Detection of Chlamydial DNA from Mediterranean Loggerhead Sea Turtles in Southern Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chlamydiaceae Screening
2.3. Detection of Potential Zoonotic Chlamydiaceae
3. Results
3.1. Chlamydiaceae Screening
3.2. Detection of Potential Zoonotic Chlamydiaceae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayramova, F.; Jacquier, N.; Greub, G. Insight in the biology of Chlamydia-related bacteria. Microbes Infect. 2018, 20, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Borel, N.; Polkinghorne, A.; Pospischil, A. A Review on Chlamydial Diseases in Animals: Still a Challegne for Pathologists? Vet. Pathol. 2018, 55, 374–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, N.L.; Polinghorne, A.; Timms, P. Chlamydia genomics: Providing novel insights into chlamydial biology. Trends Microbiol. 2014, 22, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Everett, K.D.; Bush, R.M.; Andersen, A.A. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 1999, 49, 415–440. [Google Scholar]
- Laroucau, K.; Ortega, N.; Vorimore, F.; Aaziz, R.; Mitura, A.; Szymanska-Czerwinska, M.; Cicerol, M.; Salinas, J.; Sachse, K.; Caro, M.R. Detection of a novel Chlamydia species in captive spur-thighed tortoises (Testudo graeca) in southeastern Spain and proposal of Candidatus Chlamydia testudinis. Syst. Appl. Microbiol. 2020, 43, 126071. [Google Scholar] [CrossRef]
- Pillonel, T.; Bertelli, C.; Salamin, N.; Greub, G. Taxogenomics of the order Chlamydiales. Int. J. Evol. Microbiol. 2015, 65, 1381–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachse, K.; Laroucau, K.; Riege, K.; Wehner, S.; Dilcher, M.; Creasy, H.H.; Weidmann, M.; Myers, G.; Vorimore, F.; Vicari, N.; et al. Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Syst. Appl. Microbiol. 2014, 37, 79–88. [Google Scholar] [CrossRef]
- Sachse, K.; Bavoil, P.; Kaltenboeck, B.; Stephens, R.; Kuo, C.; Rosselló-Móra, R.; Horn, M. Emendation of the family Chlamydiaceae: Proposal of a single genus, Chlamydia, to include all currently recognized species. Syst. Appl. Microbiol. 2015, 38, 99–103. [Google Scholar] [CrossRef]
- Bodetti, T.J.; Jacobson, E.; Wan, C.; Hafner, L.; Pospischil, A.; Rose, K.; Timms, P. Molecular Evidence to Support the Expansion of the Hostrange of Chlamydophila pneumoniae to Include Reptiles as Well as Humans, Horses, Koalas and Amphibians. Syst. Appl. Microbiol. 2002, 25, 146–152. [Google Scholar] [CrossRef]
- Burnard, D.; Polkinghorne, A. Chlamydial infections in wildlife–conservation threats and/or reservoirs of ‘spill-over’ infections? Vet. Microbiol. 2016, 196, 78–84. [Google Scholar] [CrossRef]
- Knittler, M.R.; Berndt, A.; Böcker, S.; Dutow, P.; Hänel, F.; Heuer, D.; Kägebein, D.; Klos, A.; Koch, S.; Liebler-Tenorio, E.; et al. Chlamydia psittaci: New insights into genomic diversity, clinical pathology, host–pathogen interaction and anti-bacterial immunity. Int. J. Med. Microbiol. 2014, 304, 877–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longbottom, D.; Coulter, L.J. Animal chlamydioses and zoonotic implications. J. Comp. Pathol. 2003, 128, 217–244. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.M.; Hutton, S.; Myers, G.S.A.; Brunham, R.; Timms, P. Chlamydia pneumoniae Is Genetically Diverse in Animals and Appears to Have Crossed the Host Barrier to Humans on (At Least) Two Occasions. PLoS Pathog. 2010, 6, e1000903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodetti, T.J.; Viggers, K.; Warren, K.; Swan, R.; Conaghty, S.; Sims, C.; Timms, P. Wide range of Chlamydiales types detected in native Australian mammals. Vet. Microbiol. 2003, 96, 177–187. [Google Scholar] [CrossRef]
