An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NRC. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Mansilla, W.D.; Marinangeli, C.P.F.; Ekenstedt, K.J.; A Larsen, J.; Aldrich, G.; Columbus, D.; Weber, L.; Abood, S.K.; Shoveller, A.K. Special topic: The association between pulse ingredients and canine dilated cardiomyopathy: Addressing the knowledge gaps before establishing causation1. J. Anim. Sci. 2019, 97, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Yamka, R.M.; Jamikorn, U.; True, A.D.; Harmon, D.L. Evaluation of soybean meal as a protein source in canine foods. Anim. Feed Sci. Technol. 2003, 109, 121–132. [Google Scholar] [CrossRef]
- Reilly, L.M.; Von Schaumburg, P.C.; Hoke, J.M.; Davenport, G.M.; Utterback, P.L.; Parsons, C.M.; De Godoy, M.R. Characterization of plant-based protein sources for use in canine and feline nutrition. Arch. Vet. Sci. 2018, 23, 43–44. [Google Scholar] [CrossRef]
- Deng, P.; Utterback, P.L.; Parsons, C.M.; Hancock, L.; Swanson, K. Chemical composition, true nutrient digestibility, and true metabolizable energy of novel pet food protein sources using the precision-fed cecectomized rooster assay. J. Anim. Sci. 2016, 94, 3335–3342. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, I.C.; Aldrich, C.G. Starch characterization of commercial extruded dry pet foods. Transl. Anim. Sci. 2020, 4, 1017–1022. [Google Scholar] [CrossRef]
- AOAC. Animal Feed. In Official Methods of Analysis of AOAC International; Wendt Thiex, N.J., Ed.; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Tran, Q.D.; Hendriks, W.H.; van der Poel, A.F. Effects of extrusion processing on nutrients in dry pet food. J. Sci. Food Agric. 2008, 88, 1487–1493. [Google Scholar] [CrossRef]
- Koppel, K.; Gibson, M.; Alavi, S.; Aldrich, G. The effects of cooking process and meat inclusion on pet food flavor and texture characteristics. Animals 2014, 4, 254–271. [Google Scholar] [CrossRef] [PubMed]
- Inal, F.; Alatas, M.S.; Kahraman, O.; Inal, S.; Uludag, M.; Gurbuz, E.; Polat, E.S. Using of Pelleted and Extruded Foods in Dog Feeding. Kafkas. Univ. Vet. Fak. Derg. 2018, 24, 131–136. [Google Scholar]
- van Rooijen, C.; Bosch, G.; van der Poel, A.F.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H. The Malliard reaction and pet food processing: Effects on nutritive value and pet health. Nutr. Res. Rev. 2013, 26, 130–148. [Google Scholar] [CrossRef] [PubMed]
- Lankhorst, C.; Tran, Q.D.; Havenaar, R.; Hendriks, W.H.; van der Poel, A.F. The effect of extrusion on the nutritional value of canine diets as assessed by in vitro indicators. Anim. Feed Sci. Technol. 2007, 138, 285–297. [Google Scholar] [CrossRef]
- Gibson, M.W.; Sajid, A. Pet food processing: Understanding transformations in starch during extrusion and baking. Cereal Foods World 2013, 58, 232–236. [Google Scholar] [CrossRef]
- Murray, S.M.; Flickinger, E.A.; Patil, A.R.; Merchen, N.R.; Brent, J.L., Jr.; Fahey, G., Jr. In vitro fermentation characteristics of native and processed cereal grains and potato starch using ileal chyme from dogs. J. Anim. Sci. 2001, 79, 435–444. [Google Scholar] [CrossRef]
- Wolter, R.; Socorro, E.P.; Houdre, C. Faecal and ileal digestibility in the dog of diets rich in wheat or tapioca. Rescueil Med. Vet. 1998, 174, 45–55. [Google Scholar]
- Carciofi, A.C.; Takakura, F.S.; De-Oliveira, L.D.; Teshima, E.; Jeremias, J.T.; Brunetto, M.A.; Prada, F. Effects of six carbohydrate sources on dog diet digestibility and post-prandial glucose and insulin response. J. Anim. Physiol. Anim. Nutr. 2008, 92, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Pezzali, J.G.; Aldrich, C.G. Effect of ancient grains and grain-free carbohydrate sources on extrusion parameters and nutrient utilization by dogs. J. Anim. Sci. 2019, 97, 3758–3767. [Google Scholar] [CrossRef]
- Pacheco, P.D.; Putarov, T.C.; Baller, M.A.; Peres, F.M.; Loureiro, B.A.; Carciofi, A.C. Thermal energy application on extrusion and nutritional characteristics of dog foods. Anim. Feed Sci. Technol. 2018, 243, 52–63. [Google Scholar] [CrossRef]
