects the growth performance, meat quality, and creatine metabolism of finishing pigs. J. Agric. Food Chem. 2018, 66, 9952–9959. [Google Scholar] [CrossRef]
- Sweeney, H.L.; Hammers, D.W. Muscle contraction. Cold Spring Harb. Perspect. Biol. 2018, 10, a023200. [Google Scholar] [CrossRef]
Item | GAA, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | ANOVA | Linear | Quadratic | ||
Live weight, kg | 129.17 | 130.67 | 129.5 | 130.33 | 1.70 | 0.919 | 0.898 | 1.000 |
Carcass weight, kg | 92.58 | 93.64 | 94.03 | 95.43 | 1.55 | 0.674 | 0.671 | 0.334 |
Carcass yield, % | 71.72 | 71.65 | 72.57 | 73.25 | 0.89 | 0.569 | 0.614 | 0.196 |
Back fat thickness, mm | 35.39 | 33.33 | 36.00 | 32.86 | 1.61 | 0.487 | 0.517 | 0.750 |
Abdominal fat weight, kg | 1.95 | 1.64 | 2.20 | 1.64 | 0.17 | 0.100 | 0.645 | 0.484 |
Loin muscle area, cm2 | 62.58 | 62.85 | 64.16 | 69.08 | 2.39 | 0.253 | 0.084 | 0.311 |
Item | GAA, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | ANOVA | Linear | Quadratic | ||
Glucose, mmol/L | 5.49 a | 4.77 ab | 4.47 b | 4.80 ab | 0.23 | 0.045 | 0.040 | 0.041 |
Total protein, g/L | 72.72 | 79.26 | 70.39 | 77.14 | 2.66 | 0.185 | 0.751 | 0.973 |
Albumin, g/L | 31.06 ab | 30.53 ab | 30.31 b | 34.01 a | 0.90 | 0.033 | 0.047 | 0.031 |
Creatinine, μmol/L | 134.37 | 152.86 | 127.91 | 147.30 | 7.35 | 0.110 | 0.688 | 0.953 |
Uric acid, μmol/L | 4.33 | 5.76 | 5.01 | 4.70 | 0.45 | 0.188 | 0.864 | 0.072 |
Urea, mmol/L | 35.13 | 38.57 | 33.35 | 36.61 | 2.71 | 0.594 | 0.950 | 0.975 |
ALT, U/L | 47.84 | 61.32 | 56.66 | 60.72 | 6.01 | 0.429 | 0.244 | 0.465 |
AST, U/L | 24.22 | 27.60 | 26.27 | 27.65 | 2.70 | 0.805 | 0.483 | 0.726 |
Creatine kinase, U/L | 975.00 b | 1170.50 ab | 1222.67 a | 1242.83 a | 52.97 | 0.008 | 0.002 | 0.116 |
GAA, mg/L | 0.87 b | 1.17 ab | 1.33 a | 1.26 a | 0.08 | 0.006 | 0.003 | 0.045 |
Creatine, mg/L | 20.16 | 20.70 | 22.45 | 22.50 | 0.69 | 0.060 | 0.011 | 0.731 |
Item | GAA, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | ANOVA | Linear | Quadratic | ||
GAA | ||||||||
LM | 49.47 | 46.57 | 49.20 | 50.35 | 2.44 | 0.779 | 0.666 | 0.462 |
heart | 36.90 | 35.83 | 34.82 | 38.92 | 1.80 | 0.452 | 0.547 | 0.175 |
Creatine | ||||||||
LM | 14.89 | 14.93 | 15.48 | 15.33 | 0.16 | 0.067 | 0.014 | 0.562 |
heart | 7.85 | 8.17 | 8.31 | 8.19 | 0.10 | 0.054 | 0.041 | 0.074 |
Item | GAA, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | ANOVA | Linear | Quadratic | ||
Plasma | ||||||||
