Evaluation of Renal Blood Flow in Dogs during Short-Term Human-Dose Epoprostenol Administration Using Pulsed Doppler and Contrast-Enhanced Ultrasonography
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Anesthesia
2.3. Epoprostenol Administration
2.4. Measurements
2.5. Statistical Analyses
3. Results
3.1. Pulsed Doppler Ultrasonography
3.2. Contrast-Enhanced Ultrasonography
3.3. Systemic Circulation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polzin, D.J. Chronic kidney disease in small animals. Vet. Clin. North. Am. Small Anim. Pract. 2011, 41, 15–30. [Google Scholar] [CrossRef]
- O’Neill, D.G.; Elliott, J.; Church, D.B.; McGreevy, P.D.; Thomson, P.C.; Brodbelt, D.C. Chronic kidney disease in dogs in UK veterinary practices: Prevalence, risk factors, and survival. J. Vet. Intern. Med. 2013, 27, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Dunaevich, A.; Apfelbaum, N.; Kuzi, S.; Mazaki-Tovi, M.; Aroch, I.; Segev, G. Acute on chronic kidney disease in cats: Etiology, clinical and clinicopathologic findings, prognostic markers, and outcome. J. Vet. Intern. Med. 2020, 34, 1496–1506. [Google Scholar] [CrossRef] [PubMed]
- Sawashima, K.; Sawashima, Y.; Shitaka, H.; Mizuno, S.; Kudo, T.; Kurosawa, T. Correlation between Renal Function and Tubulo-Interstitial Lesions in Feline Progressive Kidney Disease. J. Jpn. Vet. Med. Assoc. 2001, 54, 687–691. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.F.; Zhang, B.H.; Lu, X.Q.; Wang, P. Beraprost sodium, a stable analogue of PGI2, inhibits the renin-angiotensin system in the renal tissues of rats with chronic renal failure. Kidney Blood Press. Res. 2018, 43, 1231–1244. [Google Scholar] [CrossRef]
- First, M.R.; Ettenger, M.; Robson, M.; Pollak, V.E.; Ooi, B.S.; Goldberg, M. Acute deterioration in renal function in patients with preexisting renal insufficiency. Arch. Intern. Med. 1984, 144, 2233–2238. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.; Takeda, K.; Harada, A. Clinical analysis of cases with acute exacerbation of chronic renal failure. Nihon Jinzo Gakkai Shi. 1994, 36, 163–171. [Google Scholar]
- Morham, S.G.; Langenbach, R.; Loftin, C.D.; Tiano, H.F.; Vouloumanos, N.; Jennette, J.C.; Mahler, J.F.; Kluckman, K.D.; Ledford, A.; Lee, C.A.; et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 1995, 83, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, C.; Yabuki, T.; Shimonishi, M.; Wada, M.; Hatae, T.; Ohkawara, S.; Takeda, J.; Kinoshita, T.; Okabe, M.; Tanabe, T. Prostacyclin-deficient mice develop ischemic renal disorders, including nephrosclerosis and renal infarction. Circulation 2002, 106, 2397–2403. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.W.; Moncada, S. The renal haemodynamic and excretory actions of prostacyclin (PGI2) in anaesthetized dogs. Br. J. Pharmacol. 1978, 62, 413–414. [Google Scholar]
