Composition of Slow-Growing Male Chicken’s Meat and Bone Quality as Affected by Dietary Moringa oleifera Lam. Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Duration of the Experiment
2.2. Birds and Management of the Experiment
2.3. Meat Quality Evaluation
2.4. Bone Quality Assessment
2.5. Statistical Analyses
3. Results
3.1. Diet Effects on Meat Quality Characteristics
3.2. Diet Effects on Bone Quality Traits
4. Discussion
4.1. Influence of Moringa oleifera Lam. Meal (MOM) on Meat Nutritional Composition
4.2. Influence of Moringa oleifera Lam. Meal (MOM) on Bone Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Chicken Council. Chicken Marketers Urged to Innovate to Meet Needs Emerging from the Pandemic. 2021. Available online: https://www.nationalchickencouncil.org/chicken-marketers-urged-to-innovate-to-meet-needs-emerging-from-the-pandemic/#:~:text=Chicken%20is%20′pandemic%2Dproof’,to%2097.6%20lbs%20in%202020 (accessed on 13 September 2022).
- Giampietro-Ganeco, A.; Boiago, M.M.; Mello, J.L.M.; Souza, R.A.; Ferrari, F.B.; Souza, P.A.; Borba, H. Lipid assessment, cholesterol and fatty acid profile of meat from broilers raised in four different rearing systems. An. Acad. Bras. Cienc. 2020, 92 (Suppl. S1), e20190649. [Google Scholar] [CrossRef] [PubMed]
- Bogosavljevic-Boskovic, S.; Mitrovic, S.; Djokovic, R.; Doskovic, V.; Djermanovic, V. Chemical composition of chicken meat produced in extensive indoor and free range rearing systems. Afr. J. Biotechnol. 2010, 9, 9069–9075. [Google Scholar]
- Evaris, E.F.; Sarmeinto-Franco, L.; Sandoval-Castro, C.A. Meat and bone quality of slow-growing male chickens raised with outdoor access in tropical climate. J. Food Compos. Anal. 2021, 98, 103802. [Google Scholar] [CrossRef]
- Semwogerere, F.; Neethling, J.; Muchenje, V.; Hoffman, L.C. Meat quality, fatty acid profile, and sensory attributes of spent laying hens fed expeller press canola meal or a conventional diet. Poult. Sci. 2019, 98, 3557–3570. [Google Scholar] [CrossRef]
- Stangierski, J.; Leśnierowski, G. Nutritional and health-promoting aspects of poultry meat and its processed products. World’s Poult. Sci. J. 2015, 71, 71–82. [Google Scholar] [CrossRef]
- Pedersen, I.J.; Tahamtani, F.M.; Forkman, B.; Young, J.F.; Poulsen, H.D.; Riber, A.B. Effects of environmental enrichment on health and bone characteristics of fast growing broiler chickens. Poult. Sci. 2020, 99, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.F.; Mohammed, A.A.; Murugesan, G.R.; Cheng, H.W. Effects of a dietary synbiotic inclusion on bone health in broilers subjected to cyclic heat stress episodes. Poult. Sci. 2019, 98, 1083–1089. [Google Scholar] [CrossRef]
- Mutuş, R.; Kocabaǧli, N.; Alp, M.; Acar, N.; Eren, M.; Gezen, Ş.Ş. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult. Sci. 2006, 85, 1621–1625. [Google Scholar] [CrossRef]
- Tsiouris, V.; Kontominas, M.G.; Filioussis, G.; Chalvatzi, S.; Giannenas, I.; Papadopoulos, G.A.; Koutoulis, K.C.; Fortomaris, P.D.; Georgopoulou, I. The Effect of whey on performance, gut health and bone morphology parameters in broiler chicks. Foods 2020, 9, 588. [Google Scholar] [CrossRef]
- Stadig, L.M.; Rodenburg, T.B.; Ampe, B.; Reubens, B.; Tuyttens, F.A. Effect of free-range access, shelter type and weather conditions on free-range use and welfare of slow-growing broiler chickens. Appl. Anim. Behav. Sci. 2017, 192, 15–23. [Google Scholar] [CrossRef]
- Evaris, E.F.; Franco, L.S.; Castro, C.S. Productive performance and carcass yield of egg type male chickens raised with outdoor access in the tropics. Trop. Anim. Health Prod. 2020, 52, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Evaris, E.F.; Franco, L.S.; Castro, C.S. Slow-growing male chickens fit poultry production systems with outdoor access. World’s Poult. Sci. J. 2019, 75, 429–444. [Google Scholar] [CrossRef]