MDA, nmol/L | 1.59 | 1.24 | 1.09 | 0.98 | 0.18 | 0.152 | 0.030 | 0.545 |
Protein carbonyl, nmol/mL | 1.03 a | 0.84 ab | 0.77 ab | 0.69 b | 0.06 | 0.010 | 0.001 | 0.395 |
SOD, U/mL | 144.77 b | 212.47 a | 221.81 a | 232.60 a | 18.89 | 0.026 | 0.007 | 0.176 |
T-AOC, U/mL | 5.68 b | 7.22 ab | 8.78 a | 8.01 ab | 0.60 | 0.011 | 0.005 | 0.069 |
GSH-Px, U/mL | 744.75 | 693.43 | 824.37 | 782.4 | 77.44 | 0.720 | 0.519 | 0.956 |
Liver | ||||||||
MDA, nmol/mgprot | 0.58 | 0.57 | 0.45 | 0.44 | 0.09 | 0.592 | 0.215 | 0.981 |
Protein carbonyl, nmol/mgprot | 1.18 a | 1.06 a | 1.02 ab | 0.83 b | 0.05 | 0.002 | <0.001 | 0.531 |
SOD, U/mgprot | 157.92 b | 180.82 ab | 199.23 ab | 219.48 a | 13.49 | 0.031 | 0.004 | 0.925 |
T-AOC, U/mgprot | 0.66 | 0.68 | 0.77 | 0.62 | 0.11 | 0.804 | 0.965 | 0.437 |
GSH-Px, U/mgprot | 49.45 | 60.45 | 50.53 | 54.62 | 3.93 | 0.310 | 0.779 | 0.443 |
Kidney | ||||||||
MDA, nmol/mgprot | 0.84 | 0.98 | 0.83 | 0.77 | 0.06 | 0.180 | 0.246 | 0.152 |
Protein carbonyl, nmol/mgprot | 1.42 a | 1.34 ab | 1.23 bc | 1.19 c | 0.03 | <0.001 | <0.001 | 0.606 |
SOD, U/mgprot | 74.38 b | 78.89 ab | 85.45 ab | 89.55 a | 3.04 | 0.011 | 0.001 | 0.948 |
T-AOC, U/mgprot | 0.78 | 0.75 | 0.75 | 0.86 | 0.04 | 0.336 | 0.249 | 0.166 |
GSH-Px, U/mgprot | 48.26 | 50.46 | 56.95 | 54.00 | 2.61 | 0.130 | 0.058 | 0.341 |
Pancreas | ||||||||
MDA, nmol/mgprot | 2.07 | 1.98 | 2.00 | 1.97 | 0.11 | 0.998 | 0.991 | 0.846 |
Protein carbonyl, nmol/mgprot | 1.45 a | 1.43 ab | 1.25 ab | 1.23 b | 0.05 | 0.011 | 0.002 | 0.976 |
SOD, U/mgprot | 47.4 | 47.21 | 48.78 | 49.12 | 2.00 | 0.875 | 0.464 | 0.896 |
T-AOC, U/mgprot | 0.70 | 0.75 | 0.71 | 0.74 | 0.03 | 0.691 | 0.583 | 0.733 |
GSH-Px, U/mgprot | 27.54 | 27.75 | 27.33 | 28.46 | 0.69 | 0.694 | 0.465 | 0.519 |
Spleen | ||||||||
MDA, nmol/mgprot | 0.93 | 0.83 | 0.83 | 0.80 | 0.03 | 0.087 | 0.025 | 0.326 |
Protein carbonyl, nmol/mgprot | 1.44 a | 1.06 b | 0.90 b | 0.85 b | 0.06 | <0.001 | <0.001 | 0.015 |
SOD, U/mgprot | 87.86 b | 96.89 a | 100.40 a | 99.35 a | 1.57 | <0.001 | <0.001 | 0.006 |
T-AOC, U/mgprot | 0.82 b | 0.91 ab | 1.06 a | 1.06 a | 0.05 | 0.008 | 0.001 | 0.345 |
GSH-Px, U/mgprot | 39.84 b | 44.86 a | 42.89 ab | 47.66 a | 1.17 | 0.002 | 0.001 | 0.923 |
Heart | ||||||||
MDA, nmol/mgprot | 0.31 | 0.30 | 0.30 | 0.27 | 0.01 | 0.230 | 0.068 | 0.532 |
Protein carbonyl, nmol/mgprot | 1.79 a | 1.71 a | 1.29 b | 1.21 b | 0.07 | <0.001 | <0.001 | 0.945 |
SOD, U/mgprot | 117.55 b | 127.59 ab | 129.63 a | 133.87 a | 2.71 | 0.003 | <0.001 | 0.304 |
