Influence of Bile Salts and Pancreatin on Dog Food during Static In Vitro Simulation to Mimic In Vivo Digestion
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vivo Digestion
2.1.1. Experimental Animals
2.1.2. Apparent Total Tract Digestibility (ATTD)
2.2. In Vitro Simulation of Digestion
2.2.1. Static In Vitro Digestion Model
- Sample preparation: We used an extruded commercial dog food that is identical to the one used for the in vivo digestion test. The sample was finely pulverized (<1 mm particle size) after being dried in an oven (65 °C) to a constant weight.
- Gastric digestion phase: In Erlenmeyer glass flasks (500 mL), 5 g of dog food sample (<1 mm), 125 mL (25 mL/g feed) 0.1 M phosphate buffer (pH 6.0), and 50 mL (10 mL/g feed) 0.2 M HCl were added, and the pH was adjusted to 2.0 using 0.1 M HCl. We then added 1 mL pepsin–HCl (50 mg/mL 0.075 N HCl and pepsin from porcine gastric mucosa, ≥250 units/mg, P7000, Sigma Aldrich, St. Louis, MO, USA) and 1 mL chloramphenicol (2.5 mg/mL in ethanol, C-0378, Sigma Aldrich, St. Louis, MO, USA) solutions and incubated the mixture in a shaking water bath (39 °C, 130 rpm) for 6 h.
- Small-intestinal phase: Once gastric digestion was completed, 50 mL (10 mL/g feed) 0.2 M phosphate buffer (pH 6.8) and 25 mL (10 mL/g feed) 0.6 M NaOH were added, and the pH was adjusted to 6.8 using 0.1 M NaOH. Thereafter, 6.250 g (100%, 25 g/L digestive solution), 3.125 g (50%, 12.5 g/L digestive solution), 1.563 g (25%, 6.25 g/L digestive solution), 0.625 g (10%, 2.5 g/L digestive solution), and 0 g (0%) of bile salts (13805, Sigma Aldrich, St. Louis, MO, USA) as well as 2.50 g (100%, 10 g/L digestive solution), 1.25 g (50%, 5 g/L digestive solution), 0.625 g (25%, 2.5 g/L digestive solution), 0.250 g (10%, 1 g/L digestive solution), and 0 g (0%) of pancreatin (P7545, 8 × USP specifications, Sigma Aldrich, St. Louis, MO, USA) were, respectively, added to each flask. This was incubated in a shaking water bath (39 °C, 150 rpm) for 18 h.
- Collection of undigested fraction: The undigested fraction was collected using a bottle-top vacuum filter (pore size 0.22 µm, PES membranes, TPP), dried in a dry oven (65 °C), and then weighed.
2.2.2. Calculation of In Vitro Digestibility
2.3. Statistical Analysis
3. Results
3.1. Apparent Total Tract Digestibility in Beagle Dogs
3.2. Static In Vitro Digestion for Dogs
3.2.1. In Vitro EE Digestibility
3.2.2. In Vitro CP Digestibility
3.2.3. In Vitro DM Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corsato Alvarenga, I.C.; Aldrich, C.G. The Effect of Increasing Levels of Dehulled Faba Beans (Vicia faba L.) on Extrusion and Product Parameters for Dry Expanded Dog Food. Foods 2019, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCusker, S.; Buff, P.R.; Yu, Z.; Fascetti, A.J. Amino Acid Content of Selected Plant, Algae and Insect Species: A Search for Alternative Protein Sources for Use in Pet Foods. J. Nutr. Sci. 2014, 3, e39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, N.H. Animal Experiments in Biomedical Research: A Historical Perspective. Animals 2013, 3, 238–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampshire, V.A.; Gilbert, S.H. Refinement, Reduction, and Replacement (3R) Strategies in Preclinical Testing of Medical Devices. Toxicol. Pathol. 2019, 47, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Kerecman Myers, D.K.; Goldberg, A.M.; Poth, A.; Wolf, M.F.; Carraway, J.; McKim, J.; Coleman, K.P.; Hutchinson, R.; Brown, R.; Krug, H.F.; et al. From In Vivo to In Vitro: The Medical Device Testing Paradigm Shift. ALTEX 2017, 34, 479–500. [Google Scholar] [CrossRef] [Green Version]
- Biagi, G.; Cipollini, I.; Grandi, M.; Pinna, C.; Vecchiato, C.G.; Zaghini, G. A New In Vitro Method to Evaluate Digestibility of Commercial Diets for Dogs. Ital. J. Anim. Sci. 2016, 15, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Vors, C.; Capolino, P.; Guérin, C.; Meugnier, E.; Pesenti, S.; Chauvin, M.A.; Monteil, J.; Peretti, N.; Cansell, M.; Carrière, F.; et al. Coupling In Vitro Gastrointestinal Lipolysis and Caco-2 Cell Cultures for Testing the Absorption of Different Food Emulsions. Food Funct. 2012, 3, 537–546. [Google Scholar] [CrossRef]
