Effects of Supplemented Resveratrol on In Vitro Ruminal Fermentation and Growth Performance of Hanwoo Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Analysis
2.2. Extraction of Resveratrol
2.3. In Vitro Ruminal Fermentation
2.4. Growth Performance and Immunity of Hanwoo Calves
2.5. Statistical Analysis
3. Results
3.1. In Vitro Ruminal Fermentation
3.2. Growth Performance and Immunity of Hanwoo Calves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliament and Council Regulation (EC), no. 1831/2003 of the European Parliament and of the council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Union 2003, 268, 29–43. [Google Scholar]
- Rhodes, M.J. Physiologically-active compounds in plant foods: An overview. Proc. Nutr. Soc. 1996, 55, 371–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, F.; Madrid, J.; García, V.; Orengo, J.; Megías, M.D. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 2004, 83, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, D.; Bourne, S.C. 2000 years of herbal medicine history help us solve problems in the year 2000. In Alltech’s 14th Annual Symposium; Biotechnology in the Feed Industry; Alltech Biotechnology Center: Nicholasville, KY, USA, 1998; pp. 168–184. [Google Scholar]
- Jamroz, D.; Wiliczkiewicz, A.; Wertelecki, T.; Orda, J.; Skorupińska, J. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br. Poult. Sci. 2005, 46, 485–493. [Google Scholar] [CrossRef]
- Wallace, R.J. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 2004, 63, 621–629. [Google Scholar] [CrossRef]
- Bhat, K.P.L.; Kosmeder, J.W.; Pezzuto, J.M. Biological effects of resveratrol. Antioxid. Redox Signal. 2001, 3, 1041–1064. [Google Scholar] [CrossRef]
- Jeandet, P.; Bessis, R.; Gautheron, B. The production of resveratrol (3,5,4′-trihydroxystilbene) by grape berries in different developmental stages. Am. J. Enol. Vitic. 1991, 42, 41–46. [Google Scholar]
- Sanders, T.H.; McMichael, R.W.; Hendrix, K.W. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem. 2000, 48, 1243–1246. [Google Scholar] [CrossRef]
- Dixon, R.A. Natural products and plant disease resistance. Nature 2001, 411, 843–847. [Google Scholar] [CrossRef]
- Rubiolo, J.A.; Vega, F.V. Resveratrol protects primary rat hepatocytes against necrosis induced by reactive oxygen species. Biomed. Pharmacother. 2008, 62, 606–612. [Google Scholar] [CrossRef]
- Jang, A.; Liu, X.D.; Shin, M.H.; Lee, B.D.; Lee, S.K.; Lee, J.H.; Jo, C. Antioxidative potential of raw breast meat from broiler chicks fed a dietary medicinal herb extract mix. Poult. Sci. 2008, 87, 2382–2389. [Google Scholar] [CrossRef]
- Hao, H.D.; He, L.R. Mechanisms of cardiovascular protection by resveratrol. J. Med. Food. 2004, 7, 290–298. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Zhu, H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol. Res. 2006, 53, 6–15. [Google Scholar] [CrossRef]
- Harikumar, K.B.; Aggarwal, B.B. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 2008, 7, 1020–1035. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhang, W.B.; Bi, Y.L.; Tu, Y.; Ma, T.; Dong, L.F.; Du, H.C.; Diao, Q.Y. Sanguinarine and resveratrol affected rumen fermentation parameters and bacterial community in calves. Anim. Feed Sci. Technol. 2019, 251, 64–75. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Bi, Y.; Tu, Y.; Tian, Z.; Diao, Q. Effect of resveratrol and sanguinarine on growth performance and blood biochemical indices of 2–6 months old calves. Acta Vet. Zootech. Sin. 2018, 49, 1940–1951. [Google Scholar]