- Evaris, E.F.; Franco, L.S.; Castro, C.S.; Correa, J.S.; Maldonado, J.A.C. Male layer chicken’s response to dietary Moringa oleifera meal in a tropical climate. Animals 2022, 12, 1843. [Google Scholar] [CrossRef] [PubMed]
- Mahfuz, S.; Piao, X.S. Application of Moringa (Moringa oleifera) as natural feed supplement in poultry diets. Animals 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Moyo, B.; Masika, P.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, F.; Sarker, N.R.; Sarker, M.S.K. Effect of using Moringa oleifera and Spirulina platensis as feed additives on performance, meat composition and oxidative stability and fatty acid profiles in broiler chicken. J. Nutr. Food Sci. 2020, 10, 772. [Google Scholar]
- Cui, Y.M.; Wang, J.; Lu, W.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Effect of dietary supplementation with Moringa oleifera leaf on performance, meat quality, and oxidative stability of meat in broilers. Poult. Sci. 2018, 97, 2836–2844. [Google Scholar] [CrossRef]
- Abhishek, K.; Kaushalendra, K.; Sanjay, K.; Sinha, R.R.K.; Paswan, J.K.; Mandal, G.P. Effect of feeding different level of Moringa oleifera leaf meal on growth performance, lipid profile and meat fatty acid composition of Vanaraja chicken in tropics. Indian J. Anim. Sci. 2017, 87, 644–648. [Google Scholar]
- Zhang, T.; Si, B.; Tu, Y.; Cui, K.; Zhou, C.; Diao, Q. Effect of including different levels of moringa (Moringa oleifera) leaf meal in the diet of finishing pigs: Performance, pork quality, fatty acid composition, and amino acid profile. Czech J. Anim. Sci. 2019, 64, 141–149. [Google Scholar] [CrossRef]
- Selim, S.; Seleiman, M.F.; Hassan, M.M.; Saleh, A.A.; Mousa, M.A. Impact of dietary supplementation with Moringa oleifera leaves on performance, meat characteristics, oxidative stability, and fatty acid profile in growing rabbits. Animals 2021, 11, 248. [Google Scholar] [CrossRef]
- INEGI Instituto Nacional de Estadística Geográfica e Informática. Información de Yucatán, México. Available online: http://www.cuentame.inegi.org.mx/monografias/informacion/yuc/territorio/clima.aspx?tema= (accessed on 29 April 2022).
- AOAC International. Official Methods of Analysis, 18th ed.; American Association of Official Analytical Chemists: Arlington, TX, USA, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ortíz-Domínguez, G.A.; Marin-Tun, C.G.; Ventura-Cordero, J.; González-Pech, P.G.; Capetillo-Leal, C.M.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A. Comparing the in vitro digestibility of leaves from tropical trees when using the rumen liquor from cattle, sheep or goats. Small Rumin. Res. 2021, 205, 106561. [Google Scholar] [CrossRef]
- Normas Mexicanas (NMX) 2017. Alimentos Para Animales—Determinación de Humedad en Alimentos Balanceados e Ingredientes Mayores. PROY-NMX-Y-098-SCFI-2017. Available online: https://vlex.com.mx/vid/710427109?_ga=2.190615528.2100063110.1579694004-151288393.1579694004 (accessed on 29 April 2022).
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage randall/soxtec/submersion method): Collaborative Study. J. AOAC Int. 2003, 86, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Normas Mexicanas (NMX) 2003. Alimentos Para Animales—Determinación de Cenizas en Alimentos Terminados e Ingredientes Para Animales. NMX-Y-093-SCFI-2003. Available online: https://caisatech.net/uploads/XXI_2_MXD_A016_NMX-Y-093-SCFI-2003_R0_12MAR2003.pdf (accessed on 19 September 2022).
- Normas Mexicanas (NMX) 2003. Alimentos Para Animales—Determinación de Calcio en Alimentos Terminados e Ingredientes Para Animales. NMX-Y-021-SCFI-2003. Available online: https://caisatech.net/uploads/XXI_2_MXD_A016_NMX-Y-021-SCFI-2003_R0_12MAR2003.pdf (accessed on 19 September 2022).
- Normas Mexicanas (NMX) 2004. Alimentos Para Animales—Determinación de Fósforo en Alimentos Terminados e Ingredientes Para Animales. NMX-Y-100-SCFI-2004. Available online: https://caisatech.net/uploads/XXI_2_MXD_A016_NMX-Y-100-SCFI-2004_R0_22ABR2004.pdf (accessed on 19 September 2022).
