The Use of Removed Mesquite Brush as a Fiber Replacement in Silage Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.2. Experiment 2
2.3. Statistical Analysis
3. Results
3.1. Mesquite as Feedstock
3.2. Experiment 1
3.3. Experiment 2
4. Discussion
4.1. Mesquite as Feedstock
4.2. Ensiling Wood Products
4.3. Silage Inoculation
4.4. Length of Incubation
4.5. Solvent Treatment of Fibrous Feedstock
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vallentine, J.F. Biological plant control, mechanical plant control, heribicidal plant control, range improvement by burning. In Range Development and Improvements, 3rd ed.; Vallentine, J.F., Ed.; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
- Ellsworth, S.W.; Crandall, P.G.; Lingbeck, J.M.; O’Bryan, C.A. Perspective on the control of invasive mesquite trees and possible alternative uses. Biogeosci. For. 2018, 11, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Archibald, J.G. The effect of sodium hydroxide on the composition, digestibility, and feeding value of grain hulls and other fibrous material. J. Agric. Res. 1924, 27, 245–265. [Google Scholar]
- Sawal, R.K.; Ratan, R.; Yadav, S.B.S. Mesquite (Prosopis juliflora) Pods as a Feed Resource for Livestock—A Review. Asian-Australas. J. Anim. Sci. 2004, 17, 719–725. [Google Scholar] [CrossRef]
- Ruiz-Nieto, J.E.; Hernández-Ruiz, J.; Hernández-Marín, J.; Mendoza-Carrillo, J.; Abraham-Juárez, M.; Isiordia-Lachica, P.M.; Mireles-Arriaga, A.I. Mesquite (Prosopis spp.) tree as a feed resource for animal growth. Agroforest. Syst. 2020, 94, 1139–1149. [Google Scholar] [CrossRef]
- Andrade-Montemayor, H.M.; Cordova-Torres, A.V.; García-Gasca, T.; Kawas, J.R. Alternative foods for small ruminants in semiarid zones, the case of Mesquite (Prosopis laevigata spp.) and Nopal (Opuntia spp.). Small Rum. Res. 2011, 98, 83–92. [Google Scholar] [CrossRef]
- Dutta, N.; Sharma, K.; Hasan, Q.Z. Effects of supplementation of rice straw with Leucaena leucocephala and Prosopis cineraria leaves on nutrient utilization by goats. Asian-Australas. J. Anim. Sci. 1999, 12, 742–746. [Google Scholar] [CrossRef]
- Bhatta, R.; Vaithiyanathan, S.; Singh, N.P.; Verma, D.L. Effect of feeding complete diets containing graded levels of Prosopis cineraria leaves on feed intake, nutrient utilization and rumen fermentation in lambs and kids. Small Rum. Res. 2007, 67, 75–83. [Google Scholar] [CrossRef]
- Bravo, L.; Grados, N.; Saura-Calixto, F. Characterization of Syrups and Dietary Fiber Obtained from Mesquite Pods (Prosopis pallida L). J. Agric. Food Chem. 1998, 46, 1727–1733. [Google Scholar] [CrossRef]
- Andrade-Montemayor, H.M.; Alegría-Ríos, F.; Pacheco-López, M.; Aguilar-Borjas, H.; Villegas-Díaz, J.L.O.; Basurto-Gutierrez, R.; Jimenez-Severiano, H.; Vera-Ávila, H.R. Effect of dry roasting on composition, digestibility and degradability of fiber fractions of mesquite pods (Prosopis laevigata) as feed supplement in goats. Trop. Subtrop. Agroecosyst. 2009, 11, 237–243. [Google Scholar]