- Pospisil, L.; Canderle, J. Chlamydia (Chlamydophila) pneumoniae in animals: A review. Vet. Med. 2004, 49, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Ebani, V.V. Domestic reptiles as source of zoonotic bacteria: A mini review. Asian Pac. J. Trop. Med. 2017, 10, 723–728. [Google Scholar] [CrossRef]
- Kabeya, H.; Sato, S.; Maruyama, S. Prevalence and characterization of Chlamydia DNA in zoo animals in Japan. Microbiol. Immunol. 2015, 59, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.E.; Huff, C.G. Saurian malarial parasites of the United States and Mexico. J. Infect. Dis. 1944, 74, 68–79. [Google Scholar] [CrossRef]
- Frutos, M.C.; Monetti, M.S.; Ré, V.E.; Cuffini, C.G. Molecular evidence of Chlamydophila pneumoniae infection in reptiles in Argentina. Rev. Argent. Microbiol. 2014, 46, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, E.; Heard, D.; Andersen, A. Identification of Chlamydophila pneumoniae in an emerald tree boa, Corallus caninus. J. Vet. Diagn. Investig. 2004, 16, 153–154. [Google Scholar] [CrossRef] [Green Version]
- Mitura, A.; Niemczuk, K.; Zaręba, K.; Zajac, M.; Laroucau, K.; Szymanska-Czerwinska, M. Free-living and captive turtles and tortoises as carriers of new Chlamydia spp. PLoS ONE 2017, 12, e0185407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sariya, L.; Kladmanee, K.; Bhusri, B.; Thaijongrak, P.; Tonchiangsai, K.; Chaichoun, K.; Ratanakorn, P. Molecular evidence for genetic distinctions between Chlamydiaceae detected in Siamese crocodiles (Crocodylus siamensis) and known Chlamydiaceae species. Jpn J. Vet. Res. 2015, 63, 5–14. [Google Scholar] [PubMed]
- Taylor-Brown, A.; Rüegg, S.; Polkinghorne, A.; Borel, N. Characterisation of Chlamydia pneumoniae and other novel chlamydial infections in captive snakes. Vet. Microbiol. 2015, 178, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Rüegg, S.R.; Regenscheit, N.; Origgi, F.C.; Kaiser, C.; Borel, N. Detection of Chlamydia pneumoniae in a collection of captive snakes and response to treatment with marbofloxacin Vet. J. 2015, 205, 424–426. [Google Scholar]
- Orós, J.; Calabuig, P.; Déniz, S. Digestive pathology of sea turtles stranded in the Canary Islands between 1993 and 2001. Vet. Rec. 2004, 155, 169–174. [Google Scholar] [CrossRef]
- Orós, J.; Torrent, A.; Calabuig, P.; Déniz, S. Diseases and causes of mortality among sea turtles stranded in the Canary Islands, Spain (1998–2001). Dis. Aquat. Org. 2005, 63, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Arizza, V.; Vecchioni, L.; Caracappa, S.; Sciurba, G.; Berlinghieri, F.; Gentile, A.; Persichetti, M.F.; Arculeo, M.; Alduina, R. New insights into the gut microbiome in loggerhead sea turtles Caretta caretta stranded on the Mediterranean coast. PLoS ONE 2019, 14, e0220329. [Google Scholar] [CrossRef] [Green Version]