- Seedor, J.G.; Quarruccio, H.A.; Thompson, D.D. The bisphosphonate alendronate (MK-217) inhibits bone loss due to avariectomy in rats. J. Bone Miner. Res. 1991, 6, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Reisenfeld, A. Metatarsal robusticity in bipedal rats. Am. J. Phys. Anthropol. 1972, 40, 229–234. [Google Scholar] [CrossRef]
- Salaam, Z.K.; Akinyemi, M.O.; Osamede, O.H. Effect of strain and age on bone integrity of commercial broiler chickens. Biotechnol. Anim. Husb. 2016, 32, 195–203. [Google Scholar] [CrossRef]
- Charuta, A.; DzierZercka, M.; Komosa, M.; Biesiada-Drzazga, B.; Dziala-Szczepanczyk, E.; Cooper, R.G. Age- and sex-related changes in mineral density and mineral content of the tibiotarsal bone in quails during post-hatching development. Kafkas Univ. Vet. Fak. Derg. 2013, 19, 31–36. [Google Scholar] [CrossRef]
- Minitab 19. Getting Started with Minitab 19 for Windows. Available online: https://www.minitab.com/content/dam/www/en/uploadedfiles/documents/getting-started/Minitab19GettingStarted_EN.pdf (accessed on 29 April 2022).
- Tougan, P.U.; Dahouda, M.; Salifou, C.F.; Gbênagnon, S.; Ahounou, A.; Kpodekon, M.T.; Mensah, G.A.; Théwis, A.; Youssao, I.A.; Karim, A. Conversion of chicken muscle to meat and factors affecting chicken meat quality: A review. Int. J. Agric. Res. 2013, 3, 1–20. [Google Scholar]
- NkukwanaA, T.T.; Muchenje, V.; Masika, P.J.; Pieterse, E.; Hoffman, L.C.; Dzama, K. Proximate composition and variation in colour, drip loss and pH of breast meat from broilers supplemented with Moringa oleifera leaf meal over time. Anim. Prod. Sci. 2015, 56, 1208–1216. [Google Scholar] [CrossRef]
- Tesfaye, E.; Animut, G.; Urge, M.; Dessie, T. Moringa olifera leaf meal as an alternative protein feed ingredient in broiler ration. Int. J. Poult. Sci. 2013, 12, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.K.; Bhattacharyya, A.; Shukla, P.K. Effect of graded levels of moringa leaf meal on the body weight gain, feed conversion ratio, immune competence traits and meat composition of coloured chicken. Int. J. Livest. Res. 2020, 10, 66–72. [Google Scholar] [CrossRef]
- Muis, M.K.A.; Rachmawati, K.; Arif, M.A.A. The effect of adding moringa leave (Moringa oleifera) to male broiler feed. Indian J. Public Health Res. Dev. 2019, 10, 1462–1466. [Google Scholar] [CrossRef]
- Djouhou, M.C.F.; Nwaga, D.; Mafogang, B.; Fokou, E. Inclusion of Moringa oleifera leaf powder in broiler chicken feed and its effect on growth performance, biochemical profile and metabolism stimulation: Case study of the synthesis of some sulphur compounds. Biomed. J. Sci. Tech. Res. 2020, 28, 21845–21853. [Google Scholar] [CrossRef]
- Mickdam, E.; Alwaleed, S.; Madany, M.; Sayed, A. The Effect of Moringa oleifera leaves on chicken meat composition and meat quality. Int. J. Vet. Sci. 2022, 11, 201–206. [Google Scholar] [CrossRef]
