Effects of Feeding and Drinking Behavior on Performance and Carcass Traits in Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feed Efficiency Test
2.2. Traits
2.3. Ingestive Behavior and Carcass Traits
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valente, É.E.L.; Chizzotti, M.L.; Oliveira CVR de Galvão, M.C.; Domingues, S.S.; Rodrigues, A.D.C.; Ladeira, M.M. Intake, physiological parameters and behavior of Angus and Nellore bulls subjected to heat stress. Semin. Ciências Agrárias 2015, 36, 4565. [Google Scholar] [CrossRef] [Green Version]
- Ahlberg, C.M.; Allwardt, K.; Broocks, A.; Bruno, K.; McPhillips, L.; Taylor, A.; Krehbiel, C.R.; Calvo-Lorenzo, M.S.; Richards, C.J.; Place, S.E.; et al. Environmental effects on water intake and water intake prediction in growing beef cattle. J. Anim. Sci. 2018, 96, 4368–4384. [Google Scholar] [CrossRef] [PubMed]
- Brew, M.N.; Myer, R.O.; Hersom, M.J.; Carter, J.N.; Elzo, M.A.; Hansen, G.R.; Riley, D.G. Water intake and factors affecting water intake of growing beef cattle. Livest. Sci. 2011, 140, 297–300. [Google Scholar] [CrossRef]
- Romanzin, A.; Degano, L.; Vicario, D.; Spanghero, M. Feeding efficiency and behavior of young Simmental bulls selected for high growth capacity: Comparison of bulls with high vs. low residual feed intake. Livest. Sci. 2021, 249, 104525. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Sakamoto, L.S.; Souza, L.L.; Gianvecchio, S.B.; Oliveira, M.H.V.; Silva, J.A., II; Canesin, R.C.; Branco, R.H.; Baccan, M.; Berndt, A.; Albuquerque, L.G.; et al. Phenotypic association among performance, feed efficiency and methane emission traits in Nellore cattle. PLoS ONE 2021, 16, e0257964. [Google Scholar] [CrossRef]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Kenny, D.A.; Fitzsimons, C.; Waters, S.M.; McGee, M. Invited review: Improving feed efficiency of beef cattle-The current state of the art and future challenges. Animal 2018, 12, 1815–1826. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, P.A.; Carstens, G.E.; Ribeiro, F.R.B.; Tedeschi, L.O.; Crews, J.R.H. Characterization of feed efficiency traits and relationships with feeding behavior and ultrasound carcass traits in growing bulls. J. Anim. Sci. 2009, 87, 1528–1539. [Google Scholar] [CrossRef]
- Bonilha, S.F.M.; Cyrillo, J.N.S.G.; Santos, G.P.; Branco, R.H.; Ribeiro, E.G.; Mercadante, M.E.Z. Feed efficiency, blood parameters, and ingestive behavior of young Nellore males and females. Trop. Anim. Health Prod. 2015, 47, 1381–1389. [Google Scholar] [CrossRef]
- Chaves, A.S.; Nascimento, M.L.; Tullio, R.R.; Rosa, A.N.; Alencar, M.M.; Lanna, D.P. Relationship of efficiency indices with performance, heart rate, oxygen consumption, blood parameters, and estimated heat production in Nellore steers. J. Anim. Sci. 2015, 93, 5036–5046. [Google Scholar] [CrossRef] [PubMed]
- Fukumasu, H.; Santana, M.H.; Alexandre, P.A.; Ferraz, J.B.S. Systems Biology Application in Feed Efficiency in Beef Cattle. In Systems Biology in Animal Production and Health, 1st ed.; Kadarmideen, H., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 2, pp. 79–95. [Google Scholar] [CrossRef]
- Pires, B.V.; Stafuzza, N.B.; Freitas, L.A.; Mercadante, M.E.Z.; Ramos, E.S.; Paz, C.C.P. Expression of candidate genes for residual feed intake in tropically adapted Bos taurus and Bos indicus bulls under thermoneutral and heat stress environmental conditions. J. Therm. Biol. 2021, 99, 102998. [Google Scholar] [CrossRef]
