Equus β-Defensin-1 Regulates Innate IMMUNE Response in S. aureus-Infected Mouse Monocyte Macrophage
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. cDNA Preparation
2.2. PCR
2.3. qPCR
2.4. Rapid Amplification of cDNA Ends (RACE) PCR
2.5. The OEBD-1 and ELP-(V)30 Fragment Connection
2.6. The ELP-(V)30-OEBD-1 Recombination Proteins Expression In Vitro
2.7. Mice Mononuclear Macrophage J774A.1 Cell Line Culture
2.8. Preparation of the S. aureus-Infected J774A.1
2.9. Macrophage (J774A.1) Phagocytosis Assay
2.10. Enzyme-Linked Immunosorbent Assay (ELISA)
2.11. Protein Extraction
2.12. Coomassie Brilliant Blue Staining
2.13. Western Blotting
2.14. Immunofluorescence Assay
2.15. Data Analysis
3. Results
3.1. BD-1 Expression in Various Tissues of the Horse, Ass, Mule, and Homology Analysis
3.2. The ELP-(V)30-OEBD-1 Recombination Protein Is Highly Expressed after Two Inverse Transition Cycling (ITC)
3.3. The OEBD-1 Recombination Protein Induces Various Cytokines Expression in SA113-Infected J774A.1 Cells
3.4. The OEBD-1 Recombination Strengthens Macrophage Phagocytosis of SA113
3.5. The OEBD-1 Recombination Promotes the Phosphorylation of Syk, AKT and IκB-α in SA113-Infected Macrophage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Bian, G.; Pan, W.; Feng, T.; Dai, J. Molecular characterization of a defensin gene from a hard tick, Dermacentor silvarum. Parasites Vectors 2015, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003, 3, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Duits, L.A.; Ravensbergen, B.; Rademaker, M.; Hiemstra, P.S.; Nibbering, P.H. Expression of beta-defensin-1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 2002, 106, 517–525. [Google Scholar] [CrossRef]
- Ganz, T.; Weiss, J. Antimicrobial peptides of phagocytes and epithelia. Semin. Hematol. 1997, 34, 343–354. [Google Scholar] [PubMed]
- Marth, C.D.; Glenton, L.Y.; Browning, G.F.; Krekeler, N. Uterine equine β-defensin 1 expression during different stages of the oestrous cycle and after bacterial challenge. J. Equine Vet. Sci. 2014, 34, 153. [Google Scholar] [CrossRef]
- Lee, S.H.; Lim, H.H.; Lee, H.M.; Choi, J.O. Expression of human β-defensin 1 mRNA in human nasal mucosa. Acta Otolaryngol. 2000, 120, 58–61. [Google Scholar]
- Goldman, M.J.; Anderson, G.M.; Stolzenberg, E.D.; Kari, U.P.; Zasloff, M.; Wilson, J.M. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosi. Cell 1997, 88, 553–560. [Google Scholar] [CrossRef]
- Jia, H.P.; Starner, T.; Ackermann, M.; Kirby, P.; Mccray, P.B. Abundant human β-defensin-1 expression in milk and mammary gland epithelium. J. Pediatrics 2001, 138, 109–112. [Google Scholar] [CrossRef]
- Davis, E.G.; Sang, Y.; Blecha, F. Equine b-defensin-1: Full-length cDNA sequence and tissue expression. Vet. Immunol. Immunopathol. 2004, 99, 127–132. [Google Scholar] [CrossRef]