- Alduina, R.; Gambino, D.; Presentato, A.; Gentile, A.; Sucato, A.; Savoca, D.; Filippello, S.; Visconti, G.; Caracappa, G.; Vicari, D.; et al. Is Caretta Caretta a Carrier of Antibiotic Resistance in the Mediterranean Sea? Antibiotics 2020, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Pace, A.; Dipineto, L.; Fioretti, A.; Hochscheid, S. Loggerhead sea turtles as sentinels in the western Mediterranean: Antibiotic resistance and environment-related modifications of Gram-negative bacteria. Mar. Pollut. Bull. 2019, 149, 110575. [Google Scholar] [CrossRef]
- Blasi, M.F.; Migliore, L.; Mattei, D.; Rotini, A.; Thaller, M.C.; Alduina, R. Antibiotic Resistance of Gram-Negative Bacteria from Wild Captured Loggerhead Sea Turtles. Antibiotics 2020, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Pace, A.; Meomartino, L.; Affuso, A.; Mennonna, G.; Hochscheid, S.; Dipineto, L. Aeromonas induced polyostotic osteomyelitis in a juvenile loggerhead sea turtle Caretta caretta. Dis. Aqua Organ. 2018, 132, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Vega-Manriquez, D.X.; Dávila-Arrellano, R.P.; Eslava-Campos, C.A.; Salazar Jiménez, E.; Negrete-Philippe, A.C.; Raigoza-Figueras, R.; Muñoz-Tenería, F.A. Identification of bacteria present in ulcerative stomatitis lesions of captive sea turtles Chelonia mydas. Vet. Res. Commun. 2018, 42, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Homer, B.L.; Jacobson, E.R.; Schumacher, J.; Scherba, G. Chlamydiosis in mariculture-reared green sea turtles (Chelonia mydas). Vet. Pathol. 1994, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Laroucau, K.; Aaziz, R.; Lécu, A.; Laidebeure, S.; Marquis, O.; Vorimore, F.; Thierry, S.; Briend-Marchal, A.; Miclard, J.; Izembart, A.; et al. A cluster of Chlamydia serpentis cases in captive snakes. Vet. Microbiol. 2020, 240, 108499. [Google Scholar] [CrossRef]
- Taylor-Brown, A.; Bachmann, N.L.; Borel, N.; Polkinghorne, A. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genom. 2016, 17, 710. [Google Scholar] [CrossRef] [Green Version]
- Everett, K.D.; Hornung, L.J.; Andersen, A.A. Rapid detection of the Chlamydiaceae and other families in the order Chlamydiales: Three PCR tests. J. Clin. Microbiol. 1999, 37, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Messmer, T.O.; Skelton, S.K.; Moroney, J.F.; Daugharty, H.; Fields, B.S. Application of a Nested, Multiplex PCR to Psittacosis Outbreaks. J. Clin. Microbiol. 1997, 35, 2043–2046. [Google Scholar] [CrossRef] [Green Version]
- Ehricht, R.; Slickers, P.; Goellner, S.; Hotzel, H.; Sachse, K. Optimized DNA microarray assay allows detection and genotyping of single PCR-amplifiable target copies. Mol. Cell Probes 2006, 20, 60–63. [Google Scholar] [CrossRef]
- Pantchev, A.; Sting, R.; Bauerfeind, R.; Tyczka, J.; Sachse, K. Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using species-specific real-time PCR assays. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 473–484. [Google Scholar] [CrossRef]
- Brittain-Lon, R.; Nord, S.; Olofsson, S.; Westin, J.; Anderson, L.M.; Lindh, M. Multiplex real-time PCR for detection of respiratory tract infections. J. Clin. Virol. 2008, 41, 53–56. [Google Scholar] [CrossRef]