- Jung, H.S.; Jung, K.K.; Jang, I.S. Effect of immunoglobulin Y on growth performance and blood immunological parameters in Holstein calves. J. Anim. Sci. Technol. 2009, 51, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Kwon, E.G.; Park, B.K.; Cho, Y.M.; Han, M.H.; Choi, C.Y.; Lee, M.S. Effects of weaning age on growth performance, feed intake, disease occurrence of Hanwoo calves and reproductive efficiency of dams. J. Anim. Sci. Technol. 2007, 49, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, W.; Latimer, G. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- NASEM (National Academies of Science, Engineering, and Medicine). Nutrient Requirements of Dairy Cattle, 7th ed.; Revised edition; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Kim, D.W.; Hong, E.C.; Ji, S.Y.; Lee, W.S.; Bang, H.T.; Kang, H.K.; Kim, H.S.; Kim, S.H. Effects of dietary resveratrol on growth performance, blood biochemical parameter, immunoglobulin, and blood antioxidant activity in broiler chicks. Korean J. Poultry Sci. 2015, 42, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Troelsen, J.E.; Hanel, D.J. Ruminant digestion in vitro as affected by inoculum donor, collection day, and fermentation time. Can. J. Anim. Sci. 1966, 46, 149–156. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Hiltner, P.; Dehority, B.A. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. Microbiol. 1983, 46, 642–648. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Chen, D.D.; Tu, Y.; Zhang, N.F.; Si, B.W.; Deng, K.D.; Diao, Q.Y. Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep. J. Anim. Physiol. Anim. Nutr. 2015, 99, 676–683. [Google Scholar] [CrossRef]
- Ma, T.; Wu, W.; Tu, Y.; Zhang, N.; Diao, Q. Resveratrol affects in vitro ruminal fermentation, methane production and prokaryotic community composition in a time- and diet-specific manner. Microb. Biotechnol. 2020, 13, 1118–1131. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.T.; Hossain, M.E.; Kim, G.M.; Hwang, J.A.; Ji, H.; Yang, C.J. Effects of resveratrol and essential oils on growth performance, immunity, digestibility and fecal microbial shedding in challenged piglets. Asian-Australas. J. Anim. Sci. 2013, 26, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Cho, E.S.; Kim, K.S.; Kim, J.E.; Seol, K.H.; Park, J.C.; Kim, Y.H. Investigation on changes in pig farm productivity after ban of antibiotics growth promoter in commercial mixed feed. Korean J. Agric. Sci. 2015, 42, 223–229. [Google Scholar] [CrossRef]
Items | Timothy | Concentrate |
---|---|---|
Dry matter (DM), % | 91.54 | 89.32 |
Crude protein (CP), % of DM | 9.04 | 20.98 |
Ether extract, % of DM | 0.81 | 3.96 |
Neutral detergent fiber, % of DM | 73.56 | 32.49 |
Acid detergent fiber, % of DM | 42.57 | 14.58 |
Non-fiber carbohydrate, % of DM | 15.61 | 37.29 |
Crude ash, % of DM | 4.98 | 9.31 |
Neutral detergent insoluble CP, % of DM | 4.02 | 4.03 |
Acid detergent insoluble CP, % of DM | 1.69 | 1.19 |
Incubation Time | Control | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
C | T1 | T2 | T3 | Linear | Quadratic | ||
pH | |||||||
24 h | 6.20 a | 6.15 a | 6.04 b | 5.76 c | 0.044 | <0.05 | <0.05 |
48 h | 6.02 a | 5.88 b | 5.86 b | 5.62 c | 0.038 | <0.05 | <0.05 |
Total gas production, mL | |||||||
