Organic UV Filters Induce Toll-like-Receptors and Related Signaling Pathways in Peripheral Blood Mononuclear Cells of Juvenile Loggerhead Sea Turtles (Caretta caretta)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Handlings
2.2. Real-Time Reverse Transcription PCR (qRT-PCR)
2.3. Lipid Peroxidation (LPO)
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaath, N.A. Ultraviolet filters. Photochem. Photobiol. Sci. 2010, 9, 464–469. [Google Scholar] [CrossRef]
- Kerr, A.C. A survey of the availability of sunscreen filters in the UK. Clin. Exp. Dermatol. 2011, 36, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Manova, E.; von Goetz, N.; Hauri, U.; Bogdal, C.; Hungerbuhler, K. Organic UV filters in personal care products in Switzerland: A survey of occurrence and concentrations. Int. J. Hyg. Environ. Health 2013, 216, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Chaiyabutr, C.; Sukakul, T.; Kumpangsin, T.; Bunyavaree, M.; Charoenpipatsin, N.; Wongdama, S.; Boonchai, W. Ultraviolet filters in sunscreens and cosmetic products—A market survey. Contact Dermat. 2021, 85, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.R.; Law, J.C.F.; Lam, T.K.; Leung, K.S.Y. Risks of organic UV filters: A review of environmental and human health concern studies. Sci. Total Environ. 2021, 755, 142486. [Google Scholar] [CrossRef] [PubMed]
- Coronado, M.; De Haro, H.; Deng, X.; Rempel, M.A.; Lavado, R.; Schlenk, D. Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish. Aquat. Toxicol. 2008, 90, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Kunz, P.Y.; Gries, T.; Fent, K. The ultraviolet filter 3-benzylidene camphor adversely affects reproduction in fathead minnow (Pimephales promelas). Toxicol. Sci. Off. J. Soc. Toxicol. 2006, 93, 311–321. [Google Scholar] [CrossRef]
- Cocci, P.; Mosconi, G.; Palermo, F.A. Sunscreen active ingredients in loggerhead turtles (Caretta caretta) and their relation to molecular markers of inflammation, oxidative stress and hormonal activity in wild populations. Mar. Pollut. Bull. 2020, 153, 111012. [Google Scholar] [CrossRef]
- Caloni, S.; Durazzano, T.; Franci, G.; Marsili, L. Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. Diversity 2021, 13, 374. [Google Scholar] [CrossRef]
- Oral, D.; Yirun, A.; Erkekoglu, P. Safety Concerns of Organic Ultraviolet Filters: Special Focus on Endocrine-Disrupting Properties. J. Environ. Pathol. Toxicol. Oncol. 2020, 39, 201–212. [Google Scholar] [CrossRef]
- Kinnberg, K.L.; Petersen, G.I.; Albrektsen, M.; Minghlani, M.; Awad, S.M.; Holbech, B.F.; Green, J.W.; Bjerregaard, P.; Holbech, H. Endocrine-disrupting effect of the ultraviolet filter benzophenone-3 in zebrafish, Danio rerio. Environ. Toxicol. Chem. 2015, 34, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jung, D.; Kho, Y.; Choi, K. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)—A two generation exposure study. Aquat. Toxicol. 2014, 155, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Bluthgen, N.; Zucchi, S.; Fent, K. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicol. Appl. Pharm. 2012, 263, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Dietz, R.; Letcher, R.J.; Desforges, J.P.; Eulaers, I.; Sonne, C.; Wilson, S.; Andersen-Ranberg, E.; Basu, N.; Barst, B.D.; Bustnes, J.O.; et al. Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Sci. Total. Environ. 2019, 696, 133792. [Google Scholar] [CrossRef]
