Composition and Fatty Acid Profile of Bone Marrow in Farmed Fallow Deer (Dama dama) Depending on Diet
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling
2.3. Determination of Fat, Moisture, and Fat-Free Dry Mass in Bone Marrow
2.4. Fatty Acid Analysis in Bone Marrow
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ceacero, F. Long or Heavy? Physiological Constraints in the Evolution of Antlers. J. Mamm. Evol. 2016, 23, 209–216. [Google Scholar] [CrossRef]
- Gómez, J.A.; Landete-Castillejos, T.; García, A.J.; Gallego, L. Importance of growth during lactation on body size and antler development in the Iberian red deer (Cervus elaphus hispanicus). Livest. Sci. 2006, 105, 27–34. [Google Scholar] [CrossRef]
- Gómez, J.A.; Ceacero, F.; Landete-Castillejos, T.; Gaspar-López, E.; García, A.J.; Gallego, L. Factors affecting antler investment in Iberian deer. Anim. Prod. Sci. 2012, 52, 867–873. [Google Scholar] [CrossRef]
- Murden, D.; Hunnam, J.; De Groef, B.; Rawlin, G.; McCowan, C. Comparison of methodologies in determining bone marrow fat percentage under different environmental conditions: Assessing a tool for ruminant welfare investigations. J. Vet. Diagn. Investig. 2017, 29, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Tajchman, K.; Ukalska-Jaruga, A.; Bogdaszewski, M.; Pecio, M.; Janiszewski, P. Compared accumulation of macro- and microelements in bone marrow and bone of wild and farm red deer (Cervus elaphus). BMC Vet. Res. 2021, 17, 324. [Google Scholar] [CrossRef]
- Silberstein, L.; Anastasi, J. Hematology Basic Principles and Practice, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Irving, L.; Schmidt-Nielsen, K.; Abrahamson, N.S.B. On the melting points of animal fats in cold climates. Physiol. Zool. 1957, 30, 93–105. [Google Scholar] [CrossRef]
- Turner, J.C. Adaptive strategies of selective fatty acid deposition in the bone marrow of desert bighorn sheep. Comp. Biochem. Physiol. Part A 1979, 62, 599–604. [Google Scholar] [CrossRef]
- Soares, J.H. Phosphorus bioavailability. In Bioavailability of Nutrients for Animals: Amino Acids, Minerals, and Vitamins; Ammerman, C.B., Baker, D.H., Lewis, A.J., Eds.; Academic Press: San Diego, CA, USA, 1995; pp. 257–294. [Google Scholar]
- Kiarie, E.; Nyachoti, C.M. Bioavailability of Calcium and Phosphorus in Feedstuffs for Farm Animals. In Phosphorus and Calcium Utilization and Requirements in Farm Animals; Vitti, D.M.S.S., Kebreab, E., Eds.; CABI: Wallingford, UK, 2010; ePDF 9781845936273; pp. 76–93. [Google Scholar]
- National Research Council (NRC). Mineral Tolerance of Animals, 2nd ed.; National Academy Press: Washington, DC, USA, 2005.
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; p. 362.