- Biragyn, A.; Ruffini, P.A.; Leifer, C.A.; Klyushnenkova, E.; Shakhov, A.; Chertov, O.; Shirakawa, A.K.; Farber, J.M.; Segal, D.M.; Oppenheim, J.J.; et al. Toll-Like Receptor 4–Dependent Activation of Dendritic Cells by beta-Defensin 2. Science 2002, 298, 1025–1029. [Google Scholar] [CrossRef]
- Coordes, A.; Andreou, A.; Erben, U.; Stroh, T.; Blunert, K.; Slavova, N.; Siegmund, B.; Buhr, H.J.; Kroesen, A.J. Recombinant human beta 2-defensin fusion proteins as a tool to investigate defensin structure and function in small human intestinal tissue samples. Inflamm. Res. 2012, 61, 1411–1420. [Google Scholar] [CrossRef]
- Shin, J.E.; Choi, Y. Treponema denticola suppresses expression of human beta-defensin-2 in gingival epithelial cells through inhibition of TNFalpha production and TLR2 activation. Mol. Cells 2010, 29, 407–412. [Google Scholar] [CrossRef]
- Smithrithee, R.; Niyonsaba, F.; Kiatsurayanon, C.; Ushio, H.; Lkeda, S.; Okumura, K.; Ogawa, H. Human β-defensin-3 increases the expression of interleukin-37 through CCR6 in human keratinocytes. J. Dermatol. Sci. 2015, 77, 46–53. [Google Scholar] [CrossRef]
- Rizzo, A.; Paolillo, R.; Buommino, E.; Lanza, A.G.; Guida, L.; Annunziata, M.; Carratelli, C.R. Modulation of cytokine and β-defensin 2 expressions in human gingival fibroblasts infected with Chlamydia pneumoniae. Int. Immunopharmacol. 2008, 8, 1239–1247. [Google Scholar] [CrossRef]
- Selsted, M.E.; Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 2005, 6, 551–557. [Google Scholar] [CrossRef]
- Cleemput, J.V.; Poelaert, K.C.; Laval, K.; Vanderheijden, N.; Dhaenens, M.; Daled, S.; Boyen, F.; Pasmans, F.; Nauwynck, H.J. An alphaherpesvirus exploits antimicrobial β-defensins to initiate respiratory tract infection. J. Virol. 2020, 94, e01676-19. [Google Scholar] [CrossRef]
- Rabinovitch, M. Profesional and non-professional phagocytes: An introduction. Trends Cell Biol. 1995, 5, 85–87. [Google Scholar] [CrossRef]
- Ghazizadeh, S.; Bolen, J.B.; Fleit, H.B. Tyrosine phosphorylation and association of Syk with Fc gamma RII in monocytic THP-1 cells. Biochem. J. 1995, 305, 669–674. [Google Scholar] [CrossRef]
- Greenberg, S. Signal transduction of phagocytosis. Trends Cell Biol. 1995, 5, 93–99. [Google Scholar] [CrossRef]
- Aderem, A.; Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 1999, 17, 593–623. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, M.; Zhu, X.M.; Fan, Y.R.; Du, C.G.; Bao, H.; Xu, S.G.; Tian, Q.Z.; Wang, Y.H.; Yang, Y.F. Modulation of ovine SBD-1 expression by Saccharomyces cerevisiae in ovine ruminal epithelial cells. BMC Vet. Res. 2018, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, N.; Ghasemi, M.; Bayani, M.; Ghaffai, S. Effect of honey on mRNA expression of TNF-a, IL-1b and IL-6 following acute toxoplasmosis in mice. Cytokine 2016, 88, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, C.; Xu, W.; Lian, C.; Liu, X.; Wang, C.; Liu, J.Q. New lathyrane diterpenoids with anti-inflammatory activity isolated from the roots of Jatropha curcas L. J. Ethnopharmacol. 2021, 268, 113673. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 4, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.F.; Betre, H.; Kraus, V.B.; Chen, J.; Chilkoti, A.; Pichika, R.; Masuda, K.; Setton, L.A. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: Sustained release of a local anti-inflammatory therapeutic. Arthritis Rheum. 2007, 56, 3650–3661. [Google Scholar] [CrossRef]
