The Kinematics and Dynamics of Schizopygopsis malacanthus Swimming during Ucrit Testing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Critical Swimming Ability Evaluation
2.3. Calculation of Kinematic Parameters for S. malacanthus
2.4. Classification of Steady and Unsteady Swimming Modes
2.5. Calculation of Swimming Kinetic Parameters
2.6. Calculation of the Energy Consumed by Swimming
2.7. Data Analysis
3. Results and Analysis
3.1. Critical Swimming Speed
3.2. Swimming Mode Times (tw, tf) and Their Relationship to Water Velocity (vw)
3.3. Correlation between Swimming Speed, Acceleration, and Water Velocity in the Steady and Unsteady Modes
3.4. Comparison of Axial Force and Energy Consumption in Steady/Unsteady Mode
4. Discussion
4.1. Steady and Unsteady Swimming Modes during the Test
4.2. Limiting Factors of Fish Acceleration Capacity
4.3. Thrust and Energy Consumption in the Steady and Unsteady Swimming Modes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peake, S.J.; Farrell, A.P. Fatigue is a behavioural response in respirometer-confined smallmouth bass. J. Fish Biol. 2006, 68, 1742–1755. [Google Scholar] [CrossRef]
- Schurmann, H.; Steffensen, J.F. Effects of temperature, hypoxia and activity on the metabolism of Atlantic cod, Gadus morhua. J. Fish Biol. 1997, 50, 1166–1180. [Google Scholar] [CrossRef]
- Claireaux, G. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax). J. Exp. Biol. 2006, 209, 3420–3428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Chen, J.; Johnson, D.; Tu, Z.; Huang, Y. Effect of body length on swimming capability and vertical slot fishway design. Glob. Ecol. Conserv. 2020, 22, e00990. [Google Scholar] [CrossRef]
- Langerhans, R.B.; Reznick, D. Ecology and Evolution of Swimming Performance in Fishes. Fish Locomot. Eco-Ethological Perspect. 2010, 200, 248. [Google Scholar] [CrossRef]
- Webb, P.W. Fast-start Performance and Body Form in Seven Species of Teleost Fish. J. Exp. Biol. 1978, 74, 211–226. [Google Scholar] [CrossRef]
- Thandiackal, R.; Lauder, G.V. How zebrafish turn: Analysis of pressure force dynamics and mechanical work. J. Exp. Biol. 2020, 223, jeb223230. [Google Scholar] [CrossRef]
- Videler, J.J.; Weihs, D. Energetic advantages of burst-and-coast swimming of fish at high speeds. J. Exp. Biol. 1982, 97, 169–178. [Google Scholar] [CrossRef]
- Drucker, E.G.; Eliot, G. The Use of Gait Transition Speed in Comparative Studies of Fish Locomotion. Integr. Comp. Biol. 1996, 36, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Korsmeyer, K.E.; Steffensen, J.F.; Herskin, J. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus). J. Exp. Biol. 2002, 205 Pt 9, 1253. [Google Scholar] [CrossRef]
- Weihs, D. Energetic advantages of burst swimming of fish. J. Theor. Biol. 1974, 48, 215–229. [Google Scholar] [CrossRef]
- Wu, G.; Yang, Y.; Zeng, L. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi). J. Exp. Biol. 2007, 210 Pt 12, 2181. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wu, G.H.; Yu, Y.L.; Tong, B.G. A study on flow physics of burst-and-coast swimming of koi carp (Cyprinus carpio koi) based on measurements and numerical simulations. J. Aero Aqua Bio-Mech. 2010, 1, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Plaut, I. Critical swimming speed: Its ecophysiological relevance. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2000, 126, 121. [Google Scholar] [CrossRef]
- Noldus Information Technology. Ethovision XT, Version 10.0; Noldus Information Technology, Inc.: Leesburg, VA, USA, 2013. [Google Scholar]