- Nagy, J.; Szabo, A.; Donko, T.; Bokor, J.; Romvari, R.; Repa, I.; Horn, P.; Febel, H. Body composition and venison quality of farmed red deer (Cervus elaphus) hinds reared on grass, papilionaceous or mixed pasture paddocks. Arch. Anim. Bred. 2019, 62, 227–239. [Google Scholar] [CrossRef]
- Razmaitė, V.; Pileckas, V.; Šiukščius, A.; Juškienė, V. Fatty Acid Composition of Meat and Edible Offal from Free-Living Red Deer (Cervus elaphus). Foods 2020, 9, 923. [Google Scholar] [CrossRef]
- Hoz, L.; Lopez-Bote, C.J.; Cambero, M.I.; D’Arrigo, M.; Pin, C.; Ordonez, J.A. Effect of dietary linseed oil and α-tocopherol on pork tenderloin (Psoas major) muscle. Meat Sci. 2003, 65, 1039–1044. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Di Francia, A.; Napolitano, F.; Braghieri, A.; Esposito, G.; Romano, R. Seasonal Variation of Chemical Composition, Fatty Acid Profile, and Sensory Properties of a Mountain Pecorino Cheese. Foods 2020, 9, 1091. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Benatmane, F.; Blochet, J.E.; Mourot, J. Effect of a linseed diet on lipid oxidation, fatty acid composition of muscle, perirenal fat, and raw and cooked rabbit meat. Meat Sci. 2008, 80, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 2011, 93, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. The composition, structure and function of lipids in the tissues of ruminant animals. In Lipid Metabolism in Ruminant Animals; Christie, W.W., Ed.; Pergamon Press: Oxford, UK, 1981; pp. 95–191. [Google Scholar]
- Bruckner, G. Biological effects of polyunsaturated fatty acids. In Fatty Acids in Foods and Their Health Implications; Chow, C.K., Ed.; Marcel Dekker: New York, NY, USA, 1992; pp. 631–646. [Google Scholar]
- Stender, S.; Astrup, A.; Dyerberg, J. Ruminant and industrially produced trans fatty acids: Health aspects. Food Nutr. Res. 2008, 52, 1651. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.M. The Effects of Inanition and Malnutrition upon Growth and Structure; Blakison’s, Son & Co.: Philadelphia, PA, USA, 1928; p. 616. [Google Scholar]
- Nieminen, M.; Laitinen, M. Bone marrow and kidney fats as indicators of condition in reindeer. Rangifer 1986, 6, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, M.; Soppela, P. Nutritional status and fatty acid composition of bone marrows in semi-domesticated reindeer. Rangifer 1990, 4, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Soppela, P.; Nieminen, M. The effect of wintertime undernutrition on the fatty acid composition of leg bone marrow fats in reindeer (Rangifer tarandus tarandus L.). Comp. Biochem. Physiol. Part B 2001, 128, 63–72. [Google Scholar] [CrossRef]
- Gavino, V.C.; Gavino, G.R. Adipose hormone sensitive lipase preferentially releases polyunsaturated fatty acids from triglycerides. Lipids 1992, 27, 950–954. [Google Scholar] [CrossRef]
- Raclot, T.; Mioskowski, E.; Bach, A.C.; Groscolas, R. Selectivity of fatty acid mobilization: A general metabolic feature of adipose tissue. Am. J. Physiol. 1995, 269, R1060–R1067. [Google Scholar] [CrossRef]
- Ransom, A.B. Kidney and marrow fat as indicators of white-tailed deer condition. J. Wildl. Manag. 1965, 29, 397–398. [Google Scholar] [CrossRef]
- Davis, J.L.; Valkenburg, P.; Reed, D.J. Correlations and depletion patterns of marrow fat in caribou bones. J. Wildl. Manag. 1987, 51, 865–873. [Google Scholar] [CrossRef]
