Rewilding Apex Predators Has Effects on Lower Trophic Levels: Cheetahs and Ungulates in a Woodland Savanna
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ungulate Data
2.3. Cheetah Releases
2.4. Data Analysis
- I.
- Visitation rate (relative abundance) hypothesis: We constructed two model sets that differed in the response variable. One set included independent species-specific visits of ungulates recorded per waterhole survey session, whereas the other considered herd size as the response variable, respectively. We included experimental treatment (cheetah presence/absence), ungulate body size (3 classes), and season (3 seasons) as explanatory variables, with an interaction effect between treatment and body size. To test for zero inflation, we compared a Poisson model for count data to a negative binomial model and a zero-inflated Poisson model, ranking them based on their BIC values with the R package performance [54]. We tested the influence of including waterhole identity as random effect, but excluded it from the model sets, as analysis of variance tests showed that the random effect did not outperform fixed effects models (Tables S3 and S4). Models were run with the function “glmmTMB” from R package glmmTMB [55] and “zi” from R package pscl [56]. Model diagnostics were evaluated with R package DHARMa [57].
- II.
- Vigilance and/or resource maximization hypothesis: We built one model with the ungulate duration of visits at the waterholes (seconds) as the response variable, and treatment, body size, and season as explanatory variables. We included an interaction effect between treatment and body size. The response variable was log-transformed to meet model assumptions of normality and homoscedasticity. Waterhole identity was again tested as a random effect, but was not retained in the final model set, as it did not explain additional variation.
- III.
- Temporal segregation hypothesis: We determined whether ungulates adjusted their activity patterns according to cheetah presence vs. absence using the R package overlap [58]. To test whether activity patterns of ungulates differed significantly with and without cheetahs in the system, we used the Watson–Wheeler test in the R package circular [59]. Due to sample size limitations, we did not generate activity patterns by ungulate body size class and season.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallach, A.D.; Izhaki, I.; Toms, J.D.; Ripple, W.J.; Shanas, U. What Is an Apex Predator? Oikos 2015, 124, 1453–1461. [Google Scholar] [CrossRef]
- Wallach, A.D.; Ripple, W.J.; Carroll, S.P. Novel trophic cascades: Apex predators enable coexistence. Trends Ecol. Evol. 2015, 30, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Palomares, F.; Caro, T.M. Interspecific Killing among Mammalian Carnivores. Am. Nat. 1999, 153, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Laundré, J.W.; Hernández, L.; Altendorf, K.B. Wolves, Elk, and Bison: Reestablishing the “Landscape of Fear” in Yellowstone National Park, U.S.A. Can. J. Zool. 2001, 79, 1401–1409. [Google Scholar] [CrossRef]
- Thaker, M.; Vanak, A.T.; Owen, C.R.; Ogden, M.B.; Niemann, S.M.; Slotow, R. Minimizing Predation Risk in a Landscape of Multiple Predators: Effects on the Spatial Distribution of African Ungulates. Ecology 2011, 92, 398–407. [Google Scholar] [CrossRef]
- Ripple, W.; Bescheta, R. Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems? Bioscience 2004, 54, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Carbone, C.; Pettorelli, N.; Stephens, P.A. The Bigger They Come, the Harder They Fall: Body Size and Prey Abundance Influence Predator–Prey Ratios. Biol. Lett. 2011, 7, 312–315. [Google Scholar] [CrossRef] [Green Version]