- Tobimatsu, M.; Ueda, Y.; Toyoda, K.; Saito, S.; Konomi, K. Effect of a stable prostacyclin analogue on canine renal allograft rejection. Ann. Surg. 1987, 205, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Tobimatsu, M.; Ueda, Y.; Saito, S.; Tsumagari, T.; Konomi, K. Effects of a stable prostacyclin analog on experimental ischemic acute renal failure. Ann. Surg. 1988, 208, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Nakamura, K.; Akagi, S.; Sarashina, T.; Ejiri, K.; Miura, A.; Ogawa, A.; Matsubara, H.; Ito, H. Epoprostenol sodium for treatment of pulmonary arterial hypertension. Vasc. Health. Risk. Manag. 2015, 11, 265–270. [Google Scholar] [PubMed] [Green Version]
- Zwissler, B.; Welte, M.; Habler, O.; Kleen, M.; Messmer, K. Effects of inhaled prostacyclin as compared with inhaled nitric oxide in a canine model of pulmonary microembolism and oleic acid edema. J. Cardiothorac. Vasc. Anesth. 1995, 9, 634–640. [Google Scholar] [CrossRef]
- Fulghum, T.G.; DiMarco, J.P.; Supple, E.W.; Nash, I.; Gendlerman, J.; Eton, D.F.; Newell, J.B.; Zusman, R.M.; Powell, W.J., Jr. Effect of prostacyclin on vascular capacity in the dog. J. Clin. Investig. 1985, 76, 999–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S.H.; Jung, C.D.; Kim, S.H.; Kim, S.H. Renal venous doppler ultrasonography in normal subjects and patients with diabetic nephropathy: Value of venous impedance index measurements. J. Clin. Ultrasound. 2011, 39, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Oktar, S.O.; Yücel, C.; Ozdemir, H.; Karaosmanoglu, D. Doppler sonography of renal obstruction: Value of venous impedance index measurements. J. Ultrasound Med. 2004, 23, 929–936. [Google Scholar] [CrossRef]
- Bragato, N.; Borges, N.C.; Fioravanti, M.C.S. B-mode and Doppler ultrasound of chronic kidney disease in dogs and cats. Vet. Res. Commun. 2017, 41, 307–315. [Google Scholar] [CrossRef]
- Choi, H.; Won, S.; Chung, W.; Lee, K.; Chang, D.; Lee, H.; Eom, K.; Lee, Y.; Yoon, J. Effect of intravenous mannitol upon the resistive index in complete unilateral renal obstruction in dogs. J. Vet. Intern. Med. 2003, 17, 158–162. [Google Scholar] [CrossRef]
- Novellas, R.; Ruiz de Gopegui, R.; Espada, Y. Assessment of renal vascular resistance and blood pressure in dogs and cats with renal disease. Vet. Rec. 2010, 166, 618–623. [Google Scholar] [CrossRef]