- Bindels, L.B.; Munoz, R.R.S.; Gomes-Neto, J.C.; Mutemberezi, V.; Martínez, I.; Salazar, N.; Cody, E.A.; Quintero-Villegas, M.I.; Kittana, H.; Reyes-Gavilán, C.G.D.L.; et al. Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome 2017, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Sandri, M.; Sgorlon, S.; Scarsella, E.; Stefanon, B. Effect of different starch sources in a raw meat-based diet on fecal microbiome in dogs housed in a shelter. Anim. Nutr. 2020, 6, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.L.; Stark, C.R.; Fahrenholz, A.C.; Bergstrom, J.R.; Jones, C.K. Evaluation of conditioning time and temperature on gelatinized starch and vitamin retention in a pelleted swine diet. J. Anim. Sci. 2015, 93, 615–619. [Google Scholar] [CrossRef] [PubMed]
- AAFCO. Official Publication; Association of American Feed Control Officials: Champaign, IL, USA, 2015. [Google Scholar]
Diet | Type | Life Stage | Ingredient 1 | Ingredient 2 | Ingredient 3 | Ingredient 4 | Ingredient 5 |
---|---|---|---|---|---|---|---|
1 | NT | All life stages | Chicken | Chicken meal | Sweet potatoes | Pea protein | Pea flour |
2 | NT | All life stages | Deboned alligator | Menhaden fish meal | Tapioca starch | Peas | Pea protein |
3 | NT | All life stages | Kangaroo | Kangaroo meal | Peas | Chickpeas | Pea flour |
4 | NT | All life stages | Rabbit | Salmon meal | Menhaden fish meal | Chickpeas | Canola oil |
5 | NT | Maintenance | Buffalo | Lamb meal | Chicken meal | Sweet potatoes | Peas |
6 | NT | Maintenance | Chicken | Peas | Pea starch | Chicken by-product meal | Lentils |
7 | NT | Maintenance | Deboned venison | Turkey meal | Pork meal | Chickpeas | Lentils |
8 | NT | Maintenance | Quail | Chickpeas | Peas | Potatoes | Turkey meal |
9 | NT | Maintenance | Squid | Chickpeas | Pumpkin | Sunflower oil | Flaxseed |
10 | NT | Maintenance | Venison meal | Dried potatoes | Lentils | Chickpeas | Canola oil |
11 | T | All life stages | Chicken | Chicken meal | Whole grain brown rice | Cracked pearled barley | Pea flour |
12 | T | All life stages | Chicken meal | Brown rice | Rice | Chicken fat | Olive oil |
13 | T | All life stages | Chicken meal | Grain sorghum | Peas | Whole grain millet | Whole grain brown rice |
14 | T | Maintenance | Chicken | Brewers rice | Corn gluten meal | Whole grain corn | Poultry by-product |
15 | T | Maintenance | Chicken | Brown rice | Brewers rice | Cracked pearled barley | Chicken meal |
16 | T | Maintenance | Chicken | Chicken by-product meal | Corn meal | Ground whole grain sorghum | Brewers rice |
17 | T | Maintenance | Chicken | Organic barley | Organic oats | Organic peas | Chicken meal |
18 | T | Maintenance | Chicken meal | Ground barley | Ground oats | Ground brown rice | Chicken fat |
19 | T | Maintenance | Ground whole grain corn | Meat and bone meal | Corn gluten meal | Animal fat | Soybean meal |
20 | T | Maintenance | Whole ground brown rice | Dehydrated chicken | Coconut | Sun-cured alfalfa | Whole ground flaxseed |
Non-Traditional (NT) | Traditional (T) | p-Value | |
---|---|---|---|
Maintenance | |||
Total starch (% of total diet) | 22.3 (±8.0)% | 35.2 (±4.0)% | 0.0032 * |
Gelatinized starch (% of total diet) | 21.4 (±7.8)% | 30.2 (±2.4)% | 0.0165 * |
Total starch gelatinization (% of total starch) | 95.4 (±2.1)% | 86.1 (±3.8)% | 0.0002 * |
All life stages | |||
Total starch (% total diet) | 19.9 (±3.4)% | 36.0 (±7.8)% | 0.0128 * |
Gelatinized starch (% of total diet) | 19.4 (±3.4)% | 30.9 (±5.9)% | 0.0220 * |
Total starch gelatinization (% of total starch) | 97.6 (±2.3)% | 86.3 (±4.0)% | 0.0049 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perry, E.B.; Valach, A.A.; Fenton, J.M.; Moore, G.E. An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations. Animals 2022, 12, 3357. https://doi.org/10.3390/ani12233357
Perry EB, Valach AA, Fenton JM, Moore GE. An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations. Animals. 2022; 12(23):3357. https://doi.org/10.3390/ani12233357
Chicago/Turabian StylePerry, Erin Beth, Alyssa Ann Valach, Jesse Marie Fenton, and George E. Moore. 2022. "An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations" Animals 12, no. 23: 3357. https://doi.org/10.3390/ani12233357
APA StylePerry, E. B., Valach, A. A., Fenton, J. M., & Moore, G. E. (2022). An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations. Animals, 12(23), 3357. https://doi.org/10.3390/ani12233357