- Chaturvedi, O.H.; Sahoo, A. Nutrient utilization and rumen metabolism in sheep fed Prosopis juliflora pods and Cenchrus grass. SpringerPlus 2013, 2, 598. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Moraes, G.S.; de Souza, E.J.O.; Véras, A.S.C.; de Paula Almeida, M.; da Cunha, M.V.; Torres, T.R.; da Silva, C.S.; Pereira, G.F.C. Total replacement of corn by mesquite pod meal considering nutritional value, performance, feeding behavior, nitrogen balance, and microbial protein synthesis of Holstein-Zebu crossbred dairy steers. Trop. Anim. Health Prod. 2016, 48, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Fuentes, G.; García-López, J.C.; Pinos-Rodríguez, J.M.; Aguirre-Rivera, J.R.; Jasso-Pineda, Y.; Celestino-Santillán, S.G. Effects of feeding the seeds of Prosopis laevigata, Acacia schaffneri and Ceratonia siliqua on the performance of broiler chicks. S. Afr. J. Anim. Sci. 2012, 42. [Google Scholar] [CrossRef]
- Adamu, L.; Igwebuike, J.U.; Kwari, I.D.; Aliyu, J. Utilization of Prosopis africana pulp for rabbit feeding: 1. Effects on growth and economic performance. Glob. J. Pure Appl. Sci. 2013, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hellriegel, H.; Lucanus, B. Über den nährwertg des durch selbsterhitzung bereiteten brühhacks els im vergleich zu trocknem und angebrühtem stroh. Landw. Vers. Stat. Bd 1865, 7, 242–248. [Google Scholar]
- Altmannsberger, K. Über Den Nährwert des mit Natronlauge unter Erhöhtem Drucke Aufgeschlossenen Roggenstrohes. Bachelor’s Dissertation, Rossberg’sche Buchdruckerei, Leipzig, Germany, 1905. [Google Scholar]
- Ustiantzev, V.P. O pitanii travoiadnykh xhivotnykh klietchatkoi i grubymi kormami. Chem. Abstr. 1906, 1, 1152. [Google Scholar]
- Israilides, C.J.; Grant, G.A.; Han, Y.W. Sugar level, fermentability, and acceptability of straw treated with different acids. Appl. Environ. Microbiol. 1978, 36, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, E. Process for preparing a fodder from straw and similar materials. U.S. Patent 1 January 1923. [Google Scholar]
- Leonard, R.H.; Hajny, G.J. Fermentation of wood sugars to ethyl alcohol. Industr. Engin. Chem. 1945, 37, 390–395. [Google Scholar] [CrossRef]
- Ball, D.M.; Hoveland, C.S.; Lacefield, G.D. Southern Forages: Modern Concepts for Forage Crop Management, 5th ed.; International Plant Nutrition Institute: Peachtree Corners, GA, USA, 2015. [Google Scholar]
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis of the Association of Official Analytical Chemists International, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 1992, 2, 117–119. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Kenward, M.G.; Roger, J.H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Analy. 2009, 53, 2583–2595. [Google Scholar] [CrossRef]
- Kramer, C.Y. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 1956, 12, 307–310. [Google Scholar] [CrossRef]
- Sabiiti, E.N.; Cobbina, J. Parkia biglobosa: A potential multipurpose fodder tree legume in West Africa. Int. Tree Crops J. 1992, 7, 113–139. [Google Scholar] [CrossRef]
- Allegretti, L.; Sartor, C.; Paez Lama, S.; Egea, V.; Fucili, M.; Passera, C. Effect of the physiological state of Criollo goats on the botanical composition of their diet in NE Mendoza, Argentina. Small Rum. Res. 2012, 103, 152–157. [Google Scholar] [CrossRef]
- Ali, A.S.; Tudsri, S.; Rungmekarat, S.; Kaewtrakulpong, K. Effect of feeding Prosopis juliflora pods and leaves on performance and carcass characteristics of Afar sheep. Kasetsart J. (Nat. Sci.) 2012, 46, 181–189. [Google Scholar]
