Performance, Feeding Behavior and Immune Response in Nellore and Angus × Nellore Steers Fed Whole Shelled Corn Diets with or without Fiber
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Diets
2.2. Performance, Behavior Study, and Chemical Composition of Experimental Diets
2.3. Blood Analyses
2.4. Animal Slaughter, Carcass Traits, and Tissue Sample Collection
2.5. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvestre, A.M.; Millen, D.D. The 2019 Brazilian survey on nutritional practices provided by feedlot cattle consulting nutritionists. Rev. Bras. Zootec. 2021, 50. [Google Scholar] [CrossRef]
- Carvalho, J.R.R.; Chizzotti, M.L.; Schoonmaker, J.P.; Teixeira, P.D.; Lopes, R.C.; Oliveira, C.V.R.; Ladeira, M.M. Performance, carcass characteristics, and ruminal pH of Nellore and Angus young bulls fed a whole shelled corn diet. J. Anim. Sci. 2016, 94, 2451–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, T.C.; Harvatine, K.J. Lipid feeding and milk fat depression. Vet. Clin. N. Am. Food Anim. Pract. 2014, 30, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Owens, F.N.; Secrist, D.S.; Hill, W.J.; Gill, D.R. Acidosis in cattle: A review. J. Anim. Sci. 1998, 76, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Moretti, R.; Biffani, S.; Tiezzi, F.; Maltecca, C.; Chessa, S.; Bozzi, R. Rumination time as a potential predictor of common diseases in high-productive Holstein dairy cows. J. Dairy Res. 2017, 84, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Gozho, G.; Plaizier, J.; Krause, D.; Kennedy, A.; Wittenberg, K. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci. 2005, 88, 1399–1403. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.; Klopfenstein, T.J.; Stock, R.; Parrott, C.; Herold, D. Effect of Rumensin and feed intake variation on ruminal pH. Neb. Beef Cattle Rep. 1997, 430, 49–52. [Google Scholar]
- Khafipour, E.; Krause, D.; Plaizier, J. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 2009, 92, 1060–1070. [Google Scholar] [CrossRef] [Green Version]
- Nagaraja, T.; Bartley, E.; Fina, L.; Anthony, H. Relationship of rumen gram-negative bacteria and free endotoxin to lactic acidosis in cattle. J. Anim. Sci. 1978, 47, 1329–1337. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Imunologia Celular e Molecular; GEN Guanabara Koogan: Rio de Janeiro, Brazil, 2015; Volume 8, 576p. [Google Scholar]
- Carroll, J.A.; Forsberg, N.E. Influence of stress and nutrition on cattle immunity. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 105–149. [Google Scholar] [CrossRef]
- Murata, H.; Shimada, N.; Yoshioka, M. Current research on acute phase proteins in veterinary diagnosis: An overview. Vet. J. 2004, 168, 28–40. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Buonaiuto, G.; Palmonari, A.; Valle, E.; Formigoni, A. Immune-metabolic-inflammatory markers in Holstein cows exposed to a nutritional and environmental stressing challenge. J. Anim. Physiol. Anim. Nutr. 2021, 105, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, D.; Mammi, L.M.; Palmonari, A.; García-González, R.; Chapman, J.D.; McLean, D.J.; Formigoni, A. Effect of an Immunomodulatory Feed Additive in Mitigating the Stress Responses in Lactating Dairy Cows to a High Concentrate Diet Challenge. Animals 2022, 12, 2129. [Google Scholar] [CrossRef] [PubMed]