- Hotzel, H.; Blahak, S.; Diller, R.; Sachse, K. Evidence of infection in tortoises by Chlamydia-like organisms that are genetically distinct from known Chlamydiaceae species. Vet. Res. Commun. 2005, 29, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.A. Zoonotic Diseases Associated with Reptiles and Amphibians: An Update. Vet. Clin. N. Am Exot. Anim. Pract. 2011, 14, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Krawiec, M.; Piasecki, T.; Wieliczko, A. Prevalence of Chlamydia psittaci and Other Chlamydia Species in Wild Birds in Poland. Vector Borne Zoonotic Dis. 2015, 15, 652–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, G.S.; Mathews, S.A.; Eppinger, M.; Mitchell, C.; O’Brien, K.K.; White, O.R.; Benahmed, F.; Brunham, R.C.; Read, T.D.; Ravel, J.; et al. Evidence that human Chlamydia pneumoniae was zoonotically acquired. J. Bacteriol. 2009, 191, 7225–7233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christerson, L.; Blomqvist, M.; Grannas, K.; Thollesson, M.; Laroucau, K.; Waldenström, J.; Eliasson, I.; Olsen, B.; Herrmann, B. A novel Chlamydiaceae-like bacterium found in faecal specimens from sea birds from the Bering Sea. Environ. Microbiol. Rep. 2010, 2, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Zocevic, A.; Vorimore, F.; Vicari, N.; Gasparini, J.; Jacquin, L.; Sachse, K.; Magnino, S.; Laroucau, K. A Real-Time PCR Assay for the Detection of Atypical Strains of Chlamydiaceae from Pigeons. PLoS ONE 2013, 8, e58741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicari, N.; Rizzo, F.; Manfredini, A.; Labalestra, I.; Prati, P.; Mandola, M.L.; Magnino, S. Investigation for novel chlamydial species in wild birds. In Proceedings of the 3rd European Meeting on Animal Chlamydioses and Zoonotic Implications (EMAC-3), Maisons Alfort, Paris, France, 24–25 September 2015. [Google Scholar]
Sample ID | Nucleic Acid (ng/µL) | qPCR (Ct) | Additional Amplifications 1 |
---|---|---|---|
1A | 9.7 | 29.84680 | - |
1B 2 | 3.3 | 31.90328 | - |
1C 2 | 2.1 | 31.80111 | - |
2A | 8.5 | 29.61391 | |
2B 2 | 1.3 | 39.11171 | |
2C 2 | 1.9 | 33.49944 | |
3A | 5.4 | 32.20633 | - |
3B 2 | 2.8 | 35.43770 | |
3C 2 | 1.9 | 31.70593 | - |
4A | 3.0 | 31.98068 | - |
4B | 13.4 | 34.58099 | - |
4C | 1.3 | 35.92667 | - |
5A | 5.3 | 30.92942 | - |
5B | 1.6 | 34.56563 | - |
5C | 1.8 | 35.63390 | - |
6A 1 | 9.2 | 28.83243 | Chlamydiales |
6B 1 | 2.1 | 31.88915 | Chlamydiales |
6C 1 | 1.7 | 33.06067 | - |
7A | 7.2 | 31.16279 | - |
7B | 5.2 | 30.37660 | - |
7C | 1.1 | 36.90090 | - |
8A 1 | 7.3 | 28.89963 | Chlamydiales |
8B 1 | 3.0 | 32.38595 | Chlamydiales |
8C 1 | 1.4 | 31.53216 | - |
9A | 2.8 | 31.58239 | - |
9B | 1.8 | 33.50734 | - |
9C | 1.1 | 32.81907 | - |
10A | 3.3 | 30.94317 | - |
10B | 1.9 | 33.09943 | - |
10C | 1.3 | 33.46568 | - |
11A | 5.8 | 30.21389 | - |
11B | 2.9 | 33.70123 | - |
11C | 3.1 | 33.34898 | - |
12A | 3.8 | 30.17657 | - |
12B | 2.5 | 33.19109 | - |
12C | 0.9 | 32.72903 | - |
13A | 4.9 | 31.20990 | - |
13B | 3.8 | 30.83905 | - |
13C | 1.2 | 33.44158 | - |
14A | 3.9 | 29.35830 | - |
14B | 16.1 | 31.06517 | - |
14C | 1.3 | 31.41955 | - |
15A | 4.0 | 30.92249 | - |
15B | 1.9 | 32.15538 | - |
15C | 1.0 | 31.38957 | - |
16A | 5.1 | 30.77452 | - |
16B | 1.5 | 31.25544 | - |
16C | 1.5 | 31.95325 | - |
17A | 5.2 | 30.14268 | - |