- Montanholi, Y.R.; Swanson, K.C.; Palme, R.; Schenkel, F.S.; McBride, B.W.; Lu, D.; Miller, S.P. Assessing feed efficiency in beef steers through feeding behavior, infrared thermography and glucocorticoids. Animal 2010, 4, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Gomes R da, C.; Sainz, R.D.; Leme, P.R. Protein metabolism, feed energy partitioning, behavior patterns and plasma cortisol in Nellore steers with high and low residual feed intake. Rev. Bras. Zootec. 2013, 42, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, A.L.; Mercadante, M.E.Z.; Canesin, R.C.; Branco, R.H.; Lima, M.L.P.; Cyrillo, J.N.S.G. Phenotypic association between feed efficiency and feeding behavior, growth and carcass traits in Senepol cattle. Rev. Bras. Zootec. 2017, 46, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Mao, F.; Crews, D.H.; Vinsky, M.; Li, C. Phenotypic and genetic relationships of feeding behavior with feed intake, growth performance, feed efficiency, and carcass merit traits in Angus and Charolais steers. J. Anim. Sci. 2014, 92, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Montanholi, Y.R.; Odongo, N.E.; Swanson, K.C.; Schenkel, F.S.; McBride, B.W.; Miller, S.P. Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (Bos taurus). J. Therm. Biol. 2008, 33, 468–475. [Google Scholar] [CrossRef]
- Santana, M.H.A.; Rossi, P.; Almeida, R.; Cucco, D.C. Feed efficiency and its correlations with carcass traits measured by ultrasound in Nellore bulls. Livest. Sci. 2012, 145, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Ceacero, T.M.; Mercadante, M.E.Z.; Cyrillo, J.N.S.G.; Canesin, R.C.; Bonilha, S.F.M.; Albuquerque, L.G. Phenotypic and genetic correlations of feed efficiency traits with growth and carcass traits in Nellore cattle selected for postweaning weight. PLoS ONE 2016, 11, e0161366. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Gonçalves, T.M.; Ladeira, M.M.; Campos, F.R.; Tullio, R.R.; Neto, O.R.M.; Oliveira, D.M.; Bassi, M.S. Residual feed intake and its effect on carcass and meat characteristics of feedlot Zebu cattle. Rev. Bras. Zootec. 2012, 41, 1509–1515. [Google Scholar] [CrossRef] [Green Version]
- Chizzotti, M.L.; Machado, F.S.; Valente, E.E.L.; Pereira, L.G.R.; Campos, M.M.; Tomich, T.R.; Coelho, S.G.; Ribas, M.N. Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle. J. Dairy Sci. 2015, 98, 3438–3442. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.R., Jr.; Ribas, M.N.; Machado, F.S.; Lima, J.A.M.; Cavalcanti, L.F.L.; Chizzotti, M.L.; Coelho, S.G. Validation of a system for monitoring individual feeding and drinking behaviour and intake in young cattle. Animal 2018, 12, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Chapinal, N.; Veira, D.M.; Weary, D.M.; Von Keyserlingk, M.A.G. Validation of a system for monitoring individual feeding and drinking behavior and intake in group-housed cattle. J. Dairy Sci. 2007, 90, 5732–5736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlberg, C.M.; Allwardt, K.; Broocks, A.; Bruno, K.; Taylor, A.; McPhillips, L.; Krehbiel, C.R.; Calvo-Lorenzo, M.; Richards, C.J.; Place, S.E.; et al. Characterization of water intake and water efficiency in beef cattle. J. Anim. Sci. 2019, 97, 4770–4782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, J.R.A.; Andrade, T.A.A.; Assis, D.M.; Gurjão, T.A.; Melo, L.R.B.; Souza, B.B. Productive and reproductive performance, behavior and physiology of cattle under heat stress conditions. J. Anim. Behav. Biometeorol. 2017, 5, 91–96. [Google Scholar] [CrossRef]
- Braul, L.; Kirychuk, B. Water Quality and Cattle; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2001; pp. 1–6. [Google Scholar]
- Jimenez Filho, D.L. Heat stress in dairy cows: Implications and nutritional management. Pubvet 2013, 7, 1640. [Google Scholar] [CrossRef]