- Wolkers, J.; Wensing, T.; Schonewille, J.T.; van’t Klooster, A.T. Undernutrition in relation to changed tissue composition in wild boar Sus scrofa. Comp. Biochem. Physiol. Part A 1994, 108, 623–628. [Google Scholar] [CrossRef]
- Fennessy, P.F.; Thomson, J.M.; Suttie, J.M. Season and growth strategy in red deer. Evolutionary implications and nutritional management. In Wildlife Production: Conservation and Sustainable Development; Renecker, I.A., Hudson, R.J., Eds.; University of Alaska: Fairbanks, AK, USA, 1991; pp. 495–501. [Google Scholar]
- Janiszewski, P.; Dmuchowski, B.; Gugołek, A.; Żełobowski, R. Body weight characteristics of farm-raised fallow deer (Dama dama L.) over the winter period. J. Cent. Eur. Agric. 2008, 9, 337–342. [Google Scholar]
- Bartoš, L.; Vaňková, D.; Hyánek, J.; Šiler, J. Impact of allosucking on growth of farmed red deer calves (Cervus elaphus). Anim. Sci. 2016, 72, 493–500. [Google Scholar] [CrossRef]
- Steiner-Bogdaszewska, Ż.; Tajchman, K.; Domaradzki, P.; Florek, M. Composition of fatty acids in bone marrow of red deer from various ecosystems. Molecules 2022. in review. [Google Scholar]
- Leat, W.M.F. Fatty acid composition of the plasma lipids of newborn and maternal ruminants. Biochem. J. 1966, 98, 598–603. [Google Scholar] [CrossRef]
- Scott, T.W.; Setchell, B.P.; Bassett, J. Characterization and metabolism of ovine foetal lipids. Biochem. J. 1967, 104, 1040–1047. [Google Scholar] [CrossRef]
- Noble, R.C.; Steele, W.; Moore, J. The metabolism of linoleic acid by the young lamb. Br. J. Nutr. 1972, 27, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Payne, E. Fatty acid composition of tissue phospholipids of the foetal calf and neonatal lamb, deer calf and piglet as compared with the cow, sheep, deer and pig. Br. J. Nutr. 1978, 39, 53–58. [Google Scholar] [CrossRef]
- Fløjgaard, C.; De Barba, M.; Taberlet, P.; Ejrnaes, R. Body condition, diet and ecosystem function of red deer (Cervus elaphus) in a fenced nature reserve. Glob. Ecol. Conserv. 2017, 11, 312–323. [Google Scholar] [CrossRef]
- Dryden, G.M. Quantitative nutrition of deer: Energy, protein, and water. Anim. Prod. Sci. 2011, 51, 292–302. [Google Scholar] [CrossRef]
- Dryden, G.M. Nutrition of antler growth in deer. Anim. Prod. Sci. 2016, 56, 962–970. [Google Scholar] [CrossRef]
- DEFRA. Department for Environment Food & Rural Affairs. Code of Recommendations for the Welfare of Farmed Deer. Available online: http://www.defra.gov.uk/animalh/welfare/farmed/othersps/deer/pb0055/deercode.htm (accessed on 12 October 2021).
- FEDFA. Federation of European Deer Farmers Associations. Available online: https://www.fedfa.com/ (accessed on 12 October 2021).
- Mattiello, S. Welfare issues of modern deer farming. Ital. J. Anim. Sci. 2009, 8, 205–217. [Google Scholar] [CrossRef]
- Tajchman, K.; Ukalska-Jaruga, A.; Bogdaszewski, M.; Pecio, M.; Dziki-Michalska, K. Accumulation of toxic elements in bone and bone marrow of deer living in various ecosystems. A case study of farmed and wild-living deer. Animals 2020, 10, 2151. [Google Scholar] [CrossRef]
- PN-ISO 1442; Meat and Meat Products—Determination of Moisture Content (Reference Method). The Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-ISO 1444; Meat and Meat Products—Determination of Free Fat Content. The Polish Committee for Standardization: Warsaw, Poland, 2000.