- Straková, E.; Suchý, P.; Karásková, K.; Jámbor, M.; Navrátil, P. Comparison of nutritional values of pheasant and broiler chicken meats. Acta Vet. Brno 2011, 80, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Nkukwana, T.T.; Muchenje, V.; Masika, P.J.; Hoffman, L.C.; Dzama, K.; Descalzo, A.M. Fatty acid composition and oxidative stability of breast meat from broiler chickens supplemented with Moringa oleifera leaf meal over a period of refrigeration. Food Chem. 2014, 142, 255–261. [Google Scholar] [CrossRef]
- Žlender, B.; Holcman, A.; Stibilj, V.; Polak, T. Fatty acid composition of poultry meat from free range rearing. Poljoprivreda 2000, 6, 53–56. [Google Scholar]
- Milićević, D.; Vranić, D.; Mašić, Z.; Parunović, N.; Trbović, D.; Nedeljković-Trailović, J.; Petrović, Z. The role of total fats, saturated/unsaturated fatty acids and cholesterol content in chicken meat as cardiovascular risk factors. Lipids Health Dis. 2014, 13, 42. [Google Scholar] [CrossRef] [Green Version]
- Mohammadigheisar, M.; Shouldice, V.L.; Torrey, S.; Widowski, T.; Kiarie, E. Research Note: Comparative gastrointestinal, tibia, and plasma attributes in 48-day-old fast- and slow-growing broiler chicken strains. Poult. Sci. 2020, 99, 3086–3091. [Google Scholar] [CrossRef]
- Rehman, H.F.; Zaneb, H.I.; Masood, S.; Yousaf, M.S.; Ashraf, S.; Khan, I.; Shah, M.; Khilji, M.S.; Rehman, H. Effect of Moringa oleifera leaf powder supplementation on pectoral muscle quality and morphometric characteristics of tibia bone in broiler chickens. Braz. J. Poult. Sci. 2018, 20, 817–824. [Google Scholar] [CrossRef]
- Nkukwana, T.T.; Muchenje, V.; Masika, P.J.; Hoffman, L.C.; Dzama, K. The effect of Moringa oleifera leaf meal supplementation on tibia strength, morphology and inorganic content of broiler chickens. S. Afr. J. Anim. Sci. 2014, 44, 228–239. [Google Scholar] [CrossRef]
Chemical Analysis | % Dry Matter |
---|---|
Crude Protein | 19.11 |
Crude Fiber | 15.39 |
Neutral Detergent Fiber | 48.78 |
Acid Detergent Fiber | 25.43 |
Ether Extract | 2.97 |
Ash | 8.74 |
Lignin | 5.70 |
Condensed Tannins | 3.27 |
Total Tannins | 0.92 |
Total Phenols | 2.78 |
Fatty acid profile | g/100 g Fat |
C12–Lauric acid | 0.921 |
C14–Myristic acid | 2.733 |
C16–Palmitic acid | 7.647 |
C16:1–Palmitoleic acid | 1.223 |
C18:0–Stearic acid | 4.987 |
C18:1n9T–Elaidic acid | 3.980 |
C18:1n9C–Oleic acid | 2.780 |
C18:2n6C–Linoleic acid | 12.707 |
C20–Arachidic acid | 59.182 |
C22:1n9–Eurucic acid | 1.718 |
C24–Lignoceric acid | 2.117 |
Moringa oleifera Meal Level (%) | ||||
---|---|---|---|---|
T1 | T2 | T3 | P-Value | |
(Mean ± SEM) | (Mean ± SEM) | (Mean ± SEM) | ||
Breast muscle 1 (%) | ||||
Dry Matter | 26.44 ± 0.27 | 26.68 ± 0.22 | 26.7 ± 0.50 | 0.847 |
Ash content | 3.44 b ± 0.06 | 3.83 a ± 0.09 | 3.66 ab ± 0.05 | 0.005 |
Protein | 23.6 ± 0.22 | 23.94 ± 0.22 | 24.09 ± 0.48 | 0.567 |
Fat | 2.62 ± 0.16 | 2.19 ± 0.15 | 2.23 ± 0.24 | 0.228 |
Leg muscle 2 (%) | ||||
Dry Matter | 25.35 ± 0.24 | 25.83 ± 0.64 | 24.57 ± 0.43 | 0.193 |
Ash content | 3.61 ± 0.08 | 3.65 ± 0.09 | 3.84 ± 0.06 | 0.106 |
Protein | 21.58 ± 0.38 | 21.65 ± 0.81 | 21.63 ± 0.39 | 0.854 |
Fat | 10.52 ± 0.88 | 10.39 ± 0.73 | 8.28 ± 1.05 | 0.173 |
Dietary Moringa oleifera Meal Levels | |||
---|---|---|---|
Traits | T1 | T2 | T3 |