- Ashraf, I.; Wassenbergh, S.V.; Verma, S. Burst-and-coast swimming is not always energetically beneficial in fish (Hemigrammus bleheri). Bioinspiration Biomim. 2021, 16, 016002. [Google Scholar] [CrossRef]
- Faber, T.E.; Berger, S.A. Fluid Dynamics for Physicists. Phys. Today 1996, 49, 58. [Google Scholar] [CrossRef]
- Daniel, T.L. Unsteady Aspects of Aquatic Locomotion. Integr. Comp. Biol. 1984, 24, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Webb, P.W. Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Boad Can. 1975, 190, 1–158. [Google Scholar]
- Bainbridge, R. Problems of fish locomotion. Symp. Zool. Soc. Lond. 1961, 5, 13–32. [Google Scholar]
- BrÖnmark, P.C. Energetic consequences of an inducible morphological defence in crucian carp. Oecologia 1999, 121, 12–18. [Google Scholar] [CrossRef]
- Vogel, S. Life in Moving Fluids; Priceton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Lee, C.G.; Farrell, A.P.; Lotto, A.; Hinch, S.G.; Healey, M.C. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. J. Exp. Biol. 2003, 206 Pt 18, 3253–3260. [Google Scholar] [CrossRef] [Green Version]
- Khan, L.A. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics and Fish Passage Energetics in a Vertical-Slot Fishway. N. Am. J. Fish. Manag. 2006, 26, 255–267. [Google Scholar] [CrossRef]
- Tytell, E.D.; Lauder, G.V. The hydrodynamics of eel swimming. J. Exp. Biol. 2004, 207, 1825–1841. [Google Scholar] [CrossRef] [Green Version]
- Müller, U.K.; Smit, J.; Stamhuis, E.J.; Videler, J.J. How the body contributes to the wake in undulatory fish swimming: Flow fields of a swimming eel (Anguilla anguilla). J. Exp. Biol. 2001, 204 Pt 16, 2751. [Google Scholar] [CrossRef] [PubMed]
- Muller, U.K.; Van Den Heuvel, B.L.E.; Stamhuis, E.J.; Videler, J.J. Fish foot prints: Morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). J. Exp. Biol. 1997, 200, 2893–2906. [Google Scholar] [CrossRef] [PubMed]
- Nauen, J.C.; Lauder, G.V. Hydrodynamics of caudal fin locomotion by chub mackerel, Scomberjaponicus (Scombridae). J. Exp. Biol. 2002, 205 Pt 12, 1709–1724. [Google Scholar] [CrossRef]
- Borazjani, I. Simulations of Unsteady Aquatic Locomotion: From Unsteadiness in Straight-Line Swimming to Fast-Starts. Integr. Comp. Biol. 2015, 55, 740–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, T.N.; Schwalbe, M.; Tytell, E.D. Hydrodynamics of linear acceleration in bluegill sunfish Lepomis macrochirus. J. Exp. Biol. 2018, 221, jeb190892. [Google Scholar] [CrossRef] [Green Version]
- Reidy, S.P.; Kerr, S.R.; Nelson, J.A. Aerobic and anaerobic swimming performance of individual atlantic cod. J. Exp. Biol. 2000, 203 Pt 2, 347–357. [Google Scholar] [CrossRef]
- Li, C.W.; Lu, B.O.; Chen, T.; Liu, L.; Zhu, H.F.; Liu, D.F.; Wang, X.; Shi, X.T. The Burst-coast Behavior in Escape Response of Black Carp. J. Zool. 2014, 49, 860–866. [Google Scholar] [CrossRef]
- Lu, B.O.; Liu, W.; Liang, Y.; Chen, Q.; Huang, Y.; Pan, L.; Liu, D.; Shi, X. The burst-coast swimming behavior of grass carp( ctenopharyngodon idellus) during fast-start. J. Fish. China 2014, 38, 829–834. [Google Scholar] [CrossRef]
- Xian, X.M.; Gao, Z.D.; Fu, S.J. The Comparison of Critical Swimming Speed and Endurance at High Speed of Four Species of Juvenile Fish. J. Chongqing Norm. Univ. (Nat. Sci.) 2010, 27, 2181–2191. [Google Scholar] [CrossRef]
- Peake, S.J.; Farrell, A.P. Locomotory behaviour and post-exercise physiology in relation to swimming speed, gait transition and metabolism in free-swimming smallmouth bass (Micropterus dolomieu). J. Exp. Biol. 2004, 207, 1563–1575. [Google Scholar] [CrossRef] [Green Version]
- Denny, M.W. Life in Moving Fluids: The Physical Biology of Flow, 2nd ed.; Steven Vogel. Princeton University Press: Farmington, CT, USA, 1994; Volume 57, pp. 949–951. [Google Scholar] [CrossRef]