- Baumann, H.; Gauldie, J. The acute phase response. Immunol. Today 1994, 15, 74–80. [Google Scholar] [CrossRef]
- Cooke, R. Nutritional and management considerations for beef cattle experiencing stress-induced inflammation. Prof. Anim. Sci. 2017, 33, 1–11. [Google Scholar] [CrossRef]
- Lippolis, K.; Cooke, R.; Schumaher, T.; Brandão, A.; Silva, L.; Schubach, K.; Marques, R.; Bohnert, D. Physiologic, health, and performance responses of beef steers supplemented with an immunomodulatory feed ingredient during feedlot receiving. J. Anim. Sci. 2017, 95, 4945–4957. [Google Scholar] [CrossRef] [Green Version]
- Rabelo, M.; Pires, A.; Susin, I.; Mendes, C.; Oliveira Jr, R.; Gentil, R.; Ferreira, E. Effect of raw sugar cane bagasse on performance and ingestive behavior of beef cattle. Arq. Bras. Med. Vet. Zootec. 2008, 60, 698–704. [Google Scholar] [CrossRef]
- Contadini, M.d.A.; Ferreira, F.A.; Corte, R.R.S.; Antonelo, D.S.; Gómez, J.F.M.; Silva, S.d.L. Roughage levels impact on performance and carcass traits of finishing Nellore cattle fed whole corn grain diets. Trop. Anim. Health Prod. 2017, 49, 1709–1713. [Google Scholar] [CrossRef]
- Marques, R.; Chagas, L.; Owens, F.; Santos, F. Effects of various roughage levels with whole flint corn grain on performance of finishing cattle. J. Anim. Sci. 2016, 94, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Krehbiel, C.; Kreikemeier, K.; Ferrell, C. Influence of Bos indicus crossbreeding and cattle age on apparent utilization of a high-grain diet. J. Anim. Sci. 2000, 78, 1641–1647. [Google Scholar] [CrossRef]
- Pacheco, R.; Millen, D.; DiLorenzo, N.; Martins, C.L.; Marino, C.; Fossa, M.; Beier, S.; DiCostanzo, A.; Rodrigues, P.; Arrigoni, M. Effects of feeding a multivalent polyclonal antibody preparation on feedlot performance, carcass characteristics, rumenitis, and blood gas profile in Bos indicus biotype yearling bulls. J. Anim. Sci. 2012, 90, 1898–1909. [Google Scholar] [CrossRef] [PubMed]
- Cunha, O.; Restle, J.; Missio, R.; Miotto, F.; Sousa, L.; Bozorg, V.; Elejalde, D.; Maciel, R.; Neiva, J. Productive responses of European crossbred and zebu cattle fed whole shelled corn diets, with or without sugarcane bagasse. Anim. Prod. Sci. 2021, 61, 1460–1466. [Google Scholar] [CrossRef]
- Bevans, D.; Beauchemin, K.; Schwartzkopf-Genswein, K.; McKinnon, J.; McAllister, T. Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. J. Anim. Sci. 2005, 83, 1116–1132. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analysis Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.C. Desempenho e Digestibilidade em Novilhos Nelore e Nelore x Angus Alimentados com Dietas de Grãos de Milho Inteiro e Bagaço de Cana. In Repositório UFLA; Universidade Federal de Lavras: Lavras, Brazil, 2018. [Google Scholar]
- Souza, N.; Detmann, E.; Pina, D.; Valadares Filho, S.; Sampaio, C.; Queiroz, A.; Veloso, C. Evaluation of chromium concentration in cattle feces using different acid digestion and spectrophotometric quantification techniques. Arq. Bras. Med. Vet. Zootec. 2013, 65, 1472–1482. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.d.; Carrara, T.V.B.; Pereira, M.C.S.; Oliveira, C.A.d.; Batista Júnior, I.C.; Watanabe, D.H.M.; Rigueiro, A.L.N.; Arrigoni, M.D.B.; Millen, D.D. Feedlot performance, feeding behavior and rumen morphometrics of Nellore cattle submitted to different feeding frequencies. Sci. Agric. 2018, 75, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Gomide, L.A.d.M.; Ramos, E.M.; Fontes, P.R. Tecnologia de Abate e Tipificação de Carcaças; Editora UFV: Viçosa, Brazil, 2014; Volume 2, p. 336. [Google Scholar]
