Effects of Differences in Fibre Composition and Maturity of Forage-Based Diets on the Fluid Balance, Water-Holding Capacity and Viscosity in Equine Caecum and Colon Digesta
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Design
2.2. Diets
2.3. Total Collection of Faeces and Urine, Caecum, Colon and Blood Sampling
2.4. Digesta, Urine and Blood Analyses
2.5. Statistical Analysis
3. Results
3.1. Body Weights and Fluid Balance
3.2. Physical Characteristics of Digesta
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, H. Nutrition of the equine athlete. In Equine Exercise Physiology 2; Gillespie, J.R., Robinson, N.E., Eds.; ICEEP Publications: Davis, CA, USA, 1987; pp. 644–673. [Google Scholar]
- Carlson, G.P. Haematology and body fluids in the equine athlete: A review. In Equine Exercise Physiology 2; Gillespie, J.R., Robinson, N.E., Eds.; ICEEP Publications: Davis, CA, USA, 1987; pp. 393–425. [Google Scholar]
- Spooner, H.S.; Nielsen, B.D.; Schott, H.C., II; O’Connor-Robison, C.I.; Harris, P.A. Hydration status of horses performing endurance exercise: I. Evidence for a role of diet. Comp. Exerc. Physiol. 2013, 9, 189–197. [Google Scholar] [CrossRef]
- Eastwood, M.A. Vegetable fibre: Its physical properties. In Proceedings of the Nutrition Society 32, Edinburgh, UK, 14 April 1973; pp. 137–143. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J.A.; Eastwood, M.A.; Yeoman, M.M. An investigation into the physical properties of fibre prepared from several carrot varieties at different stages of development. J. Sci. Food Agric. 1980, 31, 633–638. [Google Scholar] [CrossRef]
- McBurney, M.I.; Horvath, P.J.; Jeraci, J.L.; Van Soest, P.J. Effect of in vitro fermentation using human faecal inoculum on the water-holding capacity of dietary fibre. Br. J. Nutr. 1985, 53, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, L.K.; Lawrence, L.M.; Brewster-Barnes, T.; Powell, D.M. The effect of dietary fibre on hydration status after dehydration with frusemide. Equine Vet. J. 1999, 31 (Suppl. S30), 508–513. [Google Scholar] [CrossRef]
- Darlington, J.M.; Hershberger, T.V. Effect of forage maturity on digestibility, intake and nutritive value of alfalfa, timothy and orchardgrass by equine. J. Anim. Sci. 1968, 27, 1572–1576. [Google Scholar] [CrossRef]
- Ragnarsson, S.; Lindberg, J.E. Nutritional value of timothy haylage in Icelandic horses. Livest. Sci. 2008, 113, 202–208. [Google Scholar] [CrossRef]
- Hansen, T.L.; Lawrence, L.M. Composition factors predicting forage digestibility by horses. J. Equine Vet. Sci. 2017, 58, 97–102. [Google Scholar] [CrossRef]
- Stephen, A.M.; Cummings, J.H. Mechanism of action of dietary fibre in the human colon. Nature 1980, 284, 283–284. [Google Scholar] [CrossRef]
- Hansen, T.L.; Chizek, E.L.; Zugay, O.K.; Miller, J.M.; Bobel, J.M.; Chouinard, J.W.; Adkin, A.M.; Skurupey, L.A.; Warren, L.K. Digestibility and retention time of Coastal Bermudagrass (Cynodon dactylon) hay by horses. Animals 2019, 9, 1148. [Google Scholar] [CrossRef]
- Buxon, D.R.; Redfearn, D.D. Plant limitations to fiber digestion and utilization. J. Nutr. 1997, 127, 814S–818S. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, P.C.; Sievert, S.J.; Shaver, R.D.; Welch, D.A.; Combs, D.K. In situ dry matter, protein, and fiber degradation of perennial forages. J. Dairy Sci. 1993, 76, 2632–2643. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Argenzio, R.A.; Lowe, J.E.; Pickard, D.W.; Stevens, C.E. Digesta passage and water exchange in the equine large intestine. Am. J. Physiol. 1974, 226, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Argenzio, R.A.; Stevens, C.E. Cyclic changes in ionic composition of digesta in the equine intestinal tract. Am. J. Physiol. 1975, 228, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Schwabenbauer, K.; Meyer, H.; Lindemann, G. Gehalt an flüchtigen Fettsäuren und Ammoniak im Caecuminhalt des Pferdes in Abhängigkeit von Futterart, Futterreihenfolge und Fütterungszeitpunkt. Fortschr. Tierphysiol. Tierernährg. 1982, 13, 24–31. [Google Scholar]