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- AOCS. AOCS Official Method Ce 2–66. Preparation of Methyl Esters of Fatty Acids; American Oil Chemists’ Society: Champaign, IL, USA, 2000. [Google Scholar]
- Domaradzki, P.; Florek, M.; Skałecki, P.; Litwińczuk, A.; Kędzierska-Matysek, M.; Wolanciuk, A.; Tajchman, K. Fatty acid composition, cholesterol content and lipid oxidation indices of intramuscular fat from skeletal muscles of beaver (Castor fiber L.). Meat Sci. 2019, 150, 131–140. [Google Scholar] [CrossRef]
- Neiland, K.A. Weight of dried marrows as indicator of fat in caribou femurs. J. Wildl. Manag. 1970, 34, 904–907. [Google Scholar] [CrossRef]
- Thouzeau, C.; Massemin, S.; Handrich, Y. Bone marrow fat mobilization in relation to lipid and protein catabolism during prolonged fasting in barn owls. J. Comp. Physiol. B 1997, 167, 17–24. [Google Scholar] [CrossRef]
- Janiszewski, P.; Bogdaszewski, M.; Murawska, D.; Tajchman, K. Welfare of farmed deer—Practical aspects. Pol. J. Natur. Sci. 2016, 31, 345–361. [Google Scholar]
- Cordain, L.; Watkins, B.A.; Florant, G.L.; Kelher, M.; Rogers, L.; Li, Y. Fatty acid analysis of wild ruminant tissues: Evolutionary implications for reducing diet-related chronic disease. Eur. J. Clin. Nutr. 2002, 56, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, A.; Bernard, L.; Meynadier, A.; Malpuech-Brugere, C. Production of trans and conjugated fatty acids in diary ruminants and their putative effects on human health: A review. Biochimie 2017, 141, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Sugár, L.; Nagy, I. Fatty Acid Composition in the Bone Marrow Fats of Cervidae. In The Biology of Deer; Brown, R.D., Ed.; Springer: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Meng, M.; West, G.; Irving, L. Fatty acid composition of caribou bone marrow. Comp. Biochem. Physiol. 1969, 30, 187–191. [Google Scholar] [CrossRef]
- West, G.C.; Shaw, D.L. Fatty acid composition of Dall sheep bone marrow. Comp. Biochem. Physiol. Part B 1975, 50, 599–601. [Google Scholar] [CrossRef]
- Käkelä, R.; Hyvärinen, H. Site-specific fatty acid composition in adipose tissues of several northern aquatic and terrestrial mammals. Comp. Biochem. Physiol. Part B 1996, 115, 501–514. [Google Scholar] [CrossRef]
- Irving, L. Arctic Life of Birds and Mammals Including Man; Springer: New York, NY, USA, 1972. [Google Scholar]
Variable | Pasture | Indoor | Statistics | |||
---|---|---|---|---|---|---|
M | SD | M | SD | p-Value | Test | |
Body weight (kg) | 32.17 | 3.10 | 41.57 | 4.31 | 0.001 | t |
Bone marrow composition (%) | ||||||
Fat | 75.09 | 6.60 | 83.11 | 5.32 | 0.034 | t |
Moisture | 11.15 | 1.53 | 11.24 | 1.45 | 0.914 | t |
FFM | 13.76 | 6.48 | 5.61 | 3.69 | 0.016 | t |
Fatty acid percentage (%) | ||||||
C14:0 | 2.59 | 0.34 | 2.68 | 0.37 | 0.637 | t |
C16:0 | 17.44 | 0.58 | 15.95 | 0.53 | <0.001 | t |
C18:0 | 3.18 | 0.32 | 2.80 | 0.26 | 0.039 | K-S |
∑SFA | 23.34 | 0.87 | 21.60 | 0.61 | 0.001 | t |
C15:0 | 1.06 | 0.07 | 0.98 | 0.09 | 0.140 | t |
∑OCFA | 11.42 | 1.80 | 10.03 | 0.61 | 0.079 | t |