Breast muscle1 | |||
Palmitic acid (C16) | 29.79 | 29.40 | 28.77 |
Palmitoleic acid (C16:1) | 2.67 | 2.12 | 1.72 |
Stearic acid (C18) | 11.58 | 16.06 | 16.37 |
Oleic acid (C18:1N9C) | 30.64 | 29.40 | 27.22 |
Linoleic acid (C18:2N6C) | 21.60 | 19.36 | 20.31 |
Arachidonic acid (C20:4N6) | 3.43 | 3.28 | 4.78 |
Leg muscle2 | |||
Palmitic acid (C16) | 25.89 | 26.10 | 27.31 |
Palmitoleic acid (C16:1) | 3.11 | 3.38 | 3.22 |
Stearic acid (C18) | 12.44 | 12.51 | 14.15 |
Oleic acid (C18:1N9C) | 33.24 | 35.17 | 33.45 |
Linoleic acid (C18:2N6C) | 21.35 | 21.16 | 19.88 |
Traits | T1 (Mean ± SEM) | T2 (Mean ± SEM) | T3 (Mean ± SEM) | P-Value |
---|---|---|---|---|
Femoral Weight (g) | 17.51 ± 0.26 | 16.93 ± 0.26 | 17.44 ± 0.27 | 0.249 |
Femoral Length (cm) | 10.60 a ± 0.06 | 10.37 b ± 0.06 | 10.63 a ± 0.06 | 0.008 |
Femoal Seedor Index (g/cm) | 1.64 ± 0.02 | 1.63 ± 0.08 | 1.65 ± 0.02 | 0.813 |
Femoral Robusticity Index (cm/g) | 4.09 ± 0.02 | 4.05 ± 0.02 | 4.10 ± 0.02 | 0.163 |
Femoral Diameter (cm) | 1.03 ± 0.01 | 1.03 ± 0.01 | 1.05 ± 00.01 | 0.495 |
Femoral Relative Density | 0.74 ± 0.01 | 0.72 ± 0.01 | 0.74 ± 0.01 | 0.225 |
Tibial Weight (g) | 24.85 ± 0.34 | 24.18 ± 0.34 | 25.01 ± 0.35 | 0.194 |
Tibial Length (cm) | 15.40 a ± 0.10 | 14.98 b ± 0.10 | 15.37 a ± 0.11 | 0.009 |
Tibial Seedor Index (g/cm) | 1.61 ± 0.02 | 1.61 ± 0.02 | 1.63 ± 0.02 | 0.814 |
Tibial Robusticity Index (cm/g) | 5.28 ± 0.03 | 5.19 ± 0.03 | 5.19 ± 0.03 | 0.055 |
Tibial Diameter (cm) | 0.96 b ± 0.01 | 1.01 a ± 0.01 | 1.01 a ± 0.01 | 0.021 |
Tibial Relative Density | 1.06 ± 0.02 | 1.03 ± 0.02 | 1.07 ± 0.02 | 0.145 |
Leg Bones 1 Dry Matter 2 (%) | 64.80 ± 0.94 | 66.84 ± 1.62 | 64.98 ± 1.07 | 0.451 |
Leg Bones Ash 3 (%) | 35.01 b ± 0.44 | 35.68 ab ± 0.52 | 37.02 a ± 0.53 | 0.024 |
Leg Bones Calcium 4 (%) | 6.03 ± 0.11 | 6.04 ± 0.19 | 6.48 ± 0.13 | 0.080 |
Leg Bones Phosphorus 5 (%) | 6.64 b ± 0.15 | 6.91 ab ± 0.10 | 7.41 a ± 0.30 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faustin-Evaris, E.; Sarmiento-Franco, L.A.; Capetillo-Leal, C.M.; Sandoval-Castro, C.A. Composition of Slow-Growing Male Chicken’s Meat and Bone Quality as Affected by Dietary Moringa oleifera Lam. Meal. Animals 2022, 12, 3482. https://doi.org/10.3390/ani12243482
Faustin-Evaris E, Sarmiento-Franco LA, Capetillo-Leal CM, Sandoval-Castro CA. Composition of Slow-Growing Male Chicken’s Meat and Bone Quality as Affected by Dietary Moringa oleifera Lam. Meal. Animals. 2022; 12(24):3482. https://doi.org/10.3390/ani12243482
Chicago/Turabian StyleFaustin-Evaris, Esther, Luis A. Sarmiento-Franco, Concepción M. Capetillo-Leal, and Carlos A. Sandoval-Castro. 2022. "Composition of Slow-Growing Male Chicken’s Meat and Bone Quality as Affected by Dietary Moringa oleifera Lam. Meal" Animals 12, no. 24: 3482. https://doi.org/10.3390/ani12243482
APA StyleFaustin-Evaris, E., Sarmiento-Franco, L. A., Capetillo-Leal, C. M., & Sandoval-Castro, C. A. (2022). Composition of Slow-Growing Male Chicken’s Meat and Bone Quality as Affected by Dietary Moringa oleifera Lam. Meal. Animals, 12(24), 3482. https://doi.org/10.3390/ani12243482