- Danielsen, K.; Lawrence, L.M.; Siciliano, P.; Powell, D.; Thompson, K. Effect of diet on weight and plasma variables in endurance exercised horses. Equine Vet. J. 1995, 27 (Suppl. S18), 372–377. [Google Scholar] [CrossRef]
- Meyer, H. Influence of diet, exercise and water restriction on the gut fill in horses. In Proceedings of the Equine Nutrition Physiology Society 14, Ontario, CA, USA, 19–21 January 1995; pp. 90–91. [Google Scholar]
- Rice, O.; Geor, R.; Harris, P.; Hoekstra, K.; Gardner, S.; Pagan, J. Effects of restricted hay intake on body weight and metabolic responses to high-intensity exercise in Thoroughbred horses. In Proceedings of the 17th Meeting of the Equine Nutritional and Physiology Society, Lexington, KE, USA, 31 May–2 June 2001; pp. 273–279. [Google Scholar]
- Jansson, A.; Lindberg, J.E. Effects of a forage-only diet on body weight and response to interval training on a track. In Nutrition of the Exercising Horse; Saastamoinen, M.T., Martin-Rosset, W., Eds.; EAAP Publication No. 125; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008; pp. 345–349. [Google Scholar]
- Connysson, M.; Essén-Gustavsson, B.; Lindberg, J.E.; Jansson, A. Effects of feed deprivation on standardbred horses fed a forage-only diet and a 50:50 forage-oats diet. Equine Vet. J. 2010, 42 (Suppl. 38), 335–340. [Google Scholar] [CrossRef]
- Dikeman, C.L.; Fahey, G.C., Jr. Viscosity as related to dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 649–663. [Google Scholar] [CrossRef]
- Lentle, R.G.; Janssen, P.W.M. Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: A review. J. Comp. Physiol. B 2008, 178, 673–690. [Google Scholar] [CrossRef]
- Muhonen, S.; Sadet-Bourgeteau, S.; Julliand, V. Effects of differences in fibre composition and maturity of forage-based diets on the microbial ecosystem and its activity in equine caecum and colon digesta and faeces. Animals 2021, 11, 2337. [Google Scholar] [CrossRef]
- Lindgren, E. The Nutritional Value of Roughages Determined In Vivo and by Laboratory Methods; Report no. 45; Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences: Uppsala, Sweden, 1979; p. 63. [Google Scholar]
- Robertson, J.A.; Eastwood, M.A. An examination of factors which may affect the water holding capacity of dietary fibre. Br. J. Nutr. 1981, 45, 83–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhonen, S.; Connysson, M.; Lindberg, J.E.; Julliand, V.; Bertilsson, J.; Jansson, A. Effects of crude protein intake from grass silage-only diets on the equine colon ecosystem after an abrupt feed change. J. Anim. Sci. 2008, 86, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhonen, S.; Julliand, V.; Lindberg, J.E.; Bertilsson, J.; Jansson, A. Effects on the equine colon ecosystem of grass silage and haylage diets after an abrupt change from hay. J. Anim. Sci. 2009, 87, 2291–2298. [Google Scholar] [CrossRef]
- Jouany, J.P.; Medina, B.; Bertin, G.; Julliand, V. Effect of live yeast culture supplementation on hindgut microbial communities and their polysaccharide and glycoside hydrolase activities in horses fed a high-fiber or high-starch diet. J. Anim. Sci. 2009, 87, 2844–2852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philippeau, C.; Sadet-Bourgeteau, S.; Varloud, M.; Julliand, V. Impact of barley form on equine total tract fibre digestibility and colonic microbiota. Animal 2015, 9, 1943–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, J.M.; Hollands, T.; Allen, D.E. Effect of forage intake on body weight and performance. Equine Vet. J. 2002, 34 (Suppl. S34), 66–70. [Google Scholar] [CrossRef]
- Muhonen, S.; Julliand, V. Effects of Differences in Fibre Composition and Maturity of Forage-Based Diets on the Fluid Balance, and Fecal Water-Holding Capacity and Microbial Ecosystem in French Trotters; AgroSup Dijon: Dijon, France. to be submitted.