- Tipisca, V.; Murino, C.; Cortese, L.; Mennonna, G.; Auletta, L.; Vulpe, V.; Meomartino, L. Resistive index for kidney evaluation in normal and diseased cats. J. Feline Med. Surg. 2016, 18, 471–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczepankiewicz, B.; Pasławska, U.; Siwińska, N.; Plens, K.; Pasławski, R. Evaluation of the diagnostic value of the renal resistive index as a marker of the subclinical development of cardiorenal syndrome in MMVD dogs. J. Renin. Angiotensin. Aldosterone. Syst. 2021, 22, 1470320321995082. [Google Scholar] [CrossRef] [PubMed]
- Koma, L.M.; Kirberger, R.M.; Scholtz, L. Doppler ultrasonographic changes in the canine kidney during normovolaemic anaemia. Res. Vet. Sci. 2006, 80, 96–102. [Google Scholar] [CrossRef]
- Liu, D.J.X.; Hesta, M.; Stock, E.; Bogaerts, E.; Broeckx, B.J.G.; Saunders, J.H.; Vanderperren, K. Renal perfusion parameters measured by contrast-enhanced ultrasound in healthy dogs demonstrate a wide range of variability in the long-term. Vet. Radiol. Ultrasound. 2019, 60, 201–209. [Google Scholar] [CrossRef]
- Mannucci, T.; Lippi, I.; Rota, A.; Citi, S. Contrast enhancement ultrasound of renal perfusion in dogs with acute kidney injury. J. Small Anim. Pract. 2019, 60, 471–476. [Google Scholar] [CrossRef]
- Stock, E.; Paepe, D.; Daminet, S.; Duchateau, L.; Saunders, J.H.; Vanderperren, K. Influence of ageing on quantitative contrast-enhanced ultrasound of the kidneys in healthy cats. Vet. Rec. 2018, 182, 515. [Google Scholar] [CrossRef] [PubMed]
- Stock, E.; Vanderperren, K.; Bosmans, T.; Dobbeleir, A.; Duchateau, L.; Hesta, M.; Lybaert, L.; Peremans, K.; Vandermeulen, E.; Saunders, J. Evaluation of Feline Renal Perfusion with Contrast-EnhancedUltrasonography and Scintigraphy. PLoS ONE 2016, 11, e0164488. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wang, W.; Cao, J.; Fan, P.; Lin, X. Quantitative evaluation of contrast-enhanced ultrasonography in the diagnosis of chronic ischemic renal disease in a dog model. PLoS ONE 2013, 8, e70337. [Google Scholar] [CrossRef] [Green Version]
- Itami, T.; Hanazono, K.; Oyama, N.; Sano, T.; Makita, K.; Yamashita, K. Cardiovascular effects of intravenous colforsin in normal and acute respiratory acidosis canine models: A dose-response study. PLoS ONE 2019, 14, e0213414. [Google Scholar] [CrossRef] [Green Version]
- Endo, Y.; Tamura, J.; Ishizuka, T.; Itami, T.; Hanazono, K.; Miyoshi, K.; Sano, T.; Yamashita, K.; Muir, W.W. Stroke volume variation (SVV) and pulse pressure variation (PPV) as indicators of fluid responsiveness in sevoflurane anesthetized mechanically ventilated euvolemic dogs. J. Vet. Med. Sci. 2017, 79, 1437–1445. [Google Scholar] [CrossRef] [Green Version]