- Dow, D.L.; Wiegand, B.R.; Ellersieck, M.R.; Lorenzen, C.L. Prediction of fat percentage within marbling score on beef longissimus muscle using 3 different fat determination methods. J. Anim. Sci. 2011, 89, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Marcondes, M.I.; Valadares Filho, S.C.; Paulino, P.V.R.; Detmann, E.; Paulino, M.F.; Diniz, L.C.; Santos, T.R. Performance of animals fed individually or in groups and carcass traits of Nellore cattle from three sexual classes. Rev. Bras. Zootec. 2008, 37, 2243–2250. [Google Scholar] [CrossRef] [Green Version]
- Restle, J.; Alves Filho, D.C.; Faturi, C.; Rosa, J.R.P.; Pascoal, L.L.; Bernardes, R.A.C.; Kuss, F. Performance during the growth phase of bulls or steers from different genetic groups. Rev. Bras. Zootec. 2000, 29, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Zebeli, Q.; Aschenbach, J.; Tafaj, M.; Boguhn, J.; Ametaj, B.; Drochner, W. Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. J. Dairy Sci. 2012, 95, 1041–1056. [Google Scholar] [CrossRef] [PubMed]
- Millen, D.; Pacheco, R.; DiLorenzo, N.; Martins, C.; Marino, C.; Bastos, J.; Mariani, T.; Barducci, R.; Sarti, L.; DiCostanzo, A. Effects of feeding a spray-dried multivalent polyclonal antibody preparation on feedlot performance, feeding behavior, carcass characteristics, rumenitis, and blood gas profile of Brangus and Nellore yearling bulls. J. Anim. Sci. 2015, 93, 4387–4400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, H.F.; Faciola, A.P. Ruminal acidosis, bacterial changes, and lipopolysaccharides. J. Anim. Sci. 2020, 98, skaa248. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, T.; Galyean, M.L.; Cole, N.A. Nutrition and disease. Vet. Clin. N. Am. Food Anim. Pract. 1998, 14, 257–277. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Titgemeyer, E.C. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 2007, 90, E17–E38. [Google Scholar] [CrossRef] [Green Version]
- Schwartzkopf-Genswein, K.; Beauchemin, K.; McAllister, T.; Gibb, D.; Streeter, M.; Kennedy, A. Effect of feed delivery fluctuations and feeding time on ruminal acidosis, growth performance, and feeding behavior of feedlot cattle. J. Anim. Sci. 2004, 82, 3357–3365. [Google Scholar] [CrossRef]
- Allen, M.; Bradford, B.; Oba, M. Board-Invited Review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef] [Green Version]
- Furlan, R.; Macari, M.; Faria Filho, D. Anatomia e fisiologia do trato gastrintestinal. In Nutrição de Ruminantes; FUNEP: Jaboticabal, Brazil, 2006; pp. 1–23. [Google Scholar]
- Beauchemin, K.; Yang, W.; Rode, L. Effects of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. J. Anim. Sci. 2001, 79, 1925–1936. [Google Scholar] [CrossRef] [Green Version]
- Caetano, M.; Goulart, R.; Silva, S.; Drouillard, J.S.; Leme, P.; Lanna, D. Effect of flint corn processing method and roughage level on finishing performance of Nellore-based cattle. J. Anim. Sci. 2015, 93, 4023–4033. [Google Scholar] [CrossRef] [Green Version]