- Plew, D.R.; Nikora, V.I.; Larned, S.T.; Sykes, J.; Cooper, G.G. Fish swimming speed variability at constant flow: Galaxias maculatus. N. Zeal. J. Mar. Freshw. Res. 2007, 41, 185–195. [Google Scholar] [CrossRef]
- Hooli, J. Studies in the Fishway Models. Aqua Fenn. 1988, 18, 171–178. [Google Scholar]
Test Fish | Flow Velocity (m/s) | |||
---|---|---|---|---|
1 | 0.4 | 0.6 | 0.8 | 1.0 |
2 | 0.4 | 0.6 | 0.8 | 1.0 |
3 | 0.4 | 0.6 | 0.8 | - |
4 | 0.4 | 0.6 | 0.8 | - |
5 | 0.4 | 0.6 | 0.8 | 1.0 |
Physical Indicator | Definition | Unit |
---|---|---|
Average instantaneous displacements | cm | |
Standard deviation of instantaneous displacements | cm | |
Water density | kg/m3 | |
Wetted surface area of fish body | m2 | |
Absolute swimming speed of fish | m/s | |
Mean swimming speed | m/s | |
Kinematic viscosity of water | m2/s | |
L | Total length of fish | cm |
Temperature of flume | °C | |
Forward drag coefficient | - | |
Backward drag coefficient | - | |
Forward Reynolds number | - | |
Backward Reynolds number | - | |
Water velocity Fish forward velocity | m/s m/s | |
Fish backward velocity | m/s | |
Added mass coefficient | - | |
Fish body length | cm | |
Fish mass | g | |
Forward acceleration | m/s2 | |
Backward acceleration | m/s2 | |
Friction coefficient | - | |
Pressure coefficient | - | |
Unsteady mode time | s | |
Steady mode time | s | |
Unsteady or steady swimming time | s | |
Maximum swimming speed | m/s | |
Maximum acceleration | m/s2 | |
Force to overcome drag | N | |
Force required for acceleration | N | |
Total force | N | |
Total energy consumption | J/m |
Test Fish | Body Length (cm) | |
---|---|---|
1 | 18.3 | 1.01 |
2 | 14.3 | 0.97 |
3 | 18.2 | 0.80 |
4 | 15.0 | 0.69 |
5 | 16.3 | 0.81 |
Mean ± SE (n = 5) | 16.4 ± 0.8 | 0.86 ± 0.06 |
Mode | Physical Indicator | 0.4 | 0.6 | 0.8 |
---|---|---|---|---|
- | (cm) | 0.013 | 0.007 | 0.031 |
- | (cm) | 0.129 | 0.067 | 0.159 |
Steady | (%) (%) | 0.114 | 0.105 | 0.034 |
Unsteady | 0.114 | 0.105 | 0.034 | |
Steady | (m/s2) | 0.005 | 0.011 | 0.022 |
Unsteady | 0.012 | 0.026 | 0.051 | |
Steady Unsteady | (m/s2) | 0.003 | 0.008 | 0.021 |
0.016 | 0.031 | 0.049 | ||
Steady Unsteady | (m/s2) | 0.096 | 0.420 | 0.684 |
0.28 | 0.755 | 1.634 | ||
Steady Unsteady | (m/s2) | 0.089 | 0.479 | 0.734 |
0.368 | 0.651 | 1.590 | ||
Steady Unsteady | (N) | 0.022 | 0.038 | 0.139 |
0.049 | 0.065 | 0.124 | ||
Steady Unsteady | (J/m) | 0.007 | 0.016 | 0.028 |
0.018 | 0.016 | 0.031 | ||
Unsteady | (m/s) | 0.025 | 0.078 | 0.164 |
(m/s2) | 5.758 | 3.148 | 5.671 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hou, Y.; Zhang, B.; Zou, X.; Johnson, D.; Wan, F.; Zhou, C.; Jin, Y.; Shi, X. The Kinematics and Dynamics of Schizopygopsis malacanthus Swimming during Ucrit Testing. Animals 2022, 12, 2844. https://doi.org/10.3390/ani12202844
Li Y, Hou Y, Zhang B, Zou X, Johnson D, Wan F, Zhou C, Jin Y, Shi X. The Kinematics and Dynamics of Schizopygopsis malacanthus Swimming during Ucrit Testing. Animals. 2022; 12(20):2844. https://doi.org/10.3390/ani12202844
Chicago/Turabian StyleLi, Yangxi, Yiqun Hou, Ben Zhang, Xuan Zou, David Johnson, Fan Wan, Chaoyan Zhou, Yao Jin, and Xiaotao Shi. 2022. "The Kinematics and Dynamics of Schizopygopsis malacanthus Swimming during Ucrit Testing" Animals 12, no. 20: 2844. https://doi.org/10.3390/ani12202844
APA StyleLi, Y., Hou, Y., Zhang, B., Zou, X., Johnson, D., Wan, F., Zhou, C., Jin, Y., & Shi, X. (2022). The Kinematics and Dynamics of Schizopygopsis malacanthus Swimming during Ucrit Testing. Animals, 12(20), 2844. https://doi.org/10.3390/ani12202844