- Takenaka, M.; Iio, A.; Sato, R.; Sakamoto, T.; Kurumatani, H.; KT-140 Clinical Study Group. A double-blind, placebo-controlled, multicenter, prospective, randomized study of beraprost sodium treatment for cats with chronic kidney disease. J. Vet. Intern. Med. 2018, 32, 236–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuruoka, K.; Yasuda, T.; Koitabashi, K.; Yazawa, M.; Shimazaki, M.; Sakurada, T.; Shirai, S.; Shibagaki, Y.; Kimura, K.; Tsujimoto, F. Evaluation of renal microcirculation by contrast-enhanced ultrasound with Sonazoid as a contrast agent. Int. Heart. J. 2010, 51, 176–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akaishi, T.; Abe, M.; Miki, T.; Funamizu, Y.; Ito, S.; Abe, T.; Ishii, T. Ratio of diastolic to systolic blood pressure represents renal resistive index. J. Hum. Hypertens. 2020, 34, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Jeong, W.C.; Lee, Y.W.; Choi, H.J. Contrast enhanced ultrasonography of kidney in conscious and anesthetized beagle dogs. J. Vet. Med. Sci. 2015, 78, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Y.; Chen, L.; Wang, Z.; Liu, G.; Zuo, B.; Liu, C.; Sun, D. Beraprost sodium mitigates renal interstitial fibrosis through repairing renal microvessels. J. Mol. Med. 2019, 97, 777–791. [Google Scholar] [CrossRef]
- Gerber, J.G.; Nies, A.S.; Friesinger, G.C.; Gerkens, J.F.; Branch, R.A.; Oates, J.A. The effect of PGI2 on canine renal function and hemodynamics. Prostaglandins 1978, 16, 519–528. [Google Scholar] [CrossRef]
- Lifschitz, M.D. Prostaglandins and Renal Blood Flow: In Vivo Studies. Kidney Int. 1981, 19, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Nishio, S.; Kurumatani, H. Pharmacological and clinical properties of beraprost sodium, orally active prostacyclin analogue. Nihon Yakurigaku Zasshi. 2001, 117, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Novellas, R.; Ruiz de Gopegui, R.; Espada, Y. Effects of Sedation with Midazolam and Butorphanol on Resistive and Pulsatility Indices in Healthy Dogs. Vet. Radiol. Ultrasound. 2007, 48, 276–280. [Google Scholar] [CrossRef]
Parts | Variables | Norms | Pre-Administration | 2 ng/kg/min | 5 ng/kg/min | 10 ng/kg/min |
---|---|---|---|---|---|---|
Interlobular artery | PSV (cm/sec) | - | 33.48 (18.83–52.07) | 37.93 (13.57–53.33) | 39.37 (20.77–52.33) | 39.25 (27.87–49.10) |
EDV (cm/sec) | - | 14.87 (7.40–23.83) | 15.95 (5.47–28.70) | 17.77 (9.13–20.40) | 16.23 (8.57–24.33) | |
PI | 1.15 ± 0.15 [20] | 0.99 (0.72–1.41) | 0.90 (0.651.16) | 0.93 (0.72–1.29) | 0.96 (0.71–1.39) | |
RI | 0.62 ± 0.04 [20] 0.66 ± 0.05 [22] | 0.60 (0.50–0.70) | 0.55 (0.46–0.75) | 0.57 (0.50–0.68) | 0.58 (0.49–0.70) | |
Interlobular vein | Vmax (cm/sec) | - | 12.48 (8.97–21.17) | 12.92 (6.73–50.07) | 13.75 (8.77–58.30) | 16.78 (10.80–6.13) |