- Muhonen, S. Metabolism and Hindgut Ecosystem in Forage Fed Sedentary and Athletic Horses. Ph.D. Thesis, Acta Universitatis Agriculturae Sueciae, Uppsala, Sweden, 2008. [Google Scholar]
- Stephen, A.M.; Cummings, J.H. Water-holding by dietary fibre in vitro and its relationship to faecal output in man. Gut 1979, 20, 722–729. [Google Scholar] [CrossRef]
- Froetschel, M.A.; Amos, H.E. Effects of dietary fiber and feeding frequency on ruminal fermentation, digesta water-holding capacity, and fractional turnover of contents. J. Anim. Sci. 1991, 69, 1312–1321. [Google Scholar] [CrossRef]
- Owusu-Asiedu, A.; Patience, J.F.; Laarveld, B.; Van Kessel, A.G.; Simmins, P.H.; Zijlstra, R.T. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. J. Anim. Sci. 2006, 84, 843–852. [Google Scholar] [CrossRef]
- Bourquin, L.D.; Titgemeyer, E.C.; Fahey, G.C., Jr. Fermentation of various dietary fiber sources by human fecal bacteria. Nutr. Res. 1996, 16, 1119–1131. [Google Scholar] [CrossRef]
- Varloud, M.; de Fombelle, A.; Goachet, A.G.; Drogoul, C.; Julliand, V. Partial and total apparent digestibility of dietary carbohydrates in horses as affected by the diet. Anim. Sci. 2004, 79, 61–72. [Google Scholar] [CrossRef]
- Hintz, H.F.; Hogue, D.E.; Walker, E.F., Jr.; Lowe, J.E.; Schryver, H.F. Apparent digestion in various segments of the digestive tract of ponies fed diets with varying roughage-grain ratios. J. Anim. Sci. 1971, 32, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Sperber, I.; Björnhag, G.; Holtenius, K. A separation mechanism and fluid flow in the large intestine of the equine. Pferdeheilkunde Sonderausg. 1992, 29–32. [Google Scholar]
- Parsons, A.M.; Nielsen, B.D.; Schott, H.C.; Geor, R.; Yokoyama, M.; Harris, P. Effects of fiber type, particle size, and soak time on water hydration and estimated potential water releasing capacities of roughages fed to horses. J. Equine Vet. Sci. 2011, 31, 261. [Google Scholar] [CrossRef]
- Argenzio, R.A.; Southworth, M.; Lowe, J.E.; Stevens, C.E. Interrelationship of Na, HCO3, and volatile fatty acid transport by equine large intestine. Am. J. Physiol. 1977, 233, 469–478. [Google Scholar] [CrossRef]
- Clarke, L.L.; Argenzio, R.A.; Roberts, M.C. Effect of meal feeding on plasma volume and urinary electrolyte clearance in ponies. Am. J. Vet. Res. 1990, 51, 571–576. [Google Scholar]
- Nyman, S. Water Intake and Fluid Regulation in the Horse. Ph.D. Thesis, Acta Universitatis Agriculturae Sueciae Veterinaria 98, Uppsala, Sweden, 2001. [Google Scholar]
- Houpt, T.R. Water and electrolytes. In Dukes’ Physiology of Domestic Animals, 11th ed.; Swenson, M.J., Reece, W.O., Eds.; Cornell University Press: Ithaca, NY, USA, 1993; pp. 9–21. [Google Scholar]
- Fonnesbeck, P.V. Consumption and excretion of water by horses receiving all hay and hay-grain diets. J. Anim. Sci. 1968, 27, 1350–1356. [Google Scholar] [CrossRef]