- Scharf, B.; Wax, L.E.; Aiken, G.E.; Spiers, D.E. Regional differences in sweat rate response of steers to short-term heat stress. Int. J. Biometeorol. 2008, 52, 725–732. [Google Scholar] [CrossRef]
- Williams, L.R.; Jackson, E.L.; Bishop-Hurley, G.J.; Swain, D.L. Drinking frequency effects on the performance of cattle: A systematic review. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1076–1092. [Google Scholar] [CrossRef]
- Ahlberg, C.M.; Allwardt, K.; Broocks, A.; Bruno, K.; McPhillips, L.; Taylor, A.; Krehbiel, C.R.; Calvo-Lorenzo, M.; Richards, C.J.; Place, S.E.; et al. Test duration for water intake, ADG, and DMI in beef cattle. J. Anim. Sci. 2018, 96, 3043–3054. [Google Scholar] [CrossRef]
- Coleman, S.W.; Evans, B.C.; Guenther, J.J. Body and carcass composition of Angus and Charolais steers as affected by age and nutrition. J. Anim. Sci. 1993, 71, 86–95. [Google Scholar] [CrossRef]
- Campos, B.M.; Carmo, A.S.; Silva, T.B.R.; Verardo, L.L.; Gouveia, J.J.S.; Malhado, C.H.M.; Silva, M.V.G.B.; Carneiro, P.L.S. Identification of artificial selection signatures in Caracu breed lines selected for milk production and meat production. Livest. Sci. 2017, 206, 82–87. [Google Scholar] [CrossRef]
- Sobrinho, T.L.; Bonilha, S.F.M.; Gonçalves, H.C.; Castilhos, A.M.; Magnani, E.; Razook, A.G.; Branco, R.H. Feedlot performance, feed efficiency and carcass traits in Nellore cattle selected for postweaning weight. Rev. Bras. Zootec. 2013, 42, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.D.; Key, C.N.; Marvin, M.N.; Garrett, C.F.; Foradori, C.D.; Bratcher, C.L.; Kriese-Anderson, L.A.; Brandebourg, T.D. Effect of residual feed intake on hypothalamic gene expression and meat quality in Angus-sired cattle grown during the hot season. J. Anim. Sci. 2014, 92, 1451–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ćirić, J.; Lukić, M.; Radulović, S.; Janjić, J.; Glamočlija, N.; Marković, R.; Baltić, M. The relationship between the carcass characteristics and meat composition of young Simmental beef cattle. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012061. [Google Scholar] [CrossRef]
- Lage, I.N.K.; Paulino, P.V.R.; Pires, C.V.; Villela, S.D.J.; Duarte, M.S.; Valadares Filho, S.C.; Paulino, M.F.; Maia, B.A.; Silva, L.H.P.; Teixeira, C.R.V. Intake, digestibility, performance, and carcass traits of beef cattle of different gender. Trop. Anim. Health Prod. 2012, 44, 361–367. [Google Scholar] [CrossRef]
- Paulino, P.V.R.; Valadares Filho, S.C.; Detmann, E.; Diniz Valadares, R.F.; Fonseca, M.A.; Marcondes, M.I. Body tissue and chemical component deposition in Nellore bulls, steers and heifers. Rev. Bras. Zootec. 2009, 38, 2516–2524. [Google Scholar] [CrossRef] [Green Version]
- Van der Heide, E.M.; Lourenco, D.A.L.; Chen, C.Y.; Herring, W.O.; Sapp, R.L.; Moser, D.W.; Tsuruta, S.; Masuda, Y.; Ducro, B.J.; Misztal, I. Sexual dimorphism in livestock species selected for economically important traits. J. Anim. Sci. 2016, 94, 3684–3692. [Google Scholar] [CrossRef]
- Blanco, M.; Ripoll, G.; Delavaud, C.; Casasús, I. Performance, carcass and meat quality of young bulls, steers and heifers slaughtered at a common body weight. Livest. Sci. 2020, 240, 104156. [Google Scholar] [CrossRef]
- Sakowski, T.; Grodkowski, G.; Gołebiewski, M.; Slósarz, J.; Kostusiak, P.; Solarczyk, P.; Puppel, K. Genetic and environmental determinants of beef quality-a review. Front. Vet. Sci. 2022, 9, 819605. [Google Scholar] [CrossRef]