- Mahgoub, O.; Kadim, I.T.; Forsberg, N.E.; Al-Ajmi, D.S.; Al-Saqry, N.M.; Al-Abri, A.S.; Annamalai, K. Evaluation of Meskit (Prosopis juliflora) pods as a feed for goats. Anim. Feed Sci. Technol. 2005, 121, 319–327. [Google Scholar] [CrossRef]
- Ravikala, K.; Patel, A.M.; Murthy, K.S.; Wadhwani, K.N. Growth efficiency in feedlot lambs on Prosopis juliflora based diets. Small Rum. Res. 1995, 16, 227–231. [Google Scholar] [CrossRef]
- Bhatt, S.S.; Chovatiya, S.G.; Shah, A.R. Evaluation of raw and hydrothermically processed Prosopis juliflora seed meal as supplementary feed for the growth of Labeo rohita fingerlings. Aquacult. Nutr. 2011, 17, e164–e173. [Google Scholar] [CrossRef]
- Freyre, M.; Astrada, E.; Blasco, C.; Baigorria, C.; Rozycki, V.; Bernardi, C. Nutritional value of vinal (Prosopis ruscifolia): Pods intended for food and feed. Cienc. Y Tecnol. Aliment. 2003, 4, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.J.; Mohaupt, A.A.; Spino, D.F. Evaluating wood pulp as feedstuff for ruminants and substrate for Aspergillus fumigatus. J. Anim. Sci. 1973, 37, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Fisher, C.E. The mesquite problem in the Southwest. J. Range Manag. 1950, 3, 60–70. [Google Scholar] [CrossRef]
- Ansley, R.J.; Wu, X.B.; Kramp, B.A. Observation: Long-term increases in mesquite canopy cover in a north Texas savanna. J. Range Manag. 2001, 54, 171–176. [Google Scholar] [CrossRef]
- Grover, H.D.; Musick, H.B. Shrubland encroachment in southern New Mexico, U.S.A.: An analysis of desertification processes in the American southwest. Clim. Chang. 1990, 17, 305–330. [Google Scholar] [CrossRef]
- Phiri, M.S.; Ngongoni, N.T.; Maasdorp, B.V.; Titterton, M.; Mupangwa, J.F.; Sebata, A. Ensiling characteristics and feeding value of silage made from browse tree legume-maize mixtures. Trop. Subtrop. Agroecosyst. 2007, 7, 149–156. [Google Scholar]
- Solorio-Sánchez, F.J.; Sol-Jiménez, J.A.; Sandoval-Castro, C.A.; Torres-Acosta, J.F.J. Evaluation of tree fodder silage in the feeding of lactating goats. J. Appl. Anim. Res. 2007, 31, 189–192. [Google Scholar] [CrossRef]
- Aksu, T.; Baytok, E.; Bolat, D. Effects of a bacterial silage inoculant on corn silage fermentation and nutrient digestibility. Small Rum. Res. 2004, 55, 249–252. [Google Scholar] [CrossRef]
- Nkosi, B.D.; Meeske, R.; van der Merwe, H.J.; Groenewald, I.B. Effects of homofermentative and heterofermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Anim. Feed Sci. Technol. 2010, 157, 195–200. [Google Scholar] [CrossRef]
- Shoup, S.L.; Mullenix, M.K.; Dillard, S.L.; Muntifering, R.B. 89 Fermentation kinetics of different cool-season annual mixtures with or without silage inoculant. J. Anim. Sci. 2020, 98, 31. [Google Scholar] [CrossRef]
- Bal, M.A. Effects of hybrid type, stage of maturity, and fermentation length on whole plant corn silage quality. Turk. J. Vet. Anim. Sci. 2006, 30, 331–336. [Google Scholar]
- da Silva, N.C.; Nascimento, C.F.; Campos, V.M.A.; Alves, M.A.P.; Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim. Feed Sci. Technol. 2019, 251, 124–133. [Google Scholar] [CrossRef]