- Muhonen, S.; Lindberg, J.E.; Bertilsson, J.; Jansson, A. Effects on fluid balance, digestion and exercise response in Standardbred horses fed silage, haylage and hay. Comp. Exerc. Physiol. 2009, 5, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Andersson, B.E.; Jónasson, H. Temperature regulation and environmental physiology. In Dukes’ Physiology of Domestic Animals, 11th ed.; Swenson, M.J., Reece, W.O., Eds.; Cornell University Press: Ithaca, NY, USA, 1993; pp. 886–895. [Google Scholar]
- Meyer, R.M.; Bartley, E.E. Boat in cattle. XV. The relation of viscosity and cell-free polysaccharide content of rumen fluid to feedlot bloat. J. Anim. Sci. 1971, 33, 1018–1021. [Google Scholar] [CrossRef]
- Takahashi, T.; Sakata, T. Large particles increase viscosity and yield stress of pig cecal contents without changing basic viscoelastic properties. J. Nutr. 2002, 132, 1026–1030. [Google Scholar] [CrossRef] [Green Version]
- McRorie, J.; Brown, S.; Cooper, R.; Givaruangsawat, S.; Scruggs, D.; Boring, G. Effects of dietary fibre and olestra on regional apparent viscosity and water content of digesta residue in porcine large intestine. Aliment. Pharmacol. Ther. 2000, 14, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Dikeman, C.L.; Barry, K.A.; Murphy, M.R.; Fahey, G.C., Jr. Diet and measurement techniques affect small intestinal digesta viscosity among dogs. Nutr. Res. 2007, 27, 56–65. [Google Scholar] [CrossRef]
- Jensen, R.B.; Austbø, D.; Blache, D.; Bach Knudsen, K.E.; Tauson, A.H. The effect of feeding barley or hay alone or in combination with molassed sugar beet pulp on the metabolic responses in plasma and caecum of horses. Anim. Feed Sci. Technol. 2016, 214, 53–65. [Google Scholar] [CrossRef]
- Hansen, T.L.; Rankins, E.M.; Bobel, J.M.; McKinney, M.; Hackmann, T.J.; Warren, L.K. Postprandial blood glucose and insulin responses of horses to feeds differing in soluble fiber concentration. J. Equine Vet. Sci. 2020, 88, 102963. [Google Scholar] [CrossRef]
Late Harvested Grass Haylage | Early Harvested Grass Haylage | Lucerne Haylage | |
---|---|---|---|
IVDOM (%) | 63 | 89 | 65 |
ME (MJ/kg DM) | 7.5 | 11.6 | 8.7 |
Crude protein | 80 | 172 | 157 |
Crude fibre | 374 | 280 | 350 |
Neutral detergent fibre | 670 | 521 | 483 |
Acid detergent fibre | 409 | 299 | 382 |
Acid detergent lignin | 50 | 22 | 77 |
Diet C | Diet G | Diet L | SEM | p-Values | |
---|---|---|---|---|---|
DM (kg/100 kg BW per day) | 1.4 a | 1.2 b | 1.4 a | 0.04 | 0.001 |
Energy (MJ/100 kg BW per day) 3 | 12.1 ab | 12.5 a | 11.7 b | 0.39 | 0.032 |
Crude protein | 181 a | 199 b | 191 ab | 5.8 | 0.016 |
Crude fibre | 420 a | 337 b | 499 c | 15.4 | <0.001 |
Neutral detergent fibre | 775 a | 617 b | 742 a | 23.3 | 0.001 |
Acid detergent fibre | 465 a | 362 b | 544 c | 15.8 | <0.001 |
Acid detergent lignin | 54 a | 38 b | 97 c | 3.1 | <0.001 |
Hemicellulose 4 | 309 a | 256 b | 197 c | 7.7 | <0.001 |
Cellulose 4 | 407 a | 329 b | 446 c | 12.9 | <0.001 |
Starch | 91 a | 4 b | 16 c | 1.8 | <0.001 |
Water soluble carbohydrates | 61 a | 53 b | 21 c | 2.1 | <0.001 |
Calcium | 17 a | 18 b | 21 c | 0.6 | <0.001 |
Phosphorus | 3 | 3 | 3 | 0.1 | 0.235 |