- Byrne, C.J.; Fair, S.; English, A.M.; Cirot, M.; Staub, C.; Lonergan, P.; Kenny, D.A. Plane of nutrition before and after 6 months of age in Holstein-Friesian bulls: I. Effects on performance, body composition, age at puberty, and postpubertal semen production. J. Dairy Sci. 2018, 101, 3447–3459. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xu, Y. Mechanisms for sex differences in energy homeostasis. J. Mol. Endocrinol. 2019, 62, 129–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayton, W.R.; White, M.E. Cellular and molecular regulation of muscle growth and development in meat animals. J. Anim. Sci. 2007, 86, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Rotta, P.P.; Prado, R.M.; Prado, I.N.; Valero, M.V.; Visentainer, J.V.; Silva, R.R. The effects of genetic groups, nutrition, finishing systems and gender of Brazilian cattle on carcass characteristics and beef composition and appearance: A review. Asian-Australasian J. Anim. Sci. 2009, 22, 1718–1734. [Google Scholar] [CrossRef]
- Alves, F.V.; Brito, M.C.B.; Juliano, R.S.; Abreu, U.G.P.; Souza, J.C.; Santos, S.A. Factors influencing the performance of calves Pantaneiros raised in nature pasture in the Pantanal. Actas Iberoam. Conserv. Anim. 2015, 5, 38–43. [Google Scholar]
- Cantalapiedra-Hijar, G.; Abo-Ismail, M.; Carstens, G.E.; Guan, L.L.; Hegarty, R.; Kenny, D.A.; McGee, M.; Plastow, G.; Relling, A.; Ortigues-Marty, I. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal 2018, 12, 321–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, D.J.A.; Peixoto, M.G.C.D.; Borquis, R.R.A.; Verneque, R.S.; Panetto, J.C.C.; Tonhati, H. Genetic parameters for test-day milk yield, 305 day milk yield, and lactation length in Guzerat cows. Livest. Sci. 2013, 152, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Brito, M.C.B.; Santos, S.A.; Alves, F.V.; Juliano, R.S.; Abreu, U.G.P.; Souza, J.C. Growth curve and allometry of Pantaneiros calves, until fourteen months old in Pantanal. Acta Iberoam. Conserv. Anim. 2015, 5, 51–59. [Google Scholar]
- Mueller, L.F.; Balieiro, J.C.C.; Ferrinho, A.M.; Martins, T.S.; Silva, R.R.P.C.; Amorim, T.R.; Jesus, J.M.F.; Baldi, F.; Pereira, A.S.C. Gender status effect on carcass and meat quality traits of feedlot Angus × Nellore cattle. Anim. Sci. J. 2019, 90, 1078–1089. [Google Scholar] [CrossRef]
- Al-Husseini, W.; Gondro, C.; Quinn, K.; Herd, R.M.; Gibson, J.P.; Chen, Y. Expression of candidate genes for residual feed intake in Angus cattle. Anim. Genet. 2014, 45, 12–19. [Google Scholar] [CrossRef]
- Crowley, J.J.; McGee, M.; Kenny, D.A.; Crews, D.H.; Evans, R.D.; Berry, D.P. Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. J. Anim. Sci. 2010, 88, 885–894. [Google Scholar] [CrossRef]
- Heady, H.F. Rangeland Management; McGraw-Hill Book Company: New York, NY, USA, 1975. [Google Scholar]
- Howden, S.M.; Turnpenny, J. Modelling heat stress and water loss of beef cattle in subtropical Queensland under current climates and climate change. In Proceedings of the Modsim’97 International Congress on Modelling and Simulation, University of Tasmania, Hobart, Tasmania, 8–11 December 1997; Modelling and Simulation Society of Australia: Canberra, Australia, 1997. [Google Scholar]
- Pereira, G.M.; Egito, A.A.; Gomes, R.C.; Ribas, M.N.; Torres Junior, R.A.A.; Fernandes Junior, J.A.; Menezes, G.R.O. Water requirements of beef production can be reduced by genetic selection. Animal 2021, 15, 100142. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.D.M.; Martins, T.R.; Latta, K.I.; Ribas, M.N.; Antônio, J.; Junior, F.; Costa, R. Residual water intake as an indicator of water efficiency in cattle. In Proceedings of the 28° Congresso Brasileiro De Zootecnia, Goiânia, Brazil, 2018; p. 87. Available online: https://www.alice.cnptia.embrapa.br/handle/doc/1103971 (accessed on 25 October 2022).