- Ross, P.; DeSwart, R.; Addison, R.; VanLoveren, H.; Vos, J.; Osterhaus, A. Contaminant-induced immunotoxicity in harbour seals: Wildlife at risk? Toxicology 1996, 112, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.M.; McClellan-Green, P.D.; Kucklick, J.R.; Keil, D.E.; Peden-Adams, M.M. Effects of organochlorine contaminants on loggerhead sea turtle immunity: Comparison of a correlative field study and in vitro exposure experiments. Environ. Health Persp. 2006, 114, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Hannam, M.L.; Bamber, S.D.; Moody, A.J.; Galloway, T.S.; Jones, M.B. Immunotoxicity and oxidative stress in the Arctic scallop Chlamys islandica: Effects of acute oil exposure. Ecotoxicol. Environ. Saf. 2010, 73, 1440–1448. [Google Scholar] [CrossRef]
- Pichaud, N.; Pellerin, J.; Fournier, M.; Gauthier-Clerc, S.; Rioux, P.; Pelletier, E. Oxidative stress and immunologic responses following a dietary exposure to PAHs in Mya arenaria. Chem. Cent. J. 2008, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Bogdan, C.; Rollinghoff, M.; Diefenbach, A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 2000, 12, 64–76. [Google Scholar] [CrossRef]
- Gill, R.; Tsung, A.; Billiar, T. Linking oxidative stress to inflammation: Toll-like receptors. Free Radic. Biol. Med. 2010, 48, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Werling, D.; Jungi, T.W. TOLL-like receptors linking innate and adaptive immune response. Vet. Immunol. Immunop. 2003, 91, 1382–1387. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, Z.; Liu, J.; Zhao, J.; Yin, D.L. Ectodomain Architecture Affects Sequence and Functional Evolution of Vertebrate Toll-like Receptors. Sci. Rep. 2016, 6, 26705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.S.; Liang, Q.; Li, W.F.; Gu, Y.X.; Liao, X.; Fang, W.H.; Li, X.L. Characterization and functional analysis of toll-like receptor 4 in Chinese soft-shelled turtle Pelodiscus sinensis. Dev. Comp. Immunol. 2016, 63, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.S.; Li, Q.F.; Yang, P.; Gandahi, J.A.; Arain, T.S.; Le, Y.; Zhang, Q.; Liu, T.F.; Waqas, M.Y.; Ahmad, N.; et al. Expression of TLR2/4 on epididymal spermatozoa of the chinese soft-shelled turtle Pelodiscus sinensis during the hibernation season. Anat. Rec. 2016, 299, 1578–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.F.; Han, Y.W.; Chen, S.L.; Zhao, H.Y. Genome-wide identification of Toll-like receptors in the Chinese soft-shelled turtle Pelodiscus sinensis and expression analysis responding to Aeromonas hydrophila infection. Fish Shellfish Immun. 2019, 87, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Casale, P.; Freggi, D.; Basso, R.; Argano, R. Size at male maturity, sexing methods and adult sex ratio in loggerhead turtles (Caretta caretta) from Italian waters investigated through tail measurements. Herpetol. J. 2005, 15, 145–148. [Google Scholar]
- Casale, P.; Mazaris, A.D.; Freggi, D. Estimation of age at maturity of loggerhead sea turtles Caretta caretta in the Mediterranean using length-frequency data. Endanger. Species Res. 2011, 13, 123–129. [Google Scholar] [CrossRef]
- Cocci, P.; Bracchetti, L.; Angelini, V.; Bucchia, M.; Pari, S.; Mosconi, G.; Palermo, F.A. Development and pre-validation of a testosterone enzyme immunoassay (EIA) for predicting the sex ratio of immature loggerhead sea turtles (Caretta caretta) recovered along the western coast of the central Adriatic Sea. Mar. Biol. 2014, 161, 165–171. [Google Scholar] [CrossRef]
- ISPRA. Guidelines for the Recovery, Rescue, and Management of Sea Turtles for the Purposes of Rehabilitation and for Scientific Purposes; Handbooks and Guidelines; ISPRA: Roma, Italy, 2013; Volume 89, ISBN 978-88-448-0608-8. [Google Scholar]
- Margaritoulis, D.; Argano, R.; Baran, I.; Bentivegna, F.; Bradai, M.N.; Caminas, J.A.; Casale, P.; De Metrio, G.; Demetropoulos, A.; Gerosa, G.; et al. Loggerhead turtles in the Mediterranean Sea: Present knowledge and conservation perspectives. In Loggerhead Sea Turtles; Bolten, A.B., Witherington, B.E., Eds.; Smithsonian Institution Press: Washington, DC, USA, 2003; pp. 175–198. [Google Scholar]