- Terborgh, J.; Lopez, L.; Nuñez, P.v.; Rao, M.; Shahabuddin, G.; Orihuela, G.; Riveros, M.; Ascanio, R.; Adler, G.H.; Lambert, T.D.; et al. Ecological Meltdown in Predator-Free Forest Fragments. Science 2001, 294, 1923–1926. [Google Scholar] [CrossRef] [Green Version]
- Atkins, J.L.; Long, R.A.; Pansu, J.; Daskin, J.H.; Potter, A.B.; Stalmans, M.E.; Tarnita, C.E.; Pringle, R.M. Cascading Impacts of Large-Carnivore Extirpation in an African Ecosystem. Science 2019, 364, 173–177. [Google Scholar] [CrossRef]
- Guyton, J.A.; Pansu, J.; Hutchinson, M.C.; Kartzinel, T.R.; Potter, A.B.; Coverdale, T.C.; Daskin, J.H.; da Conceição, A.G.; Peel, M.J.S.; Stalmans, M.E.; et al. Trophic Rewilding Revives Biotic Resistance to Shrub Invasion. Nat. Ecol. Evol. 2020, 4, 712–724. [Google Scholar] [CrossRef]
- Morris, T.; Letnic, M. Removal of an Apex Predator Initiates a Trophic Cascade That Extends from Herbivores to Vegetation and the Soil Nutrient Pool. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen-Smith, N. Ramifying Effects of the Risk of Predation on African Multi-Predator, Multi-Prey Large-Mammal Assemblages and the Conservation Implications. Biol. Conserv. 2019, 232, 51–58. [Google Scholar] [CrossRef]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B.C.; et al. Trophic Downgrading of Planet Earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svenning, J.-C.; Pedersen, P.B.M.; Donlan, C.J.; Ejrnaes, R.; Faurby, S.; Galetti, M.; Hansen, D.M.; Sandel, B.; Sandom, C.J.; Terborgh, J.W.; et al. Science for a Wilder Anthropocene: Synthesis and Future Directions for Trophic Rewilding Research. PNAS 2015, 113, 898–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linnell, J.D.C.; Jackson, C.R. Bringing Back Large Carnivores to Rewild Landscapes. In Rewilding; Ecological Reviews; du Toit, J.T., Pettorelli, N., Durant, S.M., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 248–279. [Google Scholar]
- Fortin, D.; Boyce, M.S.; Merrill, E.H.; Fryxell, J.M. Foraging Costs of Vigilance in Large Mammalian Herbivores. Oikos 2004, 107, 172–180. [Google Scholar] [CrossRef]
- Bump, J.K.; Peterson, R.O.; Vucetich, J.A. Wolves Modulate Soil Nutrient Heterogeneity and Foliar Nitrogen by Configuring the Distribution of Ungulate Carcasses. Ecology 2009, 90, 3159–3167. [Google Scholar] [CrossRef] [Green Version]
- Boyce, M.S. Wolves for Yellowstone: Dynamics in Time and Space. J. Mammal. 2018, 99, 1021–1031. [Google Scholar] [CrossRef]
- Jackson, M.K.; Tatton, N.R.; Smith, D.W. Wolf Recovery in Yellowstone National Park. In Imperiled: The Encyclopedia of Conservation; DellaSala, D.A., Goldstein, M.I., Eds.; Elsevier: Oxford, UK, 2022; pp. 301–312. ISBN 978-0-12-821139-7. [Google Scholar]
- Merrill, E.H.; Boyce, M.S. Summer Range and Elk Population Dynamics in Yellowstone National Park. In The greater Yellowstone ecosystem: Redefining America’s Wilderness Heritage; Keiter, R.B., Boyce, M.S., Eds.; Yale University Press: New Haven, CT, USA, 1999; pp. 263–273. ISBN 9780300059274. [Google Scholar]
- Beschta, R.L. Reduced cottonwood recruitment following extirpation of wolves in Yellowstone’s northern range. Ecology 2005, 86, 391–403. [Google Scholar] [CrossRef]
- Halofsky, J.; Ripple, W. Linkages between Wolf Presence and Aspen Recruitment in the Gallatin Elk Winter Range of Southwestern Montana, USA. For. Int. J. For. Res. 2008, 81, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Brice, E.M.; Larsen, E.J.; MacNulty, D.R. Sampling Bias Exaggerates a Textbook Example of a Trophic Cascade. Ecol. Lett. 2022, 25, 177–188. [Google Scholar] [CrossRef]