T-AOC, U/mgprot | 0.44 | 0.48 | 0.50 | 0.52 | 0.02 | 0.119 | 0.020 | 0.613 |
GSH-Px, U/mgprot | 5.51 b | 6.06 ab | 6.29 a | 6.34 a | 0.15 | 0.006 | 0.001 | 0.136 |
LM | ||||||||
MDA, nmol/mgprot | 0.12 | 0.05 | 0.07 | 0.06 | 0.02 | 0.096 | 0.077 | 0.176 |
Protein carbonyl, nmol/mgprot | 2.00 a | 1.68 ab | 1.46 b | 1.13 c | 0.08 | <0.001 | <0.001 | 0.924 |
SOD, U/mgprot | 85.15 b | 127.44 a | 142.57 a | 158.55 a | 8.65 | <0.001 | <0.001 | 0.177 |
T-AOC, U/mgprot | 0.30 | 0.34 | 0.51 | 0.53 | 0.07 | 0.060 | 0.011 | 0.877 |
GSH-Px, U/mgprot | 4.38 c | 4.74 bc | 5.13 b | 5.84 a | 0.11 | <0.001 | <0.001 | 0.135 |
Item | GAA, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | ANOVA | Linear | Quadratic | ||
Threonine | 3.27 | 3.20 | 3.33 | 3.54 | 0.08 | 0.140 | 0.057 | 0.174 |
Valine | 3.33 | 3.24 | 3.27 | 3.58 | 0.08 | 0.083 | 0.076 | 0.051 |
Methionine | 2.00 | 1.78 | 1.80 | 2.02 | 0.07 | 0.092 | 0.782 | 0.016 |
Isoleucine | 3.69 | 3.47 | 3.46 | 3.92 | 0.11 | 0.077 | 0.235 | 0.022 |
Leucine | 6.73 | 6.47 | 6.60 | 7.22 | 0.16 | 0.063 | 0.072 | 0.033 |
Phenylalanine | 3.10 | 3.03 | 3.12 | 3.32 | 0.07 | 0.108 | 0.058 | 0.100 |
Lysine | 6.33 | 6.11 | 6.36 | 6.78 | 0.14 | 0.092 | 0.059 | 0.077 |
Histidine | 2.02 | 1.98 | 2.03 | 2.17 | 0.05 | 0.130 | 0.062 | 0.127 |
Arginine | 4.96 | 4.80 | 5.05 | 5.32 | 0.11 | 0.108 | 0.053 | 0.132 |
Proline | 2.99 | 3.01 | 3.17 | 3.27 | 0.08 | 0.156 | 0.036 | 0.595 |
Serine | 2.74 | 2.70 | 2.85 | 2.99 | 0.09 | 0.242 | 0.079 | 0.377 |
Glutamate | 11.11 | 10.83 | 11.24 | 11.9 | 0.25 | 0.159 | 0.075 | 0.154 |
Glycine | 3.80 | 3.87 | 4.12 | 4.16 | 0.13 | 0.277 | 0.073 | 0.970 |
Alanine | 4.57 | 4.49 | 4.67 | 4.94 | 0.11 | 0.105 | 0.039 | 0.168 |
cystine | 0.99 | 1.01 | 0.95 | 1.06 | 0.05 | 0.464 | 0.479 | 0.444 |
Aspartic acid | 6.73 | 6.58 | 6.83 | 7.25 | 0.14 | 0.092 | 0.039 | 0.125 |
Tyrosine | 2.72 | 2.55 | 2.63 | 2.84 | 0.06 | 0.098 | 0.198 | 0.032 |
EAA | 35.44 | 34.06 | 35.00 | 37.86 | 0.81 | 0.075 | 0.071 | 0.044 |
NEAA | 35.65 | 35.03 | 36.45 | 38.39 | 0.82 | 0.134 | 0.049 | 0.199 |
TAA | 71.09 | 69.09 | 71.46 | 76.25 | 1.57 | 0.100 | 0.055 | 0.092 |
Item | GAA, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.05 | 0.10 | 0.15 | ANOVA | Linear | Quadratic | ||
Amino acid, % dry weight | ||||||||
Threonine | 4.26 | 4.19 | 4.46 | 4.34 | 0.08 | 0.147 | 0.791 | 0.048 |
Valine | 4.36 | 4.41 | 4.60 | 4.44 | 0.10 | 0.439 | 0.512 | 0.226 |