Vmin (cm/sec) | - | 9.17 (6.83–16.27) | 9.87 (4.87–40.00) | 10.43 (6.47–48.43) | 16.61 (7.90–38.03) | |
VII | - | 0.25 (0.21–0.31) | 0.23 (0.20–0.38) | 0.25 (0.17–0.29) | 0.25 (0.18–0.39) | |
Renal artery | PSV (cm/sec) | 75.2 ± 22.0 [23] | 54.77 (35.80–74.30) | 58.02 (46.80–91.07) | 63.80 (48.20–70.10) | 68.67 (43.40–111.40) |
EDV (cm/sec) | 25.7 ± 8.2 [23] | 25.23 (15.13–36.27) | 27.90 (23.90–42.97) | 29.83 (19.37–35.80) | 30.42 (16.83–53.07) | |
PI | 1.34 ± 0.32 [23] | 0.77 (0.65–1.26) | 0.75 (0.60–1.25) | 0.91 (0.57–1.38) | 0.94 (0.57–1.28) | |
RI | 0.66 ± 0.07 [23] | 0.50 (0.46–0.67) | 0.50 (0.44–0.66) | 0.56 (0.41–0.70) | 0.56 (0.42–0.67) | |
Renal vein | Vmax (cm/sec) | - | 14.28 (13.00–25.57) | 16.95 (15.07–25.00) | 19.27 (12.43–27.10) | 20.32 (12.27–30.77) |
Vmin (cm/sec) | - | 11.35 (9.83–21.10) | 13.27 (9.70–19.70) | 14.95 (6.73–22.27) | 15.68 (6.77–24.47) | |
VII | - | 0.22 (0.17–0.28) | 0.24 (0.19–0.36) | 0.22 (0.18–0.46) | 0.21 (0.20–0.45) |
Parts | Variables | Pre-Administration | 2 ng/kg/min | 5 ng/kg/min | 10 ng/kg/min |
---|---|---|---|---|---|
Renal cortex | TTP (sec) | 13.10 (12.00–14.60) | 13.80 (11.20–16.20) | 13.20 (10.00–14.80) | 12.60 (10.00–15.20) |
RT (sec) | 4.30 (3.40–6.00) | 4.55 (3.00–6.00) | 4.90 (3.00–6.20) | 4.80 (4.20–5.60) | |
WiR | 38.55 (26.00–64.80) | 43.25 (31.40–76.80) | 49.65 (29.20–60.60) | 46.10 (30.70–81.40) | |
WoR | 0.60 (0.50–0.70) | 0.60 (0.40–0.70) | 0.55 (0.40–0.80) | 0.60 (0.50–0.80) | |
PE | 139.55 (108.50–186.70) | 155.55 (135.30–188.70) | 156.25 (115.40–205.30) | 155.65 (133.10–202.20) | |
BI | 10.50 (0.60–44.40) | 15.75 (3.10–50.20) | 11.95 (4.40–57.10) | 12.95 (6.00–49.30) | |
AUC | 8451.30 (7468.80–11,105.90) | 11,089. 10 (8263.00–12,154.50) | 10,796.00 (5841.10–11,930.50) | 9953.20 (7560.50–12,580.60) | |
WiAUC | 621.25 (386.20–845.60) | 466.40 (383.30–717.40) | 528.30 (445.60–724.70) | 489.45 (388.60–726.50) | |
WoAUC | 7743.10 (7082.60–10,477.50) | 10538.70 (7703.00–11,762.70) | 10335.40 (5338.00–11,241.90) | 9556.90 (6989.50–11,854.10) | |
Renal medulla | TTP (sec) | 18.70 (16.60–22.80) | 19.50 (15.20–25.20) | 20.80 (15.20–25.20) | 18.90 (15.20–25.00) |
RT (sec) | 8.30 (6.80–9.20) | 8.90 (5.60–12.40) | 9.50 (5.00–13.40) | 8.50 (7.40–11.80) | |
WiR | 21.85 (8.60–25.40) | 14.25 (8.70–40.20) | 16.50 (10.50–47.30) | 17.75 (14.80– 31.60) | |
WoR | 0.75 (0.60–1.10) | 0.80 (0.60–1.50) | 1.00 (0.40–1.20) | 0.85 (0.60–1.00) | |
PE | 138.20 (90.60–174.00) | 132.05 (83.50–197.40) | 137.80 (109.50–193.70) | 138.75 (79.0–193.00) | |
BI | 16.10 (11.60–20.90) | 14.60 (10.60–26.10) | 18.65 (3.40–30.80) | 18.35 (14.10–28.00) | |
AUC | 5560.60 (1861.80–7720.80) | 3646.80 (1848.90–8293.00) | 5235.80 (1890.90–8284.00) | 4324.10 (946.90–9601.00) | |