24 h | 112.00 b | 128.00 a | 132.67a | 127.33 a | 2.061 | <0.05 | <0.05 |
48 h | 130.67 | 130.67 | 134.00 | 140.00 | 1.387 | 0.148 | 0.058 |
Ammonia nitrogen, mg/dL | |||||||
24 h | 10.13 | 11.39 | 9.91 | 9.47 | 0.354 | 0.274 | 0.363 |
48 h | 14.45 | 20.17 | 16.62 | 13.55 | 1.129 | 0.152 | 0.206 |
Incubation Time | Control | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
C | T1 | T2 | T3 | Linear | Quadratic | ||
Total volatile fatty acids, mM | |||||||
24 h | 63.50 d | 68.20 c | 72.74 b | 78.79 a | 1.526 | <0.05 | <0.05 |
48 h | 75.00 c | 76.16 bc | 82.09 b | 92.27 a | 1.879 | <0.05 | <0.05 |
Acetate, % | |||||||
24 h | 54.90 d | 54.45 c | 61.24 b | 66.02 a | 0.689 | <0.05 | <0.05 |
48 h | 65.45 b | 63.67 b | 68.15 ab | 75.22 a | 0.869 | <0.05 | <0.05 |
Propionate, % | |||||||
24 h | 22.77 d | 23.49 c | 24.43 b | 26.11 a | 0.602 | <0.05 | <0.05 |
48 h | 22.17 c | 23.72 b | 24.07 b | 25.76 a | 0.690 | <0.05 | <0.05 |
Butyrate, % | |||||||
24 h | 17.26 a | 17.16 a | 17.24 a | 16.25 b | 0.212 | <0.05 | <0.05 |
48 h | 16.84 | 17.55 | 17.44 | 17.19 | 0.342 | 0.638 | 0.532 |
Valerate, % | |||||||
24 h | 5.59 a | 5.45 ab | 5.38 b | 4.92 c | 0.049 | <0.05 | <0.05 |
48 h | 6.11 | 6.28 | 6.25 | 5.76 | 0.096 | 0.254 | 0.115 |
Acetate to propionate ratio | |||||||
24 h | 2.39 a | 2.30 b | 2.17 c | 2.02 d | 0.037 | <0.05 | <0.05 |
48 h | 2.47 a | 2.21 b | 2.17 b | 1.99 c | 0.048 | <0.05 | <0.05 |
Items | C | T | SEM | p-Value |
---|---|---|---|---|
Initial body weight, kg | 74.86 | 72.83 | 3.772 | 0.800 |
Daily weight gain, kg/day | 1.01 | 0.96 | 0.061 | 0.722 |
Feed intake, kg/day | 4.03 | 4.12 | 0.211 | 0.831 |
Forage, kg/day | 0.70 | 0.56 | 0.039 | 0.212 |
Concentrate, kg/day | 3.33 | 3.56 | 0.189 | 0.630 |
Feed efficiency | 0.24 | 0.23 | 0.022 | 0.623 |
Final body weight, kg | 153.36 | 147.78 | 1.281 | 0.674 |
Items | C | T | SEM | p-Value |
---|---|---|---|---|
Initial | ||||
Body length, cm | 78.14 | 77.00 | 1.281 | 0.674 |
Withers height, cm | 80.57 | 79.78 | 0.638 | 0.556 |
Height at hip cross, cm | 84.86 | 85.00 | 1.078 | 0.950 |
Final | ||||
Body length, cm | 99.51 | 98.16 | 1.705 | 0.707 |
Withers height, cm | 96.40 | 99.29 | 1.506 | 0.359 |
Height at hip cross, cm | 100.97 | 101.32 | 1.256 | 0.895 |
Items | C | T | SEM | p-Value |
---|---|---|---|---|
IgG | 6.48 | 8.36 | 0.401 | <0.05 |
IgM | 19.04 | 18.26 | 0.167 | 0.486 |
IgA | 2.81 | 2.61 | 0.532 | 0.572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, C.H.; Kim, B.H.; Lee, S.; Bang, H.T.; Baek, Y.C. Effects of Supplemented Resveratrol on In Vitro Ruminal Fermentation and Growth Performance of Hanwoo Calves. Animals 2022, 12, 3420. https://doi.org/10.3390/ani12233420
Ryu CH, Kim BH, Lee S, Bang HT, Baek YC. Effects of Supplemented Resveratrol on In Vitro Ruminal Fermentation and Growth Performance of Hanwoo Calves. Animals. 2022; 12(23):3420. https://doi.org/10.3390/ani12233420
Chicago/Turabian StyleRyu, Chae Hwa, Byeong Hyeon Kim, Seul Lee, Han Tae Bang, and Youl Chang Baek. 2022. "Effects of Supplemented Resveratrol on In Vitro Ruminal Fermentation and Growth Performance of Hanwoo Calves" Animals 12, no. 23: 3420. https://doi.org/10.3390/ani12233420
APA StyleRyu, C. H., Kim, B. H., Lee, S., Bang, H. T., & Baek, Y. C. (2022). Effects of Supplemented Resveratrol on In Vitro Ruminal Fermentation and Growth Performance of Hanwoo Calves. Animals, 12(23), 3420. https://doi.org/10.3390/ani12233420