- Bell, F.R. Aspects of Ingestive Behavior in Cattle. J. Anim. Sci. 1984, 59, 1369–1372. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.A.; Costa, P.T.; Farias, G.D.; Vaz, R.Z.; Silveira, I.D.B.; Moreira, S.M.; Silveira, R.F. Cattle behavioral characteristics: Basic aspects, learning process, and factors that affect. Rev. Electron. Vet. 2017, 18, 1–16. [Google Scholar]
- Durunna, O.N.; Wang, Z.; Basarab, J.A.; Okine, E.K.; Moore, S.S. Phenotypic and genetic relationships among feeding behaviour traits, feed intake, and residual feed intake in steers fed grower and finisher diets J. Anim. Sci. 2011, 89, 3401–3409. [Google Scholar] [CrossRef] [Green Version]
- Golden, J.W.; Kerley, M.S.; Kolath, W.H. The relationship of feeding behavior to residual feed intake in crossbred Angus steers fed traditional and no-roughage diets. J. Anim. Sci. 2008, 86, 180–186. [Google Scholar] [CrossRef]
- Kelly, A.K.; McGee, M.; Crews, D.H., Jr.; Fahey, A.G.; Wylie, A.R.; Kenny, D.A. Effect of divergence in residual feed intake on feeding behaviour, blood metabolic variables, and body composition traits in growing beef heifers. J. Anim. Sci. 2010, 88, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Lahart, B.; Prendiville, R.; Buckley, F.; Kennedy, E.; Conroy, S.B.; Boland, T.M.; McGee, M. The repeatability of feed intake and feed efficiency in beef cattle offered high-concentrate, grass silage and pasture-based diets. Animal 2020, 14, 2288–2297. [Google Scholar] [CrossRef]
- Segabinazzi, L.R.; Menezes, L.F.G.; Silva, C.E.K.; Martinello, C.; Boito, B.; Molinete, M.L. Diurnal ingestive behavior of Holstein calves reared in different systems: Feedlot or pasture. Acta Sci. Anim. Sci. 2014, 36, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Valadares Filho, S.C.; Silva, L.F.C.; Gionbelli, M.P.; Rotta, P.P.; Marcondes, M.I.; Chizzotti, M.L.; Prados, L.F. Nutrient Requirements of Zebu and Crossbred Cattle–BR Corte, 3rd ed.; Suprema Gráfica e Editora: Viçosa, Brazil, 2016. [Google Scholar]
- Bica, G.S.; Machado Filho, P.; Carlos, L.; Teixeira, D.L.; Sousa, K.T.; Hötzel, M.J. Time of grain supplementation and social dominance modify feeding behaviour of heifers in rotational grazing systems. Front. Vet. Sci. 2019, 7, 61. [Google Scholar] [CrossRef]
- Coimbra, P.A.D.; Machado Filho, L.C.P.; Hötzel, M.J. Efects of social dominance, water trough location and shade availability on drinking behaviour of cows on pasture. Appl. Anim. Behav. Sci. 2012, 139, 175–182. [Google Scholar] [CrossRef]
- Foris, B.; Thompson, A.J.; von Keyserlingk, M.A.G.; Melzer, N.; Weary, D.M. Automatic detection of feeding- and drinking-related agonistic behavior and dominance in dairy cows. J. Dairy Sci. 2019, 102, 9176–9186. [Google Scholar] [CrossRef] [PubMed]