- Theysgeur, S.; Cudennec, B.; Deracinois, B.; Perrin, C.; Guiller, I.; Lepoudère, A.; Flahaut, C.; Ravallec, R. New Bioactive Peptides Identified from a Tilapia Byproduct Hydrolysate Exerting Effects on DPP-IV Activity and Intestinal Hormones Regulation after Canine Gastrointestinal Simulated Digestion. Molecules 2020, 26, 136. [Google Scholar] [CrossRef]
- Wickham, M.; Faulks, R.; Mills, C. In Vitro Digestion Methods for Assessing the Effect of Food Structure on Allergen Breakdown. Mol. Nutr. Food Res. 2009, 53, 952–958. [Google Scholar] [CrossRef]
- Ménard, O.; Cattenoz, T.; Guillemin, H.; Souchon, I.; Deglaire, A.; Dupont, D.; Picque, D. Validation of a New In Vitro Dynamic System to Simulate Infant Digestion. Food Chem. 2014, 145, 1039–1045. [Google Scholar] [CrossRef]
- Maldonado-Valderrama, J.; Gunning, A.P.; Wilde, P.J.; Morris, V.J. In Vitro Gastric Digestion of Interfacial Protein Structures: Visualisation by AFM. Soft Matter 2010, 6, 4908–4915. [Google Scholar] [CrossRef]
- Hasjim, J.; Lavau, G.C.; Gidley, M.J.; Gilbert, R.G. In Vivo and In Vitro Starch Digestion: Are Current In Vitro Techniques Adequate? Biomacromolecules 2010, 11, 3600–3608. [Google Scholar] [CrossRef] [PubMed]
- Larsson, K.; Cavonius, L.; Alminger, M.; Undeland, I. Oxidation of Cod Liver Oil During Gastrointestinal In Vitro Digestion. J. Agric. Food Chem. 2012, 60, 7556–7564. [Google Scholar] [CrossRef] [PubMed]
- Biehler, E.; Bohn, T. Methods for Assessing Aspects of Carotenoid Bioavailability. Curr. Nutr. Food Sci. 2010, 6, 44–69. [Google Scholar] [CrossRef] [Green Version]
- Lorrain, B.; Dangles, O.; Loonis, M.; Armand, M.; Dufour, C. Dietary Iron-Initiated Lipid Oxidation and Its Inhibition by Polyphenols in Gastric Conditions. J. Agric. Food Chem. 2012, 60, 9074–9081. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazimierska, K.; Biel, W.; Witkowicz, R.; Karakulska, J.; Stachurska, X. Evaluation of Nutritional Value and Microbiological Safety in Commercial Dog Food. Vet. Res. Commun. 2021, 45, 111–128. [Google Scholar] [CrossRef]
- Liu, Y.; Kil, D.Y.; Perez-Mendoza, V.G.; Song, M.; Pettigrew, J.E. Supplementation of Different Fat Sources Affects Growth Performance and Carcass Composition of Finishing Pigs. J. Anim. Sci. Biotechnol. 2018, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Fazio, F.; Giudice, E.; Grasso, F.; Caola, G. Blood Lipids, Fecal Fat and Chymotrypsin Excretion in the Dog: Influence of Age, Body Weight and Sex. J. Vet. Med. Sci. 2004, 66, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Naumann, S.; Haller, D.; Eisner, P.; Schweiggert-Weisz, U. Mechanisms of Interactions Between Bile Acids and Plant Compounds-A Review. Int. J. Mol. Sci. 2020, 21, 6495. [Google Scholar] [CrossRef]
- Association of American Feed Control Officials (AAFCO). Model Bill and Regulations; Association of American Feed Control Officials: Oxford, IN, USA, 2016; Volume 2016, pp. 107–234. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Kim, K.H.; Seo, K.; Cho, H.W.; Jeon, J.H.; Kim, C.H.; Jung, J.; Chun, J.L. Age-Related Digestibility of Nutrients Depending on the Moisture Content in Aged Dogs. J. Anim. Sci. Technol. 2021, 63, 1355. [Google Scholar] [CrossRef]
- Boisen, S.; Ferna’ndez, J.A. Prediction of the Apparent Ileal Digestibility of Protein and Amino Acids in Feedstuffs and Feed Mixtures for Pigs by In Vitro Analyses. Anim. Feed Sci. Technol. 1995, 51, 29–43. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Quiles, J.L.; Gil, E.; Bompadre, S.; Simal-Gandara, J.; Battino, M.; Giampieri, F. The Influence of In Vitro Gastrointestinal Digestion on the Anticancer Activity of Manuka Honey. Antioxidants 2020, 9, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doumani, N.; Severin, I.; Dahbi, L.; Bou-Maroun, E.; Tueni, M.; Sok, N.; Chagnon, M.C.; Maalouly, J.; Cayot, P. Lemon Juice, Sesame Paste, and Autoclaving Influence Iron Bioavailability of Hummus: Assessment by an In Vitro Digestion/Caco-2 Cell Model. Foods 2020, 9, 474. [Google Scholar] [CrossRef]