C18:0iso | 1.33 | 0.23 | 1.32 | 0.21 | 0.938 | t |
∑BCFA | 3.70 | 0.39 | 3.48 | 0.18 | >0.100 | K-S |
C14:1 c9 | 1.72 | 0.18 | 1.96 | 0.27 | 0.101 | t |
C15:1 | 8.14 | 1.70 | 6.67 | 0.51 | 0.052 | t |
C16:1 c9 | 11.84 | 0.80 | 13.26 | 0.89 | 0.012 | t |
C17:1 c9 | 1.45 | 0.10 | 1.61 | 0.10 | 0.020 | t |
C18:1 n-9 | 37.74 | 1.67 | 39.14 | 0.76 | 0.070 | t |
C18:1c11 | 1.77 | 0.12 | 2.75 | 0.26 | < 0.001 | t |
∑MUFA cis | 54.65 | 1.33 | 58.90 | 0.95 | <0.001 | t |
C18:2 n-6 LA | 1.44 | 0.11 | 1.46 | 0.09 | 0.776 | t |
CLA | 1.04 | 0.13 | 0.83 | 0.10 | 0.008 | t |
∑PUFA | 3.88 | 0.43 | 3.63 | 0.29 | 0.243 | t |
∑n-3 | 0.98 | 0.18 | 0.92 | 0.10 | >0.100 | K-S |
∑n-6 | 1.65 | 0.15 | 1.66 | 0.13 | 0.831 | t |
∑MUFA trans | 1.60 | 0.20 | 1.21 | 0.08 | <0.005 | K-S |
ΣC18:2 trans | 1.07 | 0.12 | 0.77 | 0.05 | <0.001 | t |
∑TFA | 2.99 | 0.34 | 2.34 | 0.07 | <0.005 | K-S |
n-6/n-3 | 1.71 | 0.21 | 1.81 | 0.18 | 0.379 | t |
PUFA/SFA | 0.17 | 0.02 | 0.17 | 0.02 | 0.834 | t |
Component | Eigenvalue | Proportion | Cumulative |
---|---|---|---|
1 | 8.56 | 50.34 | 50.34 |
2 | 5.42 | 31.88 | 82.22 |
3 | 1.31 | 7.73 | 89.95 |
4 | 0.63 | 3.72 | 93.67 |
5 | 0.40 | 2.34 | 96.01 |
6 | 0.29 | 1.73 | 97.74 |
7 | 0.17 | 1.02 | 98.76 |
8 | 0.13 | 0.76 | 99.52 |
9 | 0.05 | 0.30 | 99.82 |
10 | 0.02 | 0.12 | 99.94 |
11 | 0.01 | 0.06 | 99.99 |
12 | 0.00 | 0.00 | 100.00 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Body weight (kg) | 0.847 | −0.073 | 0.398 |
Fat (%) | 0.621 | 0.460 | 0.264 |
FFM (%) | −0.695 | −0.560 | −0.252 |
SFA | −0.829 | −0.013 | 0.471 |
C16:0 | −0.830 | −0.273 | 0.412 |
MUFA cis | 0.922 | 0.343 | 0.019 |
C16:1 c9 | 0.764 | −0.339 | −0.402 |
C18:1 c11 | 0.910 | 0.218 | 0.142 |
C18:1 n-9 | 0.496 | 0.732 | 0.339 |
C15:1 | −0.491 | −0.755 | −0.326 |
MUFA trans | −0.882 | 0.429 | 0.035 |
C18:1 t11 VA | −0.875 | 0.372 | 0.119 |
C18:2 trans | −0.919 | 0.093 | −0.191 |
TFA | −0.913 | 0.334 | −0.063 |
PUFA | −0.454 | 0.855 | −0.156 |
n-3 | −0.353 | 0.882 | −0.038 |
n-6 | −0.112 | 0.836 | −0.330 |
PUFA/SFA | −0.017 | 0.885 | −0.442 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner-Bogdaszewska, Ż.; Tajchman, K.; Domaradzki, P.; Florek, M. Composition and Fatty Acid Profile of Bone Marrow in Farmed Fallow Deer (Dama dama) Depending on Diet. Animals 2022, 12, 941. https://doi.org/10.3390/ani12080941
Steiner-Bogdaszewska Ż, Tajchman K, Domaradzki P, Florek M. Composition and Fatty Acid Profile of Bone Marrow in Farmed Fallow Deer (Dama dama) Depending on Diet. Animals. 2022; 12(8):941. https://doi.org/10.3390/ani12080941
Chicago/Turabian StyleSteiner-Bogdaszewska, Żaneta, Katarzyna Tajchman, Piotr Domaradzki, and Mariusz Florek. 2022. "Composition and Fatty Acid Profile of Bone Marrow in Farmed Fallow Deer (Dama dama) Depending on Diet" Animals 12, no. 8: 941. https://doi.org/10.3390/ani12080941
APA StyleSteiner-Bogdaszewska, Ż., Tajchman, K., Domaradzki, P., & Florek, M. (2022). Composition and Fatty Acid Profile of Bone Marrow in Farmed Fallow Deer (Dama dama) Depending on Diet. Animals, 12(8), 941. https://doi.org/10.3390/ani12080941