- Deniz, M.; Sousa, K.T.; Vale, M.M.; Dittrich, J.R. Age and body mass are more important than horns to determine the social position of dairy cows. J. Ethol. 2021, 39, 19–27. [Google Scholar] [CrossRef]
- Haskell, M.J.; Rooke, J.A.; Roehe, R.; Turner, S.P.; Hyslop, J.J.; Waterhouse, A.; Duthie, C.A. Relationships between feeding behaviour, activity, dominance and feed efficiency in finishing beef steers. Appl. Anim. Behav. Sci. 2019, 210, 9–15. [Google Scholar] [CrossRef]
- Fischer, V.; Deswysen, A.G.; Dutilleul, P.; Boever, J. Ingestive behavior nycterohemeral patterns of dairy cows, at the beginning and at the end of lactation, fed a corn silage based diet. Rev. Bras. Zootec. 2002, 31, 2129–2138. [Google Scholar] [CrossRef]
- Souza, S.R.M.B.O.; Ítavo, L.C.V.; Rimoli, J.; Ítavo, C.C.B.F.; Dias, A.M. Diurnal ingestive behavior of bovines in feedlot and pastures. Arch. Zootec. 2007, 56, 67–70. [Google Scholar]
- Broom, D.M.; Fraser, A.F. Domestic Animal Behaviour and Welfare, 6th ed.; CABI: Boston, MA, USA, 2022; p. 512. [Google Scholar]
- Hafez, E.S.E.; Bouissou, M.F. The behaviour of cattle. In The Behaviour of Domestic Animals, 3rd ed.; Hafez, E.S.E., Ed.; Baillière Tindall: London, UK, 1975; pp. 203–245. [Google Scholar]
- Weiss, W.P. Energy prediction equations for ruminant feeds. In Proceedings of the 61st Cornell Nutrition Conference for Feed Manufactures, Cornell University, Ithaca, NY, USA, 18–20 October 1999; pp. 176–185. [Google Scholar]
BWi | ADG | RFI | DMI | BW0.75 | REA | BF | RF | WI | RWI | NW | FVW | DD | NF | FVF | FD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BWi | − | 0.19 NS | 0.03 NS | 0.68 *** | 0.98 *** | 0.61 *** | 0.15 NS | 0.33 ** | 0.47 *** | −0.42 ** | 0.01 NS | −0.09 NS | 0.26 * | −0.26 * | −0.44 *** | 0.22 NS |
ADG | 0.07 NS | 1.00 | 0.12 NS | 0.63 *** | 0.27 * | 0.28 * | 0.01 NS | −0.09 NS | 0.49 *** | 0.25 * | 0.23 NS | 0.19 NS | 0.08 NS | 0.06 NS | 0.07 NS | −0.07 NS |
RFI | −0.07 NS | −0.25 NS | 1.00 | 0.58 *** | 0,06 NS | 0.13 NS | 0.28 * | 0.03 NS | 0.11 NS | 0.01 NS | 0.18 NS | 0.26 * | 0.01 NS | 0.25 NS | 0.42 ** | 0.06 NS |
DMI | 0.69 *** | 0.31 * | 0.52 ** | 1.00 | 0.74 *** | 0.55 *** | 0.27 * | 0.19 NS | 0.60 *** | −0.08 NS | 0.20 NS | 0.19 NS | 0.24 NS | −0.01 NS | −0.03 NS | 0.13 NS |
BW0.75 | 0.98 *** | 0.17 NS | 0.10 NS | 0.73 *** | 1.00 | 0.62 *** | 0.20 NS | 0.35 ** | 0.56 *** | −0.34 ** | 0.03 NS | −0.05 NS | 0.31 ** | −0.26 * | −0.46 *** | 0.23 NS |
REA | 0.75 *** | 0.04 NS | −0.05 NS | 0.53 ** | 0.75 *** | 1.00 | 0.21 NS | 0.13 NS | 0.23 NS | −0.35 ** | −0.01 NS | −0.08 NS | 0.19 NS | −0.11 NS | −0.22 NS | 0.28 * |