Methionine | 2.38 b | 2.52 ab | 2.63 a | 2.60 ab | 0.06 | 0.041 | 0.117 | 0.014 |
Isoleucine | 4.45 | 4.68 | 4.90 | 4.75 | 0.02 | 0.516 | 0.657 | 0.022 |
Leucine | 7.53 | 7.50 | 7.92 | 7.69 | 0.11 | 0.319 | 0.851 | 0.057 |
Phenylalanine | 4.46 | 4.48 | 4.69 | 4.57 | 0.10 | 0.348 | 0.664 | 0.118 |
Lysine | 8.56 | 8.47 | 8.97 | 8.73 | 0.18 | 0.277 | 0.977 | 0.088 |
Histidine | 4.52 | 4.49 | 4.73 | 4.59 | 0.12 | 0.562 | 0.920 | 0.240 |
Arginine | 5.82 | 5.80 | 6.14 | 5.96 | 0.13 | 0.242 | 0.831 | 0.076 |
Proline | 3.08 | 3.08 | 3.37 | 3.12 | 0.06 | 0.189 | 0.662 | 0.067 |
Serine | 3.45 | 3.31 | 3.57 | 3.48 | 0.07 | 0.143 | 0.341 | 0.068 |
Glutamate | 13.81 | 13.75 | 14.49 | 14.04 | 0.31 | 0.346 | 0.853 | 0.133 |
Glycine | 3.96 | 3.97 | 4.28 | 4.00 | 0.08 | 0.080 | 0.483 | 0.083 |
Alanine | 5.48 | 5.48 | 5.92 | 5.60 | 0.11 | 0.169 | 0.703 | 0.073 |
cystine | 1.70 | 1.67 | 1.66 | 1.62 | 0.09 | 0.936 | 0.928 | 0.093 |
Aspartic acid | 8.87 | 8.93 | 9.42 | 9.06 | 0.19 | 0.242 | 0.916 | 0.057 |
Tyrosine | 3.14 | 3.13 | 3.29 | 3.23 | 0.06 | 0.291 | 0.759 | 0.093 |
EAA | 46.53 | 46.54 | 49.05 | 47.66 | 1.00 | 0.228 | 0.856 | 0.099 |
NEAA | 43.55 | 43.25 | 45.81 | 44.15 | 0.88 | 0.257 | 0.803 | 0.094 |
TAA | 90.08 | 89.79 | 94.85 | 91.80 | 1.87 | 0.257 | 0.249 | 0.482 |
Other, mg/g dry weight | ||||||||
Carnosine | 19.48 b | 20.63 b | 26.41 a | 24.34 a | 0.93 | 0.001 | <0.001 | 0.164 |
Anserine | 0.57 b | 0.70 ab | 0.80 a | 0.83 a | 0.06 | 0.029 | 0.004 | 0.447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Yu, M.; Li, Z.; Song, M.; Tian, Z.; Deng, D.; Ma, X. Guanidine Acetic Acid Alters Tissue Bound Amino Acid Profiles and Oxidative Status in Finishing Pigs. Animals 2023, 13, 1626. https://doi.org/10.3390/ani13101626
Cui Y, Yu M, Li Z, Song M, Tian Z, Deng D, Ma X. Guanidine Acetic Acid Alters Tissue Bound Amino Acid Profiles and Oxidative Status in Finishing Pigs. Animals. 2023; 13(10):1626. https://doi.org/10.3390/ani13101626
Chicago/Turabian StyleCui, Yiyan, Miao Yu, Zhenming Li, Min Song, Zhimei Tian, Dun Deng, and Xianyong Ma. 2023. "Guanidine Acetic Acid Alters Tissue Bound Amino Acid Profiles and Oxidative Status in Finishing Pigs" Animals 13, no. 10: 1626. https://doi.org/10.3390/ani13101626
APA StyleCui, Y., Yu, M., Li, Z., Song, M., Tian, Z., Deng, D., & Ma, X. (2023). Guanidine Acetic Acid Alters Tissue Bound Amino Acid Profiles and Oxidative Status in Finishing Pigs. Animals, 13(10), 1626. https://doi.org/10.3390/ani13101626