- Ford, A.T.; Goheen, J.R.; Otieno, T.O.; Bidner, L.; Isbell, L.A.; Palmer, T.M.; Ward, D.; Woodroffe, R.; Pringle, R.M. Large Carnivores Make Savanna Tree Communities Less Thorny. Science 2014, 346, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Leo, V.; Reading, R.P.; Gordon, C.; Letnic, M. Apex Predator Suppression Is Linked to Restructuring of Ecosystems via Multiple Ecological Pathways. Oikos 2019, 128, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Dalerum, F.; Cameron, E.Z.; Kunkel, K.; Somers, M.J. Diversity and Depletions in Continental Carnivore Guilds: Implications for Prioritizing Global Carnivore Conservation. Biol. Lett. 2008, 5, 35–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, L.T.B.; Pretorius, K.; Carlisle, L.C.; Rickelton, M.; Walker, C.; Slotow, R.; Skinner, J.D. Restoring Lions Panthera Leo to Northern KwaZulu-Natal, South Africa: Short-Term Biological and Technical Success but Equivocal Long-Term Conservation. Oryx 2007, 41, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Marnewick, K.; Hayward, M.W.; Cilliers, D.; Somers, M.J. Survival of Cheetahs Relocated from Ranchland to Fenced Protected Areas in South Africa. In Reintroduction of Top-Order Predators; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 282–306. ISBN 9781444312034. [Google Scholar]
- Yiu, S.-W.; Keith, M.; Karczmarski, L.; Parrini, F. Early Post-Release Movement of Reintroduced Lions (Panthera Leo) in Dinokeng Game Reserve, Gauteng, South Africa. Eur. J. Wildl. Res. 2015, 61, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Briers-Louw, W.D.; Verschueren, S.; Leslie, A.J. Big Cats Return to Majete Wildlife Reserve, Malawi: Evaluating Reintroduction Success. Afr. J. Wildl. Res. 2019, 49, 34–50. [Google Scholar] [CrossRef]
- African Parks. Annual Report: A Charted Course; African Parks: Johannesburg, South Africa, 2020; Available online: https://www.africanparks.org/sites/default/files/uploads/resources/2021-06/AFRICAN%20PARKS%20-%202020%20Annual%20Report%20-%20Web%20Ready%20-%20LowRes_2.pdf (accessed on 6 June 2022).
- Sievert, O.; Fattebert, J.; Marnewick, K.; Leslie, A. Assessing the Success of the First Cheetah Reintroduction in Malawi. Oryx 2022, 56, 505–513. [Google Scholar] [CrossRef]
- Walker, E.H.; Verschueren, S.; Marker, L. Recommendations for the Rehabilitation and Release of Wild-Born, Captive-Raised Cheetahs: The Importance of Pre- and Post-Release Management for Optimising Survival. Oryx 2021, 4, 495–504. [Google Scholar] [CrossRef]
- Ritchie, E.G.; Elmhagen, B.; Glen, A.S.; Letnic, M.; Ludwig, G.; McDonald, R.A. Ecosystem Restoration with Teeth: What Role for Predators? Trends Ecol. Evol. 2012, 27, 265–271. [Google Scholar] [CrossRef]
- Brown, J.S. Vigilance, Patch Use and Habitat Selection: Foraging under Predation Risk. Evol. Ecol. Res. 1999, 1, 49–71. [Google Scholar]
- Chamaillé-Jammes, S.; Valeix, M.; Cromsigt, J. Predator Effects on Herbivore Dynamics and Behavior. In Savanna Woody Plants and Large Herbivores; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 279–308. ISBN 9781119081111. [Google Scholar]
- Owen-Smith, N.; Hopcraft, G.; Morrison, T.; Chamaillé-Jammes, S.; Hetem, R.; Bennitt, E.; van Langevelde, F. Movement Ecology of Large Herbivores in African Savannas: Current Knowledge and Gaps. Mamm. Rev. 2020, 50, 252–266. [Google Scholar] [CrossRef]
- Valeix, M.; Fritz, H.; Loveridge, A.J.; Davidson, Z.; Hunt, J.E.; Murindagomo, F.; Macdonald, D.W. Does the Risk of Encountering Lions Influence African Herbivore Behaviour at Waterholes? Behav. Ecol. Sociobiol. 2009, 63, 1483–1494. [Google Scholar] [CrossRef]
- Riginos, C. Climate and the Landscape of Fear in an African Savanna. J. Anim. Ecol. 2015, 84, 124–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makin, D.F.; Chamaillé-Jammes, S.; Shrader, A.M. Herbivores Employ a Suite of Antipredator Behaviours to Minimize Risk from Ambush and Cursorial Predators. Anim. Behav. 2017, 127, 225–231. [Google Scholar] [CrossRef]