BF | 0.39 ** | −0.06 NS | −0.01 NS | 0.26 NS | 0.39 ** | 0.26 NS | 1.00 | 0.43 *** | 0.15 NS | −0.02 NS | 0.16 NS | 0.26 * | 0.35 ** | 0.02 NS | −0.02 NS | 0.22 NS |
RF | 0.33 * | −0.01 NS | −0.13 NS | 0.17 NS | 0.36 ** | 0.37 ** | 0.54 *** | 1.00 | 0.11 NS | −0.21 NS | −0.06 NS | 0.04 NS | 0.35 ** | −0.13 NS | −0.15 NS | 0.08 NS |
WI | 0.55 *** | 0.17 NS | 0.06 NS | 0.54 *** | 0.60 *** | 0.36 ** | 0.08 NS | 0.12 NS | 1.00 | 0.59 *** | 0.28 ** | 0.23 NS | 0.27 * | −0.04 NS | −0.23 NS | −0.03 NS |
RWI | −0.18 NS | 0.05 NS | 0.11 NS | −0.01 NS | −0.14 NS | −0.21 NS | −0.24 NS | −0.16 NS | 0.71 *** | 1.00 | 0.28 * | 0.30 * | 0.01 * | 0.20 NS | 0.16 NS | −0.25 * |
NW | −0.39 ** | −0.13 NS | 0.11 NS | 0.29 NS | −0.44 ** | −0.36 ** | −0.45 ** | −0.26 NS | −0.12 NS | 0.23 NS | 1.00 | 0.76 *** | 0.27 ** | 0.47 ** | 0.17 NS | −0.09 NS |
FVW | −0.39 ** | −0.05 NS | 0.04 NS | 0.30 NS | −0.41 ** | −0.19 NS | −0.48 ** | −0.30 * | −0.10 NS | 0.24 NS | 0.76 *** | 1.00 | 0.51 *** | 0.39 ** | 0.22 NS | −0.09 NS |
DD | 0.11 NS | −0.34 * | −0.06 NS | −0.12 NS | −0.07 NS | 0.25 NS | −0.07 NS | −0.06 NS | 0.13 NS | 0.12 NS | 0.33 * | 0.33 * | 1.00 | 0.08 NS | −0.14 NS | 0.17 NS |
NF | −0.43 ** | −0.03 NS | 0.15 NS | −0.21 NS | −0.42 ** | −0.50 ** | −0.02NS | −0.24 NS | −0.18 NS | 0.13 NS | 0.24 NS | 0.19 NS | −0.17 NS | 1.00 | 0.48 *** | 0.01 NS |
FVF | −0.37 ** | 0.19 NS | 0.30 NS | −0.01 NS | −0.37 * | −0.22 NS | 0.02NS | −0.13 NS | −0.28 NS | −0.05 NS | 0.21 NS | 0.19 NS | −0.08 NS | 0.54 *** | 1.00 | −0.24 NS |
FD | 0.12 NS | −0.05 NS | −0.23 NS | −0.05 NS | 0.14 NS | 0.32 * | 0.06NS | 0.15 NS | 0.04 NS | −0.06 NS | −0.06 NS | 0.13 NS | 0.24 NS | −0.23 NS | −0.24 NS | 1.00 |
Trait | Sex | RFI | RWI | ||||||
---|---|---|---|---|---|---|---|---|---|
Male (n = 61) | Female (n = 43) | p | Low (n = 47) | High (n = 57) | p | Low (n = 47) | High (n = 57) | p | |
DMI (kg/d) | 9.14 ± 0.12 | 7.33 ± 0.18 | 0.0001 | 8.59 ± 0.09 | 7.87 ± 0.09 | 0.0001 | 8.27 ± 0.08 | 8.19 ± 0.11 | 0.6032 |
WI (L/d) | 21.16 ± 0.44 | 19.36 ± 0.67 | 0.0744 | 20.62 ± 0.34 | 19.91 ± 0.37 | 0.1292 | 22.21 ± 0.31 | 18.32 ± 0.41 | 0.0001 |
ADG (kg/d) | 1.21 ± 0.03 | 0.72 ± 0.04 | 0.0001 | 0.98 ± 0.03 | 0.96 ± 0.02 | 0.6538 | 1.01 ± 0.02 | 0.93 ± 0.03 | 0.0650 |
BW0.75 (kg) | 70.37 ± 0.99 | 59.47 ± 1.46 | 0.0001 | 64.76 ± 0.74 | 65.08 ± 0.81 | 0.7540 | 64.52 ± 0.69 | 65.32 ± 0.90 | 0.4663 |
REA (cm2) | 68.84 ± 1.23 | 39.38 ± 1.82 | 0.0001 | 54.27 ± 0.93 | 53.98 ± 1.01 | 0.7999 | 53.57 ± 0.86 | 54.65 ± 1.13 | 0.4349 |
BF (mm) | 2.34 ± 0.24 | 2.85 ± 0.36 | 0.3531 | 2.78 ± 0.18 | 2.40 ± 0.20 | 0.1287 | 2.40 ± 0.17 | 2.79 ± 0.22 | 0.1597 |