- Cocci, P.; Mosconi, G.; Palermo, F.A. Gene expression profiles of putative biomarkers in juvenile loggerhead sea turtles (Caretta caretta) exposed to polycyclic aromatic hydrocarbons. Environ. Pollut. 2019, 246, 99–106. [Google Scholar] [CrossRef]
- Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018, 59, 391–412. [Google Scholar] [CrossRef]
- Frantz, S.; Kelly, R.A.; Bourcier, T. Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J. Biol. Chem. 2001, 276, 5197–5203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasselon, T.; Detmers, P.A. Toll receptors: A central element in innate immune responses. Infect. Immun. 2002, 70, 1033–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieser, K.J.; Kagan, J.C. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol. 2017, 17, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Miller, Y.I.; Choi, S.H.; Wiesner, P.; Fang, L.; Harkewicz, R.; Hartvigsen, K.; Boullier, A.; Gonen, A.; Diehl, C.J.; Que, X.; et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 2011, 108, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.Y.; Fogelstrand, L.; Hartvigsen, K.; Hansen, L.F.; Woelkers, D.; Shaw, P.X.; Choi, J.; Perkmann, T.; Backhed, F.; Miller, Y.I.; et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Investig. 2009, 119, 1335–1349. [Google Scholar] [CrossRef] [Green Version]
- West, X.Z.; Malinin, N.L.; Merkulova, A.A.; Tischenko, M.; Kerr, B.A.; Borden, E.C.; Podrez, E.A.; Salomon, R.G.; Byzova, T.V. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 2010, 467, 972–976. [Google Scholar] [CrossRef]
- Wu, M.Y.; Hung, S.K.; Fu, S.L. Immunosuppressive effects of fisetin in ovalbumin-induced asthma through inhibition of NF-kappa B activity. J. Agric. Food Chem. 2011, 59, 10496–10504. [Google Scholar] [CrossRef]
- Kim, K.W.; Cho, M.L.; Park, M.K.; Yoon, C.H.; Park, S.H.; Lee, S.H.; Kim, H.Y. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappa B-dependent pathway in patients with rheumatoid arthritis. Arthritis Res. Ther. 2005, 7, R139–R148. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Chen, J.; Xie, C.M.; Zhao, Y.; Wang, X.; Zhang, Y.H. Maternal Disononyl Phthalate Exposure Activates Allergic Airway Inflammation via Stimulating the Phosphoinositide 3-kinase/Akt Pathway in Rat Pups. Biomed. Environ. Sci. 2015, 28, 190–198. [Google Scholar] [CrossRef]
- Bolling, A.K.; Ovrevik, J.; Samuelsen, J.T.; Holme, J.A.; Rakkestad, K.E.; Mathisen, G.H.; Paulsen, R.E.; Korsnes, M.S.; Becher, R. Mono-2-ethylhexylphthalate (MEHP) induces TNF-alpha release and macrophage differentiation through different signalling pathways in RAW264.7 cells. Toxicol. Lett. 2012, 209, 43–50. [Google Scholar] [CrossRef]
- Kheradmand, F.; Werner, E.; Tremble, P.; Symons, M.; Werb, Z. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 1998, 280, 898–902. [Google Scholar] [CrossRef]
- Sulciner, D.J.; Irani, K.; Yu, Z.X.; Ferrans, V.J.; Goldschmidt-Clermont, P.; Finkel, T. rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation. Mol. Cell. Biol. 1996, 16, 7115–7121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jefferies, C.A.; O’Neill, L.A. Rac1 regulates interleukin 1-induced nuclear factor kappaB activation in an inhibitory protein kappaBalpha-independent manner by enhancing the ability of the p65 subunit to transactivate gene expression. J. Biol. Chem. 2000, 275, 3114–3120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreiro, D.U.; Komives, E.A. Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha. Biochemistry 2010, 49, 1560–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu. Rev. Immunol. 2000, 18, 621–663. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, T.L.; Holodick, N.E. Activation of B-1 Cells. Encycl. Immunobiol. 2016, 3, 237–243. [Google Scholar]