Magnesium | 3 a | 3 a | 5 b | 0.2 | <0.001 |
Sodium | 4 a | 4 b | 4 a | 0.1 | 0.010 |
Potassium | 25 a | 33 b | 34 b | 1.3 | 0.001 |
Diet C | Diet G | Diet L | SEM | p-Values | |
---|---|---|---|---|---|
kg/Day | |||||
Water intake | 19.0 | 19.8 | 20.6 | 1.64 | 0.511 |
Water in feed | 4.0 a | 4.0 a | 7.8 b | 0.11 | <0.001 |
Total water intake 3 | 23.3 a | 23.6 a | 28.2 b | 1.69 | 0.020 |
Water in faeces | 14.6 ab | 12.0 a | 17.1 b | 1.85 | 0.034 |
Water in urine | 5.5 | 8.2 | 6.8 | 0.77 | 0.058 |
Total water output | 20.0 a | 20.3 a | 23.8 b | 1.75 | 0.025 |
Difference intake-output | 3.3 a | 3.2 a | 4.4 b | 0.30 | 0.043 |
Total Water Intake | ||
---|---|---|
Correlation Coefficient | p-Values | |
Total DM intake | 0.346 | 0.207 |
Total forage DM intake | 0.648 | 0.009 |
Total NDF intake | 0.213 | 0.446 |
Total forage NDF intake | 0.480 | 0.070 |
Total ADF intake | 0.502 | 0.057 |
Total forage ADF intake | 0.583 | 0.023 |
Diet C | Diet G | Diet L | SEM | p-Values | |||
---|---|---|---|---|---|---|---|
Diet | Segment | Diet × Segment | |||||
WHC filtration method (g H2O/g dry digesta) | |||||||
Caecum | 12.2 | 14.3 | 12.1 | 0.92 | 0.048 | 0.006 | 0.814 |
Colon | 10.5 | 13.0 | 10.5 | ||||
Faeces | 10.2 | 11.1 | 10.0 | ||||
WHC centrifugation method (g H2O/g dry digesta) | |||||||
Caecum | 11.1 a | 14.2 bA | 12.4 abA | 1.04 | 0.012 | 0.005 | 0.044 |
Colon | 10.7 a | 15.0 bA | 9.6 aB | ||||
Faeces | 10.5 | 11.0 B | 10.0 B | ||||
DM (%) | |||||||
Caecum | 5.7 | 2.4 | 4.2 | 0.74 | 0.043 | <0.001 | 0.119 |
Colon | 4.5 | 2.4 | 3.2 | ||||
Faeces | 20.9 | 21.2 | 19.6 | ||||
Viscosity (mm2/s) | |||||||
Caecum | 1.08 | 1.06 | 1.07 | 0.102 | 0.771 | 0.092 | 0.823 |
Colon | 1.28 | 1.25 | 1.16 | ||||
Osmolality (mOsm/kg of H2O) | |||||||
Caecum | 266 | 275 | 269 | 6.8 | 0.913 | 0.903 | 0.297 |
Colon | 277 | 263 | 268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhonen, S.; Philippeau, C.; Julliand, V. Effects of Differences in Fibre Composition and Maturity of Forage-Based Diets on the Fluid Balance, Water-Holding Capacity and Viscosity in Equine Caecum and Colon Digesta. Animals 2022, 12, 3340. https://doi.org/10.3390/ani12233340
Muhonen S, Philippeau C, Julliand V. Effects of Differences in Fibre Composition and Maturity of Forage-Based Diets on the Fluid Balance, Water-Holding Capacity and Viscosity in Equine Caecum and Colon Digesta. Animals. 2022; 12(23):3340. https://doi.org/10.3390/ani12233340
Chicago/Turabian StyleMuhonen, Sara, Christelle Philippeau, and Véronique Julliand. 2022. "Effects of Differences in Fibre Composition and Maturity of Forage-Based Diets on the Fluid Balance, Water-Holding Capacity and Viscosity in Equine Caecum and Colon Digesta" Animals 12, no. 23: 3340. https://doi.org/10.3390/ani12233340
APA StyleMuhonen, S., Philippeau, C., & Julliand, V. (2022). Effects of Differences in Fibre Composition and Maturity of Forage-Based Diets on the Fluid Balance, Water-Holding Capacity and Viscosity in Equine Caecum and Colon Digesta. Animals, 12(23), 3340. https://doi.org/10.3390/ani12233340