RF (mm) | 5.21 ± 0.21 | 3.66 ± 0.31 | 0.0016 | 4.41 ± 0.16 | 4.47 ± 0.17 | 0.7787 | 4.41 ± 0.15 | 4.46 ± 0.19 | 0.8639 |
Trait | FR (kg/min) | p-Value | DR (L/min) | p-Value |
---|---|---|---|---|
Sex | 0.0001 | 0.0005 | ||
Male | 0.08 ± 0.001 b | 1.05 ± 0.03 b | ||
Female | 0.09 ± 0.001 a | 0.90± 0.03 a | ||
Period | 0.0001 | 0.0502 | ||
Dawn | 0.06 ± 0.002 d | 0.89 ± 0.04 b | ||
Morning | 0.10 ± 0.002 a | 1.03 ± 0.04 a | ||
Afternoon | 0.09 ± 0.002 b | 0.97 ± 0.04 a,b | ||
Night | 0.08 ± 0.002 c | 1.01 ± 0.04 a,b | ||
RFI | 0.0152 | 0.0163 | ||
High | 0.089 ± 0.001 a | 0.92 ± 0.03 a | ||
Low | 0.085 ± 0.001 b | 1.05 ± 0.03 b | ||
RWI | 0.2121 | 0.0033 | ||
High | 0.086 ± 0.001 | 0.91 ± 0.03 b | ||
Low | 0.089 ± 0.001 | 1.04 ± 0.03 a | ||
Sex * Period | 0.0919 | 0.0001 | ||
Male * Dawn | 0.06 ± 0.002 | 1.05 ± 0.05 a,b | ||
Male * Morning | 0.10 ± 0.002 | 1.01 ± 0.05 a,b | ||
Male * Afternoon | 0.09 ± 0.002 | 0.97 ± 0.05 a,b,c | ||
Male * Night | 0.08 ± 0.002 | 1.19 ± 0.05 a | ||
Female * Dawn | 0.06 ± 0.003 | 0.73 ± 0.06 c | ||
Female * Morning | 0.11 ± 0.003 | 1.06 ± 0.06 a,b | ||
Female * Afternoon | 0.10 ± 0.003 | 0.98 ± 0.06 a,b,c | ||
Female * Night | 0.09 ± 0.003 | 0.83 ± 0.06 b,c | ||
Sex * RFI | 0.0197 | 0.3030 | ||
Male * High | 0.084 ± 0.002 b | 1.03 ± 0.04 | ||
Male * Low | 0.083 ± 0.001 b | 1.08 ± 0.03 | ||
Female * High | 0.095 ± 0.002 a | 0.83 ± 0.05 | ||
Female * Low | 0.087 ± 0.002 b | 0.97 ± 0.04 | ||
Sex * RWI | 0.8029 | 0.8337 | ||
Male * High | 0.083 ± 0.002 | 0.98 ± 0.03 | ||
Male * Low | 0.085 ± 0.001 | 1.13 ± 0.04 | ||
Female * High | 0.089 ± 0.002 | 0.84 ± 0.06 | ||
Female * Low | 0.092 ± 0.002 | 0.96 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, B.V.; Reolon, H.G.; Abduch, N.G.; Souza, L.L.; Sakamoto, L.S.; Mercadante, M.E.Z.; Silva, R.M.O.; Fragomeni, B.O.; Baldi, F.; Paz, C.C.P.; et al. Effects of Feeding and Drinking Behavior on Performance and Carcass Traits in Beef Cattle. Animals 2022, 12, 3196. https://doi.org/10.3390/ani12223196
Pires BV, Reolon HG, Abduch NG, Souza LL, Sakamoto LS, Mercadante MEZ, Silva RMO, Fragomeni BO, Baldi F, Paz CCP, et al. Effects of Feeding and Drinking Behavior on Performance and Carcass Traits in Beef Cattle. Animals. 2022; 12(22):3196. https://doi.org/10.3390/ani12223196
Chicago/Turabian StylePires, Bianca V., Henrique G. Reolon, Natalya G. Abduch, Luana L. Souza, Leandro S. Sakamoto, Maria Eugênia Z. Mercadante, Rafael M. O. Silva, Breno O. Fragomeni, Fernando Baldi, Claudia C. P. Paz, and et al. 2022. "Effects of Feeding and Drinking Behavior on Performance and Carcass Traits in Beef Cattle" Animals 12, no. 22: 3196. https://doi.org/10.3390/ani12223196