- Wu, W.Y.; Fong, B.A.; Gilles, A.G.; Wood, D.W. Recombinant protein purification by self-cleaving elastin-like polypeptide fusion tag. Curr. Protoc. Protein Sci. 2009, 58, 26.4.1–26.4.18. [Google Scholar] [CrossRef]
- Wu, J.D.; Liu, B.; Mao, W.; Feng, S.; Yao, Y.; Bai, F.; Shen, Y.; Guleng, A.; Jirigala, B.; Cao, J. Prostaglandin E2 regulates activation of mouse peritoneal macrophages by Staphylococcus aureus through Toll-Like Receptor 2, Toll-Like Receptor 4 and NLRP3 Inflammasome Signaling. J. Innate Immun. 2020, 12, 154–169. [Google Scholar] [CrossRef]
- Liu, K.; Mao, W.; Liu, B.; Li, T.; Wu, J.D.; Fu, C.; Shen, Y.; Pei, L.; Cao, J. Live S. aureus and heat-killed S. aureus induce different inflammation-associated factors in bovine endometrial tissue in vitro. Mol. Immunol. 2021, 139, 123–130. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Lin, C.; Wang, W.; Chen, S.; Chang, Y.; Hung, L.; Chen, C.; Chang, Y.W.; Hung, L.C.; Chen, C.Y.; Chen, Y.H. Lipopolysaccharide-Induced Nitric Oxide, Prostaglandin E2, and Cytokine Production of Mouse and Human Macrophages are Suppressed by Pheophytin-b. Int. J. Mol. Sci. 2017, 18, 22637. [Google Scholar]
- Stoll, H.; Dengjel, J.; Nerz, C.; Götz, F. Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect. Immun. 2015, 73, 2411–2423. [Google Scholar] [CrossRef]
- Liu, K.; Mao, W.; Liu, B.; Li, T.; Pei, L.; Cao, J.S.; Wang, F. Prostaglandin E2 promotes Staphylococcus aureus infection via EP4 receptor in bovine endometrium. Microb. Pathog. 2021, 158, 105019. [Google Scholar] [CrossRef]
- Wetering, S.V.; Mannesse-Lazeroms, S.P.G.; Sterkenburg, M.A.J.A.; Hiemstra, P.S. Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: Modulation by dexamethasone. Inflamm. Res. 2002, 51, 8–15. [Google Scholar] [CrossRef]
- Linde, A.; Lushington, G.H.; Blecha, F.; Melgarejo, T. Rat cardiomyocytes express a classical epithelial beta-defensin. Am. J Anim. Vet. Sci. 2008, 3, 1–6. [Google Scholar] [CrossRef]
- Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994, 12, 991–1045. [Google Scholar] [CrossRef]
- He, S.; Wang, X.; Liu, Z.; Zhang, W.; Fang, J.; Xue, J.; Bao, H. Hydroxysafflor yellow a inhibits Staphylococcus aureus induced mouse endometrial inflammation via TLR2-Mediated NF-kB and MAPK Pathway. Inflammation 2021, 44, 835–845. [Google Scholar] [CrossRef]
- Cao, F.; Zhou, W.; Liu, G.; Xia, T.; Liu, M.; Mi, B.; Liu, Y. Staphylococcus aureus peptidoglycan promotes osteoclastogenesis via TLR2-mediated activation of the NF-κB/NFATc1 signaling pathway. Am. J. Transl. Res. 2017, 9, 5022–5030. [Google Scholar]