- Ellenberger. Über Aufgeschlossenen Holzmehl Und Dessen Verwendung. Illus. Landw. Ztg. Jahrg. 1919, 39, 33. [Google Scholar]
- Nowicka, A.; Zieliński, M.; Dębowski, M.; Dudek, M. Progress in the production of biogas from maize silage after acid-heat pretreatment. Energies 2021, 14, 8018. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
Species | Plant Part | DM * | NDF | ADF | ADL | CP | Tannins | Sources |
---|---|---|---|---|---|---|---|---|
P. africana | Pods | 760 | - | - | - | 185 | - | [14] |
P. africana | Pulp | 860 | - | - | - | 100 | 57.5 | [14] |
P. africana | Seeds | 850 | - | - | - | 277 | - | [14] |
P. chilensis | Seeds | - | - | - | - | 254 | - | [28] |
P. cineraria | Leaves | - | 446 | 352 | - | 155 | 70.0 | [7] |
P. cineraria | Leaves | 502 | 567 | 360 | 189 | 159 | 90.7 | [8] |
P. flexuosa | Leaves/twigs | - | 397 | - | - | 141 | - | [29] |
P. juliflora | Leaves | 923 | 271 | 182 | - | 216 | - | [30] |
P. juliflora | Pods | - | 391 | 276 | 36 | 225 | - | [11] |
P. juliflora | Pods | 930 | 402 | 317 | - | 120 | - | [31] |
P. juliflora | Pods | - | - | - | - | 134 | - | [32] |
P. juliflora | Pod meal | 944 | 246 | - | - | 94 | - | [12] |
P. juliflora | Seed meal | 902 | - | - | - | 330 | 8.3 | [33] |
P. juliflora | Silage | - | 686 | 519 | 174 | 99 | - | this study |
P. laevigata | Pods | 917 | 265 | 169 | - | 117 | - | [10] |
P. laevigata | Roasted pods | 955 | 259 | 182 | - | 123 | - | [10] |
P. laevigata | Seeds | 925 | 329 | 118 | - | 394 | - | [13] |
P. pallida | Pulp | 437 | - | - | - | 401 | - | [9] |
P. ruscifolia | Seeds | - | - | - | - | 129 | - | [5,34] |
Mesquite Inclusion Rate, g kg−1 DM | Contrasts | ||||||||
---|---|---|---|---|---|---|---|---|---|
Response *,† | 1000 | 750 | 500 | 250 | 0 | SEM ‡ | p-Value § | L | Q |
NDF | 686 a | 675 ab | 647 ab | 606 ab | 592 b | 60.8 | 0.01 | 0.06 | 0.89 |
ADF | 519 a | 465 ab | 412 bc | 352 cd | 301 d | 20.7 | <0.01 | <0.01 | 0.07 |
ADL | 174 a | 129 b | 102 c | 71 d | 39 e | 10.5 | <0.01 | <0.01 | <0.01 |
CP | 99 b | 107 b | 131 b | 152 a | 174 a | 33.7 | <0.01 | <0.01 | 0.50 |
IVTD | 382 d | 441 cd | 512 bc | 588 ab | 665 a | 62.7 | <0.01 | <0.01 | 0.13 |
pH | 4.5 b | 4.7 ab | 4.8 a | 4.9 a | 4.9 a | 0.14 | <0.01 | 0.82 | 0.30 |
Lactate | 5 c | 14 bc | 21 bc | 29 ab | 39 a | 13.4 | <0.01 | <0.01 | 0.11 |
Acetate | 12 | 9 | 10 | 11 | 12 | 2.5 | 0.72 | 0.18 | 0.68 |
Butyrate | 8 | 6 | 9 | 7 | 5 | 5.3 | 0.71 | 0.62 | 0.37 |
Total VFA | 24 d | 29 cd | 41 bc | 49 ab | 58 a | 5.5 | <0.01 | <0.01 | 0.38 |
Ammonia | 9 d | 13 cd | 19 bc | 26 ab | 27 a | 1.6 | <0.01 | <0.01 | 0.80 |
Inoculated | ||||
---|---|---|---|---|
Response *,† | No | Yes | SEM ‡ | p-Value § |
NDF | 646 | 637 | 58.6 | 0.61 |
ADF | 415 | 404 | 23.6 | 0.39 |
ADL | 107 | 99 | 9.9 | 0.05 |
CP | 133 | 133 | 32.7 | 0.97 |
IVTD | 516 | 519 | 59.8 | 0.87 |
pH | 4.8 | 4.7 | 0.13 | 0.17 |
Lactate | 21 | 22 | 13.0 | 0.77 |
Acetate | 9 | 12 | 3.2 | 0.17 |
Butyrate | 6 | 8 | 4.9 | 0.54 |
Total VFA | 39 | 41 | 3.1 | 0.64 |
Ammonia | 19 | 19 | 1.0 | 0.92 |
Length of Incubation, d | Contrasts | ||||||
---|---|---|---|---|---|---|---|
Response *,† | 28 | 56 | 84 | SEM ‡ | p-Value § | L | Q |
NDF | 661 | 636 | 627 | 59.4 | 0.31 | 0.14 | 0.69 |