- Nishioka, J.; Iwahara, C.; Kawasaki, M.; Yoshizaki, F.; Nakayama, H.; Takamori, K.; Ogawa, H.; Iwabuchi, K. Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages. Inflamm. Res. 2012, 61, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.E. Alterations in macrophage functions by environmental chemicals. Environ. Health Perspect. 1984, 55, 343–358. [Google Scholar] [CrossRef]
- Fu, J.; Shi, Q.; Song, X.; Xia, X.; Su, C.; Liu, Z.; Song, E.; Song, Y. Tetrachlorobenzoquinone exhibits neurotoxicity by inducing inflammatory responses through ROS-mediated IKK/IkappaB/NF-kappaB signaling. Environ. Toxicol. Pharmacol. 2016, 41, 241–250. [Google Scholar] [CrossRef]
- Ao, J.; Yuan, T.; Gao, L.; Yu, X.; Zhao, X.; Tian, Y.; Ding, W.; Ma, Y.; Shen, Z. Organic UV filters exposure induces the production of inflammatory cytokines in human macrophages. Sci. Total Environ. 2018, 635, 926–935. [Google Scholar] [CrossRef]
- Gao, L.; Yuan, T.; Zhou, C.Q.; Cheng, P.; Bai, Q.F.; Ao, J.J.; Wang, W.H.; Zhang, H.M. Effects of four commonly used UV filters on the growth, cell viability and oxidative stress responses of the Tetrahymena thermophila. Chemosphere 2013, 93, 2507–2513. [Google Scholar] [CrossRef] [PubMed]
- Gascon, M.; Casas, M.; Morales, E.; Valvi, D.; Ballesteros-Gomez, A.; Luque, N.; Rubio, S.; Monfort, N.; Ventura, R.; Martinez, D.; et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J. Allergy Clin. Immun. 2015, 135, 370–378. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence (5′-3′) | GenBank | PCR Product (bp) | Melting Curve (°C) | Efficiencies (%) |
---|---|---|---|---|---|
IL-6 | CAGTGATCATGCCAGACCCA TCGAACAGCCCTCACAGTTT | XM_043541083.1 | 143 | 83.0 | 98.3 |
IL-12 | GGAACACCAGCCCATTGAGA CCACATGCTCACACTCAGGT | XM_007057267.4 | 122 | 85.5 | 93.4 |
RAC1 | TTACACAGCGAGGCCTCAAG CCTTGTTCCGAGCAAAGCAC | XM_027823047.3 | 156 | 85.4 | 95.3 |
AKT3 | AGTGACGTCGGGAGTTTTCC GCTACATGGAGCGAGCGTC | XM_037895339.2 | 174 | 87.7 | 94.8 |
TNF-α | TGAGCACCGAAAGTCTGGTC TCTGAAATGCAGCAGAGCGA | XM_027821468.3 | 155 | 90.3 | 96.7 |
PI3K | AGCGAGAGCTGAGGATCTTCTTT CATGCCAAACCTTCATTGCTTCC | XM_037909268.2 | 159 | 84.1 | 98.5 |
TLR1 | TTAACTGAGCTGCCTGGGTG GGAATGGATTGTGCCCTCCT | XM_007059713.3 | 142 | 82.6 | 96.5 |
TLR2 | TGGTGAAGAATGTGCCTGCT AGACCGTGCTTTACGTCTGG | XM_027821652.3 | 128 | 84.1 | 95.7 |
NF-kB | CGCGTGAGGCTCTTAAAATGG TGGTCCATCTGTTCGTAGTGG | XM_007054382.4 | 155 | 88.0 | 92.1 |
IkBα | CCAGGGGCCTTTAGGTAAGC GTTCCAACCTGCTGGCATTC | XM_037900614.2 | 112 | 80.8 | 96.1 |
18s rRNA | CGTTCTTAGTTGGTGGAGCG AACGCCACTTGTCCCTCTAA | HQ914786.1 | 124 | 85.3 | 100.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocci, P.; Mosconi, G.; Palermo, F.A. Organic UV Filters Induce Toll-like-Receptors and Related Signaling Pathways in Peripheral Blood Mononuclear Cells of Juvenile Loggerhead Sea Turtles (Caretta caretta). Animals 2022, 12, 594. https://doi.org/10.3390/ani12050594
Cocci P, Mosconi G, Palermo FA. Organic UV Filters Induce Toll-like-Receptors and Related Signaling Pathways in Peripheral Blood Mononuclear Cells of Juvenile Loggerhead Sea Turtles (Caretta caretta). Animals. 2022; 12(5):594. https://doi.org/10.3390/ani12050594
Chicago/Turabian StyleCocci, Paolo, Gilberto Mosconi, and Francesco Alessandro Palermo. 2022. "Organic UV Filters Induce Toll-like-Receptors and Related Signaling Pathways in Peripheral Blood Mononuclear Cells of Juvenile Loggerhead Sea Turtles (Caretta caretta)" Animals 12, no. 5: 594. https://doi.org/10.3390/ani12050594