17B | 2.9 | 32.57115 | - |
17C | 2.4 | 32.85367 | - |
18A 1 | 6.4 | 31.03912 | C. psittaci and C. pneumoniae |
18B | 2.6 | 31.28868 | - |
18C | 3.1 | 30.82862 | - |
19A 1 | 2.7 | 35.64708 | - |
19B | 1.7 | 33.34993 | - |
19C | 1.5 | 31.18465 | - |
20A 1 | 4.0 | 31.96051 | - |
20B | 1.5 | 32.90759 | - |
20C | 2.5 | 32.80456 | - |
Sequence ID | Scientific Name | Query Cover | E Value | Per. Identity | Accession |
---|---|---|---|---|---|
6b | Tenacibaculum singaporense | 97% | 0.0 | 93.61 | CP032548.1 |
8b | Tenacibaculum singaporense | 96% | 0.0 | 95.71 | CP032548.1 |
pJET 6a1 | Uncultured bacterium | 85% | 6.00E-150 | 86.16 | KX158563.1 |
pJET 6a2 | Uncultured bacterium- | 84% | 6.00E-150 | 86.16 | KX158563.1 |
pJET 6a3 | Luteolibacter ambystomatis | 89% | 2.00E-165 | 85.14 | CP073100.1 |
pJET 6a4 | Polaribacter sp. G4M1 | 90% | 0.0 | 91.51 | CP071795.1 |
pJET 6a5 | Polaribacter sp. G4M1 | 93% | 0.0 | 91.51 | CP071795.1 |
18a C. pneumoniae | Chlamydiales bacterium V4346-00 | 88% | 3.00E-95 | 95.93 | AY845420.1 |
18a C. psittaci | Chlamydiales bacterium V4346-00 | 94% | 8.00E-48 | 96.00 | AY845420.1 |
Sample ID | qPCR | Chlamydia spp. |
---|---|---|
1A | - | - |
2A | - | - |
3A | Positive | None |
4A | - | - |
4B | - | - |
4C | - | - |
5A | - | - |
5B | - | - |
5C | - | - |
6A | - | - |
6B | - | - |
6C | - | - |
7A | - | - |
7B | - | - |
7C | - | - |
8A | - | - |
8B | - | - |
8C | - | - |
9A | - | - |
9B | Positive | None |
9C | - | - |
10A | Positive | None |
10B | Positive | None |
10C | - | - |
11A | - | - |
11B | Positive | None |
11C | - | - |
12A | - | - |
12B | - | - |
12C | - | - |
13A | - | - |
13B | Positive | None |
13C | - | - |
14A | - | - |
14B | - | - |
14C | - | - |
15A | - | - |
15B | - | - |
15C | Positive | None |
16A | - | - |
16B | - | - |
16C | - | - |
17A | - | - |
17B | - | - |
17C | - | - |
18A | Positive | C. pneumoniae |
18B | Positive | C. pneumoniae |
18C | Positive | None |
19A | - | - |
19B | - | - |
19C | - | - |
20A | - | - |
20B | Positive | None |
20C | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pace, A.; Vicari, N.; Rigamonti, S.; Magnino, S.; Borrelli, L.; Dipineto, L.; Fioretti, A.; Hochscheid, S.; Tavares, L.; Duarte, A. Detection of Chlamydial DNA from Mediterranean Loggerhead Sea Turtles in Southern Italy. Animals 2022, 12, 715. https://doi.org/10.3390/ani12060715
Pace A, Vicari N, Rigamonti S, Magnino S, Borrelli L, Dipineto L, Fioretti A, Hochscheid S, Tavares L, Duarte A. Detection of Chlamydial DNA from Mediterranean Loggerhead Sea Turtles in Southern Italy. Animals. 2022; 12(6):715. https://doi.org/10.3390/ani12060715
Chicago/Turabian StylePace, Antonino, Nadia Vicari, Sara Rigamonti, Simone Magnino, Luca Borrelli, Ludovico Dipineto, Alessandro Fioretti, Sandra Hochscheid, Luís Tavares, and Ana Duarte. 2022. "Detection of Chlamydial DNA from Mediterranean Loggerhead Sea Turtles in Southern Italy" Animals 12, no. 6: 715. https://doi.org/10.3390/ani12060715
APA StylePace, A., Vicari, N., Rigamonti, S., Magnino, S., Borrelli, L., Dipineto, L., Fioretti, A., Hochscheid, S., Tavares, L., & Duarte, A. (2022). Detection of Chlamydial DNA from Mediterranean Loggerhead Sea Turtles in Southern Italy. Animals, 12(6), 715. https://doi.org/10.3390/ani12060715