- Zanette, L.Y.; Clinchy, M.; Suraci, J.P. Diagnosing Predation Risk Effects on Demography: Can Measuring Physiology Provide the Means? Oecologia 2014, 176, 637–651. [Google Scholar] [CrossRef]
- Creel, S. Toward a Predictive Theory of Risk Effects: Hypotheses for Prey Attributes and Compensatory Mortality. Ecology 2011, 92, 2190–2195. [Google Scholar] [CrossRef]
- Pringle, R.M. Ecology: Megaherbivores Homogenize the Landscape of Fear. Curr. Biol. 2018, 28, R835–R837. [Google Scholar] [CrossRef] [Green Version]
- Tambling, C.J.; Minnie, L.; Meyer, J.; Freeman, E.W.; Santymire, R.M.; Adendorff, J.; Kerley, G.I.H. Temporal Shifts in Activity of Prey Following Large Predator Reintroductions. Behav. Ecol. Sociobiol. 2015, 69, 1153–1161. [Google Scholar] [CrossRef]
- Owen-Smith, N.; Mills, M.G.L. Predator–Prey Size Relationships in an African Large-Mammal Food Web. J. Anim. Ecol. 2008, 77, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Makin, D.F.; Chamaillé-Jammes, S.; Shrader, A.M. Changes in Feeding Behavior and Patch Use by Herbivores in Response to the Introduction of a New Predator. J. Mammal. 2018, 99, 341–350. [Google Scholar] [CrossRef]
- Broekhuis, F.; Elliot, N.B.; Keiwua, K.; Koinet, K.; Macdonald, D.W.; Mogensen, N.; Thuo, D.; Gopalaswamy, A.M. Resource Pulses Influence the Spatio-Temporal Dynamics of a Large Carnivore Population. Ecography 2020, 44, 358–369. [Google Scholar] [CrossRef]
- Wolf, C.; Ripple, W.J. Rewilding the World’s Large Carnivores. R Soc. Open Sci. 2018, 5, 172235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marker, L. Aspects of Cheetah (Acinonyx Jubatus) Biology, Ecology and Conservation Strategies on Namibian Farmlands. Ph.D. Thesis, University of Oxford, Oxford, UK, 2002. [Google Scholar]
- Mendelsohn, J.M.; Jarvis, A.M.; Roberts, C.S.; Robertson, T. Atlas of Namibia. Research and Information Services of Namibia; David Philip Publishers: Cape Town, South Africa, 2002; ISBN 0-86486-516-3. [Google Scholar]
- Hayward, M.W.; Hofmeyr, M.; O’Brien, J.; Kerley, G.I.H. Prey Preferences of the Cheetah (Acinonyx Jubatus) (Felidae: Carnivora): Morphological Limitations or the Need to Capture Rapidly Consumable Prey before Kleptoparasites Arrive? J. Zool. 2006, 270, 615–627. [Google Scholar] [CrossRef]
- Walsh, A. Diet Analysis for Wildlife Management: Protecting the Cheetah in Namibia. Inq. J. 2015, 1. Available online: https://scholars.unh.edu/inquiry_2015/156 (accessed on 6 June 2022).
- Périquet, S.; Todd-Jones, L.; Valeix, M.; Stapelkamp, B.; Elliot, N.; Wijers, M.; Pays, O.; Fortin, D.; Madzikanda, H.; Fritz, H.; et al. Influence of Immediate Predation Risk by Lions on the Vigilance of Prey of Different Body Size. Behav. Ecol. 2012, 23, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Brooks, M.; Kristensen, K.; van Benthem, K.; Magnusson, A.; Berg, C.; Nielsen, A.; Skaug, H.; Mächler, M.; Bolker, B. GlmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Zeileis, A.; Kleiber, C.; Jackman, S. Regression Models for Count Data in R. J. Stat. Softw. 2008, 27, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hartig, F. Package “DHARMa” Title Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. 2021; pp. 1–60. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 3 October 2021).
- Ridout, M.S.; Linkie, M. Estimating Overlap of Daily Activity Patterns from Camera Trap Data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Lund, U.; Agostinelli, C. Package “Circular”. 2017; pp. 4–56. Available online: https://r-forge.r-project.org/projects/circular/ (accessed on 3 October 2021).