ADF | 417 | 398 | 414 | 24.5 | 0.47 | 0.84 | 0.23 |
ADL | 93 b | 98 b | 119 a | 10.1 | <0.01 | <0.01 | 0.10 |
CP | 131 | 132 | 136 | 33.0 | 0.91 | 0.68 | 0.88 |
IVTD | 509 | 510 | 533 | 60.8 | 0.62 | 0.39 | 0.64 |
pH | 4.9 a | 4.7 ab | 4.6 b | 0.13 | 0.01 | <0.01 | 0.72 |
Lactate | 16 | 25 | 25 | 13.1 | 0.06 | 0.04 | 0.27 |
Acetate | 11 | 9 | 12 | 3.3 | 0.36 | 0.77 | 0.16 |
Butyrate | 5 | 6 | 9 | 5.1 | 0.29 | 0.15 | 0.51 |
Total VFA | 33 b | 41 ab | 47 a | 5.0 | 0.01 | <0.01 | 0.89 |
Ammonia | 18 | 17 | 21 | 1.2 | 0.11 | 0.16 | 0.11 |
Sulfuric Acid, N | Sodium Hydroxide, mL L−1 | Contrasts | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Response †,‡ | CON § | 0.25 | 0.50 | 0.75 | 1.00 | 5 | 10 | 15 | 20 | SEM # | CONC | TYPE | CONT | L | Q |
NDF | 760 | 694 | 745 | 730 | 724 | 780 | 792 | 788 | 792 | 20.7 | 0.65 | <0.01 | 0.80 | 0.56 | 0.89 |
ADF | 601 | 524 * | 587 | 581 | 584 | 625 | 639 | 640 | 633 | 22.6 | 0.36 | <0.01 | 0.96 | 0.19 | 0.90 |
ADL | 219 | 191 | 209 | 204 | 207 | 257 | 243 | 243 | 233 | 19.1 | 0.97 | <0.01 | 0.64 | 0.89 | 0.48 |
CP | 46 | 37 | 37 | 40 | 41 | 42 | 37 | 38 | 30 * | 4.4 | <0.01 | <0.01 | <0.01 | <0.01 | 0.28 |
IVTD | 303 | 293 | 313 | 308 | 308 | 264 | 256 | 260 | 290 | 21.8 | 0.73 | 0.03 | 0.33 | 0.74 | 0.23 |
pH | 4.1 | 2.9 * | 2.5 * | 2.4 * | 2.7 * | 4.8 * | 5.1 * | 5.3 * | 6.1 * | 0.32 | 0.16 | <0.01 | 0.58 | 0.18 | 0.02 |
Lactate | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.02 | <0.01 | <0.01 | 0.12 | 0.05 |
Acetate | 9 | 1 * | 2 * | 3 * | 6 | 9 | 4 | 4 * | 2 * | 1.3 | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 |
Butyrate | 9 | 0 * | 0 * | 0 * | 3 | 9 | 6 | 4 | 3 * | 1.8 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 |
Total VFA | 20 | 1 * | 2 * | 3 * | 9 | 20 | 11 | 9 | 3 * | 3.1 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 |
Ammonia | 3 | 1 * | 1 * | 1 * | 2 | 2 | 1 * | 1* | 1 * | 0.3 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Inoculated | ||||
---|---|---|---|---|
Response *,† | No | Yes | SEM ‡ | p-Value § |
NDF | 754 | 758 | 9.4 | 0.81 |
ADF | 595 | 608 | 12.6 | 0.37 |
ADL | 219 | 227 | 16.2 | 0.27 |
CP | 40 | 38 | 11.6 | 0.20 |
IVTD | 284 | 293 | 11.6 | 0.49 |
pH | 4.1 | 3.9 | 0.22 | 0.29 |
Lactate | 0.2 | 0.2 | 0.21 | 0.86 |
Acetate | 4.3 | 4.7 | 0.61 | 0.69 |
Butyrate | 3.6 | 3.4 | 0.84 | 0.86 |
Total VFA | 9.1 | 8.5 | 1.41 | 0.73 |
Ammonia | 1.6 | 1.4 | 0.12 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fair, W.T.; Breeden, J.B.; Atchley, T.W.; Lambert, B.D.; Aljoe, Z.; Owsley, W.F.; Smith, W.B. The Use of Removed Mesquite Brush as a Fiber Replacement in Silage Production. Animals 2022, 12, 2795. https://doi.org/10.3390/ani12202795
Fair WT, Breeden JB, Atchley TW, Lambert BD, Aljoe Z, Owsley WF, Smith WB. The Use of Removed Mesquite Brush as a Fiber Replacement in Silage Production. Animals. 2022; 12(20):2795. https://doi.org/10.3390/ani12202795
Chicago/Turabian StyleFair, William Taylor, Jeffrey Bryan Breeden, Thomas Wayne Atchley, Barry Don Lambert, Zhan Aljoe, Walter Franklin Owsley, and William Brandon Smith. 2022. "The Use of Removed Mesquite Brush as a Fiber Replacement in Silage Production" Animals 12, no. 20: 2795. https://doi.org/10.3390/ani12202795