- Ahlstrom, O.; Skrede, A. Comparative Nutrient Digestibility in Dogs, Blue Foxes, Mink and Rats. J. Nutr. 1998, 128, 2676S–2677S. [Google Scholar] [CrossRef] [Green Version]
- Daumas, C.; Paragon, B.M.; Thorin, C.; Martin, L.; Dumon, H.; Ninet, S.; Nguyen, P. Evaluation of Eight Commercial Dog Diets. J. Nutr. Sci. 2014, 3, e63. [Google Scholar] [CrossRef] [Green Version]
- Cargo-Froom, C.L.; Fan, M.Z.; Pfeuti, G.; Pendlebury, C.; Shoveller, A.K. Apparent and True Digestibility of Macro and Micro Nutrients in Adult Maintenance Dog Foods Containing Either a Majority of Animal or Vegetable Proteins1. J. Anim. Sci. 2019, 97, 1010–1019. [Google Scholar] [CrossRef]
- Kahraman, O.; İnal, F. Comparison of Digestibility Parameters of Commercial Dry Dog Foods with Different Contents. Arq. Bras. Med. Vet. Zootec. 2021, 73, 469–476. [Google Scholar] [CrossRef]
- Schauf, S.; Stockman, J.; Haydock, R.; Eyre, R.; Fortener, L.; Park, J.S.; Bakke, A.M.; Watson, P. Healthy Ageing Is Associated with Preserved or Enhanced Nutrient and Mineral Apparent Digestibility in Dogs and Cats Fed Commercially Relevant Extruded Diets. Animals 2021, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.P.; Biourge, V.C.; Nguyen, P.G. Digestive Sensitivity Varies According to Size of Dogs: A Review. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Ding, L.; Xia, H.L.; Tu, Y.Y. Analysis of the Major Chemical Compositions in Fuzhuan Brick-Tea and Its Effect on Activities of Pancreatic Enzymes In Vitro. Afr. J. Biotechnol. 2010, 9, 6748–6754. [Google Scholar]
- Singh, J.; Metrani, R.; Shivanagoudra, S.R.; Jayaprakasha, G.K.; Patil, B.S. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds. J. Agric. Food Chem. 2019, 67, 9124–9138. [Google Scholar] [CrossRef]
- Kopf-Bolanz, K.A.; Schwander, F.; Gijs, M.; Vergères, G.; Portmann, R.; Egger, L. Validation of an In Vitro Digestive System for Studying Macronutrient Decomposition in Humans. J. Nutr. 2012, 142, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.D.; Schricker, B.R.; Rasmussen, R.R.; Van Campen, D. An In Vitro Method for Estimation of Iron Availability from Meals. Am. J. Clin. Nutr. 1981, 34, 2248–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, C.J.; Kaukonen, A.M.; Boyd, B.J.; Edwards, G.A.; Charman, W.N. Susceptibility to Lipase-Mediated Digestion Reduces the Oral Bioavailability of Danazol after Administration as a Medium-Chain Lipid-Based Microemulsion Formulation. Pharm. Res. 2004, 21, 1405–1412. [Google Scholar] [CrossRef]
- Versantvoort, C.H.; Oomen, A.G.; Van de Kamp, E.; Rompelberg, C.J.; Sips, A.J. Applicability of an In Vitro Digestion Model in Assessing the Bioaccessibility of Mycotoxins from Food. Food Chem. Toxicol. 2005, 43, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total Phenolics, Flavonoids, Anthocyanins and Antioxidant Activity Following Simulated Gastro-intestinal Digestion and Dialysis of Apple Varieties: Bioaccessibility and Potential Uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef] [PubMed]
Items | Experimental Diet |
---|---|
Moisture, % | 12 |
Crude Protein, % | 37.5 |
Ether Extract, % | 22.7 |
Crude Fiber, % | 3.41 |
Crude Ash, % | 14.8 |
Ca, % | 1 |
P, % | 0.8 |
Metabolic Energy, kcal/kg | 4100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, K.; Cho, H.-W.; Jeon, J.-H.; Kim, C.H.; Lim, S.; Jeong, S.; Kim, K.; Chun, J.L. Influence of Bile Salts and Pancreatin on Dog Food during Static In Vitro Simulation to Mimic In Vivo Digestion. Animals 2022, 12, 2734. https://doi.org/10.3390/ani12202734
Seo K, Cho H-W, Jeon J-H, Kim CH, Lim S, Jeong S, Kim K, Chun JL. Influence of Bile Salts and Pancreatin on Dog Food during Static In Vitro Simulation to Mimic In Vivo Digestion. Animals. 2022; 12(20):2734. https://doi.org/10.3390/ani12202734
Chicago/Turabian StyleSeo, Kangmin, Hyun-Woo Cho, Jung-Hwan Jeon, Chan Ho Kim, Sejin Lim, Sohee Jeong, Kihyun Kim, and Ju Lan Chun. 2022. "Influence of Bile Salts and Pancreatin on Dog Food during Static In Vitro Simulation to Mimic In Vivo Digestion" Animals 12, no. 20: 2734. https://doi.org/10.3390/ani12202734