WiAUC | 593.90 (255.80–917.20) | 571.00 (347.80–1054.20) | 635.20 (385.30–841.20) | 491.60 (227.20–816.80) | |
WoAUC | 4891.9 (1606.00–7071.60) | 2859.7 (1501.10–7238.90) | 4489.40 (1505.60–7665.20) | 3813.5 (719.70–8810.50) |
Variables | Norms | Pre-Administration | 2 ng/kg/min | 5 ng/kg/min | 10 ng/kg/min |
---|---|---|---|---|---|
SABP (mmHg) | 96.1 ± 3.5 [29] | 118.53 (107.5–129.2) | 123.85 (118.66–134.0) | 121.54 (114.60–137.4) | 124.25 (112.0–136.5) |
MABP (mmHg) | 68.5 ± 2.6 [29] | 80.40 (75.20–85.00) | 84.80 (79.66–93.00) | 84.17 (82.25–93.20) | 81.33 (78.75–95.00) |
DABP (mmHg) | 54.2 ± 2.0 [29] | 67.98 (57.80–72.00) | 71.83 (62.66–79.75) | 68.85 (63.80–78.00) | 66.30 (61.40–80.33) |
mPAP (mmHg) | 10.7 ± 0.2 [29] | 11.63 (9.00–13.60) | 12.83 (8.33–13.00) | 12.97 (8.40–14.16) | 12.50 (9.00–13.50) |
mRAP (mmHg) | 3.8 ± 0.3 [29] | 3.50 (2.66–4.75) | 4.00 (1.00–4.00) | 3.00 (1.00–5.20) | 2.50 (1.00–4.80) |
PCWP (mmHg) | 4.5 ± 0.2 [29] | 5.25 (4.00–7.00) | 5.75 (4.50–7.00) | 5.25 (3.50–8.00) | 5.00 (3.00–7.50) |
HR (/min) | 86.0 ± 3.9 [29] | 98.50 (71.20–118.33) | 105.50 (74.33–116.6) | 113.07 (77.20–129.5) | 119.88 (75.60–130.0) |
CO (L/min) | 1.8 ± 0.3 [30] | 2.08 (1.30–2.66) | 2.25 (1.20–2.48) | 2.24 (1.49–2.44) | 2.18 (1.48–2.59) |
Parts | Variables | SABP | MABP | DABP | HR | CO | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | R | p | r | p | r | p | ||
Interlobular artery | PSV | 0.38 | 0.07 | −0.01 | 0.98 | −0.03 | 0.9 | −0.16 | 0.44 | −0.18 | 0.4 |
EDV | 0.33 | 0.12 | 0.46 | 0.03 | 0.52 | <0.01 | 0.31 | 0.15 | 0.2 | 0.35 | |
PI | −0.15 | 0.49 | −0.67 | <0.01 | −0.82 | <0.01 | −0.67 | <0.01 | −0.41 | 0.046 | |
RI | −0.14 | 0.5 | −0.7 | <0.01 | −0.81 | <0.01 | −0.63 | <0.01 | −0.43 | 0.04 | |
Interlobular vein | Vmax | 0.05 | 0.82 | 0.25 | 0.23 | 0.41 | 0.049 | 0.58 | <0.01 | 0.45 | 0.03 |
Vmin | 0.05 | 0.83 | 0.28 | 0.19 | 0.41 | 0.04 | 0.58 | <0.01 | 0.51 | 0.01 | |
VII | −0.08 | 0.73 | −0.29 | 0.16 | −0.34 | 0.11 | −0.43 | 0.04 | −0.38 | 0.07 | |
Renal artery | PSV | 0.6 | <0.01 | 0.12 | 0.57 | −0.03 | 0.91 | −0.13 | 0.55 | 0.18 | 0.41 |
EDV | 0.25 | 0.25 | 0.55 | <0.01 | 0.6 | <0.01 | 0.41 | 0.048 | 0.63 | <0.01 | |
PI | 0.16 | 0.45 | −0.51 | 0.01 | −0.73 | <0.01 | −0.51 | 0.01 | −0.45 | 0.03 | |
RI | 0.18 | 0.39 | −0.5 | 0.01 | −0.73 | <0.01 | −0.49 | 0.02 | −0.47 | 0.02 | |
Renal vein | Vmax | 0.05 | 0.8 | 0.63 | <0.01 | 0.55 | <0.01 | 0.57 | <0.01 | 0.59 | <0.01 |
Vmin | 0.02 | 0.92 | 0.66 | <0.01 | 0.59 | <0.01 | 0.60 | <0.01 | 0.64 | <0.01 | |
VII | −0.09 | 0.67 | −0.44 | 0.03 | −0.48 | 0.02 | −0.31 | 0.14 | −0.43 | 0.04 | |
Renal cortex | TTP | 0.25 | 0.24 | 0.02 | 0.92 | −0.27 | 0.21 | −0.61 | <0.01 | −0.06 | 0.77 |