- Ravetch, J.V. Fc receptors: Rubor redux. Cell 1994, 78, 553–560. [Google Scholar] [CrossRef]
- Argyle, D.; Kitamura, T. Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors. Front. Immunol. 2018, 9, 2629. [Google Scholar] [CrossRef]
- Filippo, K.D.; Dudeck, A.; Hasenberg, M.; Nye, E.; van Rooijen, N.; Hartmann, K.; Gunzer, M.; Roers, A.; Hogg, N. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 2013, 121, 4930–4937. [Google Scholar] [CrossRef]
Primer Name | Forward (5′-3′) | Reverse (5′-3′) | GenBank Accession No. |
---|---|---|---|
equine β-actin | GGCTCCCAGCAGATGAA | GCATTTGCGGTGGACGAT | AF035774.1 |
eBD-1 | CAGGTGTCGGCTATCTCACG | CCTTCCCGCCGTAACAAGT | XM_005606422.3 |
ass BD-1 | ATGTCCTCAGGTGTCGGCTA | ACAAGTGCCCTCAATCTTGGT | XM_014857440.1 |
ass β-actin | TGCGTGACATCAAGGAGAAG | ACAGGTCCTTACGGATGTCG | XM_014853634.1 |
mule BD-1 | CAGGTGTCGGCTATCTCACG | CCTTCCCGCCGTAACAAGT | KP710585 |
mule β-actin | CCAAGGGTGGATCCTTA | AGGAGGAATGGGAATATT | KU947963 |
TLR2 | TTTGCTCCTGCGAACTCC | GCCACGCCCACATCATTC | XM_006501460.4 |
IL-1β | ACCTTCCAGGATGAGGACATGA | CTAATGGGAACGTCACACACCA | AL808143.5 |
CCL2 | ATCCACGGCATACTATCAACATC | TCGTAGTCATACGGTGTGGTG | XM_036154586.1 |
CCL7 | CCACATGCTGCTATGTCAAGA | ACACCGACTACTGGTGATCCT | NM_013654.3 |
CXCL10 | CAGTGAGAATGAGGGCCATAGG | CGGATTCAGACATCTCTGCTCAT | XM_021161764.2 |
NF-κB P65 | TTCCCTCAGAGCCAGCCCAGG | AGCGGAATCGCATGCCCC | M61909.1 |
GAPDH | CAATGTGTCCGTCGTGGATCT | GTCCTCAGTGTAGCCCAAGATG | XM_036165840.1 |
Primer Name | Forward (5′-3′) |
---|---|
P1 | CTAATACGACTCACTATAGGGCAAGCAGTGGTATCACGCAGAGT |
P2 | CTAATACGACTCACTATAGGGC |
P3 | CCGCCGTAACAAGTGCCCTCAATC |
P4 | (dT) n-CGAAAGCGACAAGGCCGTGATCCCGAAAGC |
P5 | CGAAAGCGACAAGGCCGTGATCCCGAAAGC |
P6 | GGTGTCGGCTATCTCACGGGTCTCG |
P7 | GCTATCTCACGGGTCTCGGCCACAGGT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, L.; Liu, K.; Wei, W.; Su, H.; Li, F.; Feng, Y.; Wang, D.; Li, X.; Hou, Y.; Cao, G. Equus β-Defensin-1 Regulates Innate IMMUNE Response in S. aureus-Infected Mouse Monocyte Macrophage. Animals 2022, 12, 2958. https://doi.org/10.3390/ani12212958
Pei L, Liu K, Wei W, Su H, Li F, Feng Y, Wang D, Li X, Hou Y, Cao G. Equus β-Defensin-1 Regulates Innate IMMUNE Response in S. aureus-Infected Mouse Monocyte Macrophage. Animals. 2022; 12(21):2958. https://doi.org/10.3390/ani12212958
Chicago/Turabian StylePei, Le, Kun Liu, Wei Wei, Hong Su, Feng Li, Ying Feng, Daqing Wang, Xiunan Li, Yongyue Hou, and Guifang Cao. 2022. "Equus β-Defensin-1 Regulates Innate IMMUNE Response in S. aureus-Infected Mouse Monocyte Macrophage" Animals 12, no. 21: 2958. https://doi.org/10.3390/ani12212958
APA StylePei, L., Liu, K., Wei, W., Su, H., Li, F., Feng, Y., Wang, D., Li, X., Hou, Y., & Cao, G. (2022). Equus β-Defensin-1 Regulates Innate IMMUNE Response in S. aureus-Infected Mouse Monocyte Macrophage. Animals, 12(21), 2958. https://doi.org/10.3390/ani12212958