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Grolemund, G.; Wickham, H. Dates and Times Made Easy with Lubridate. J. Stat. Softw. 2011, 40, 1–25. [Google Scholar] [CrossRef]
- Rigoudy, N.L.A.; Clinchy, M.; Peel, M.J.S.; Huebner, S.; Packer, C.; Zanette, L.Y. Hierarchy of Fear: Experimentally Testing Ungulate Reactions to Lion, African Wild Dog and Cheetah. Behav. Ecol. 2022, 33, 789–797. [Google Scholar] [CrossRef]
- Verschueren, S.; Briers-Louw, W.D.; Cristescu, B.; Fabiano, E.; Nghikembua, M.; Torres-Uribe, C.; Walker, E.H.; Marker, L. Spatiotemporal Sharing and Partitioning of Scent-marking Sites by Cheetahs and Leopards in North-central Namibia. Afr. J. Ecol. 2021, 59, 605–613. [Google Scholar] [CrossRef]
- Gaillard, J.-M.; Festa-Bianchet, M.; Yoccoz, N. Population Dynamics of Large Herbivores: Variable Recruitment with Constant Adult Survival. Trends Ecol. Evol. 1998, 13, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Mandinyenya, B.; Monks, N.; Mundy, P.J.; Sebata, A.; Chirima, A. Habitat Use by a Mixed Feeder: Impala Aepyceros Melampus in a Heterogeneous Protected Area. J. Trop. Ecol. 2018, 34, 378–384. [Google Scholar] [CrossRef]
- Mramba, R. Browsing Behaviour of Impala, Aepyceros Melampus in Two Contrasting Savannas. Glob. Ecol. Conserv. 2021, 30, e01770. [Google Scholar] [CrossRef]
- IUCN SSC Antelope Specialist Group Antidorcas Marsupialis (Springbok). Available online: https://www.iucnredlist.org/species/1676/115056763 (accessed on 8 December 2022).
Treatment | Prey Species | ||||
---|---|---|---|---|---|
Small | Medium | Large | |||
Cheetah present | 37 (35%) | 2 (2%) | 66 (63%) | ||
Chetah absent | 29 (43%) | 18 (27%) | 21 (31%) | ||
Duiker | Steenbok | Impala | Springbok | Kudu | |
Cheetah present | 3 (3%) | 34 (32%) | 0 (0%) | 2 (2%) | 66 (63%) |
Cheetah absent | 4 (6%) | 25 (37%) | 7 (10%) | 11 (16%) | 21 (31%) |
Individual Visitation Rate | Herd Visitation Rate | Duration of Stay | ||||
---|---|---|---|---|---|---|
Fixed effects | Estimate | Std Error | Estimate | Std Error | Estimate | Std Error |
(Intercept) | −0.265 | 0.464 | −1.115 ** | 0.404 | 1.676 *** | 0.284 |
Cheetah presence | 0.983 ^ | 0.527 | 0.816 ^ | 0.436 | 0.653 * | 0.285 |
Body size medium | 0.433 | 0.573 | −0.152 | 0.503 | - | - |
Body size small | −0.274 | 0.583 | 0.311 | 0.481 | 0.300 | 0.323 |
Season 2 (dry–cold) | 0.240 | 0.409 | 0.339 | 0.329 | 0.131 | 0.237 |
Season 3 (intermediate) | −0.214 | 0.415 | −0.158 | 0.346 | 0.095 | 0.254 |
Cheetah presence × | −4.927 * | 1.030 | −3.375 *** | 0.936 | — | — |
Body size medium | ||||||
Cheetah presence × | −1.255 | 0.775 | −0.961 | 0.619 | −0.519 | 0.417 |
Body size small |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruble, D.B.; Verschueren, S.; Cristescu, B.; Marker, L.L. Rewilding Apex Predators Has Effects on Lower Trophic Levels: Cheetahs and Ungulates in a Woodland Savanna. Animals 2022, 12, 3532. https://doi.org/10.3390/ani12243532
Ruble DB, Verschueren S, Cristescu B, Marker LL. Rewilding Apex Predators Has Effects on Lower Trophic Levels: Cheetahs and Ungulates in a Woodland Savanna. Animals. 2022; 12(24):3532. https://doi.org/10.3390/ani12243532
Chicago/Turabian StyleRuble, Dallas B., Stijn Verschueren, Bogdan Cristescu, and Laurie L. Marker. 2022. "Rewilding Apex Predators Has Effects on Lower Trophic Levels: Cheetahs and Ungulates in a Woodland Savanna" Animals 12, no. 24: 3532. https://doi.org/10.3390/ani12243532
APA StyleRuble, D. B., Verschueren, S., Cristescu, B., & Marker, L. L. (2022). Rewilding Apex Predators Has Effects on Lower Trophic Levels: Cheetahs and Ungulates in a Woodland Savanna. Animals, 12(24), 3532. https://doi.org/10.3390/ani12243532