RT | 0.36 | 0.08 | −0.05 | 0.8 | −0.31 | 0.14 | −0.35 | 0.09 | 0.05 | 0.83 | |
WiR | −0.22 | 0.31 | 0.25 | 0.24 | 0.33 | 0.12 | 0.58 | <0.01 | 0.23 | 0.27 | |
WoR | 0.35 | 0.1 | −0.25 | 0.23 | −0.21 | 0.33 | −0.2 | 0.35 | −0.52 | 0.01 | |
PE | −0.24 | 0.26 | 0.12 | 0.59 | 0.12 | 0.57 | 0.58 | <0.01 | 0.15 | 0.5 | |
BI | 0.04 | 0.84 | 0.22 | 0.3 | 0.27 | 0.21 | 0.46 | 0.02 | −0.05 | 0.82 | |
AUC− | −0.28 | 0.19 | 0.27 | 0.2 | 0.15 | 0.48 | 0.31 | 0.14 | 0.39 | 0.06 | |
WiAUC | −0.32 | 0.12 | −0.43 | 0.04 | −0.54 | <0.01 | −0.44 | 0.03 | −0.26 | 0.22 | |
WoAUC | −0.24 | 0.26 | 0.33 | 0.11 | 0.21 | 0.31 | 0.36 | 0.09 | 0.44 | 0.03 | |
Renal medulla | TTP | 0.29 | 0.18 | −0.08 | 0.72 | −0.36 | 0.08 | −0.69 | <0.01 | −0.15 | 0.48 |
RT− | 0.09 | 0.69 | 0.16 | 0.47 | −0.002 | 0.99 | −0.29 | 0.17 | 0.15 | 0.47 | |
WiR | −0.28 | 0.18 | −0.04 | 0.85 | −0.11 | 0.62 | 0.4 | 0.05 | 0.16 | 0.46 | |
WoR | −0.08 | 0.72 | 0.19 | 0.38 | 0.22 | 0.29 | 0.38 | 0.07 | −0.27 | 0.21 | |
PE | −0.39 | 0.06 | 0.02 | 0.92 | 0.05 | 0.83 | 0.49 | 0.02 | 0.11 | 0.6 | |
BI | 0.21 | 0.32 | 0.07 | 0.75 | 0.15 | 0.48 | 0.3 | 0.15 | 0.05 | 0.8 | |
AUC | −0.25 | −0.25 | 0.06 | 0.79 | −0.02 | 0.94 | 0.36 | 0.08 | 0.43 | 0.04 | |
WiAUC | −0.23 | 0.28 | 0.33 | 0.12 | 0.14 | 0.5 | 0.09 | 0.66 | 0.28 | 0.19 | |
WoAUC | −0.28 | 0.18 | 0.001 | 0.99 | −0.05 | 0.81 | 0.37 | 0.08 | 0.39 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanazono, K.; Itami, T.; Hayasaka, I.; Miyoshi, K.; Hori, A.; Kato, K.; Endoh, D. Evaluation of Renal Blood Flow in Dogs during Short-Term Human-Dose Epoprostenol Administration Using Pulsed Doppler and Contrast-Enhanced Ultrasonography. Animals 2022, 12, 1175. https://doi.org/10.3390/ani12091175
Hanazono K, Itami T, Hayasaka I, Miyoshi K, Hori A, Kato K, Endoh D. Evaluation of Renal Blood Flow in Dogs during Short-Term Human-Dose Epoprostenol Administration Using Pulsed Doppler and Contrast-Enhanced Ultrasonography. Animals. 2022; 12(9):1175. https://doi.org/10.3390/ani12091175
Chicago/Turabian StyleHanazono, Kiwamu, Takaharu Itami, Ikuto Hayasaka, Kenjiro Miyoshi, Ai Hori, Keiko Kato, and Daiji Endoh. 2022. "Evaluation of Renal Blood Flow in Dogs during Short-Term Human-Dose Epoprostenol Administration Using Pulsed Doppler and Contrast-Enhanced Ultrasonography" Animals 12, no. 9: 1175. https://doi.org/10.3390/ani12091175
APA StyleHanazono, K., Itami, T., Hayasaka, I., Miyoshi, K., Hori, A., Kato, K., & Endoh, D. (2022). Evaluation of Renal Blood Flow in Dogs during Short-Term Human-Dose Epoprostenol Administration Using Pulsed Doppler and Contrast-Enhanced Ultrasonography. Animals, 12(9), 1175. https://doi.org/10.3390/ani12091175