- Shain, D.; Stock, R.; Klopfenstein, T.J.; Herold, D. The effect of forage source and particle size on finishing yearling steer performance and ruminal metabolism. J. Anim. Sci. 1999, 77, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Nagaraja, T.; Lechtenberg, K.F. Liver abscesses in feedlot cattle. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 351–369. [Google Scholar] [CrossRef]
- Jones, S.A.; Scheller, J.; Rose-John, S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Investig. 2011, 121, 3375–3383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaye, I.K. Haptoglobin, inflammation and disease. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Raju, S.M.; Kumar, A.P.; Yadav, A.N.; Rajkumar, K.; Mvs, S.; Burgula, S. Haptoglobin improves acute phase response and endotoxin tolerance in response to bacterial LPS. Immunol. Lett. 2019, 207, 17–27. [Google Scholar] [CrossRef]
- Nagaraja, T.; Bartley, E.; Fina, L.; Anthony, H.; Bechtle, R. Evidence of endotoxins in the rumen bacteria of cattle fed hay or grain. J. Anim. Sci. 1978, 47, 226–234. [Google Scholar] [CrossRef]
- Araujo, D.; Cooke, R.; Hansen, G.; Staples, C.; Arthington, J. Effects of rumen-protected polyunsaturated fatty acid supplementation on performance and physiological responses of growing cattle after transportation and feedlot entry. J. Anim. Sci. 2010, 88, 4120–4132. [Google Scholar] [CrossRef] [Green Version]
- Turvey, S.E.; Broide, D.H. Innate immunity. J. Allergy Clin. Immunol. 2010, 125, S24–S32. [Google Scholar] [CrossRef] [PubMed]
Ingredients % | Diet (% DM) | |
---|---|---|
Whole Shelled Corn | Whole Shelled Corn and Bagasse | |
Ingredient, % | ||
Whole shelled corn | 80.0 | 74.0 |
Sugarcane bagasse | - | 6.0 |
Protein and mineral supplement 1 | 20.0 | 20.0 |
Nutrient, DM | ||
Crude protein, % | 15.0 | 14.7 |
Neutral detergent fiber, % | 15.2 | 19.0 |
Non-fiber carbohydrates, % | 60.0 | 56.7 |
Starch, % | 57.2 | 52.9 |
Ether extract, % | 3.17 | 3.03 |
Metabolizable energy, Mcal/kg DM | 3.00 | 2.65 |
Item | Nellore | Angus × Nellore | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
WSC 1 | WSCB 2 | WSC | WSCB | Breed | Diet | B*D | ||
Initial BW, kg | 344 | 350 | 358 | 359 | 9.10 | 0.21 | 0.71 | 0.75 |
Final BW, kg | 425 | 437 | 451 | 474 | 9.84 | 0.02 | 0.09 | 0.23 |
DMI, kg/day | 6.95 | 7.94 | 7.46 | 8.73 | 0.26 | 0.01 | <0.01 | 0.59 |
DMI, % BW | 1.60 | 1.83 | 1.69 | 1.89 | 0.04 | 0.07 | <0.01 | 0.70 |
DMI variation, % | 16.88 | 11.31 | 17.92 | 11.99 | 1.10 | 0.44 | <0.01 | 0.86 |
DMI variation, kg | 1.15 | 0.87 | 1.31 | 0.99 | 0.067 | 0.04 | <0.01 | 0.83 |
ADG, kg/day | 0.841 | 0.901 | 0.959 | 1.196 | 0.077 | 0.02 | 0.06 | 0.23 |
Gain:feed, kg/kg | 0.121 | 0.114 | 0.127 | 0.136 | 0.008 | 0.10 | 0.86 | 0.32 |
Hot carcass weight, kg | 251 | 247 | 244 | 250 | 4.48 | 0.59 | 0.73 | 0.29 |
Longissimus area, cm2 | 72.9 | 68.3 | 75.4 | 77.6 | 3.12 | 0.09 | 0.58 | 0.34 |
Subcutaneous fat, mm | 3.41 | 3.16 | 4.87 | 4.68 | 0.21 | <0.01 | 0.28 | 0.89 |
Marbling 4 | 348 | 379 | 361 | 355 | 21.5 | 0.80 | 0.56 | 0.38 |
Dressing percentage, % | 57.8 | 56.4 | 54.9 | 53.7 | 0.54 | <0.01 | 0.01 | 0.87 |
Item | Nellore | Angus × Nellore | SEM 3 | p Values | ||||
---|---|---|---|---|---|---|---|---|
WSC 1 | WSCB 2 | WSC | WSCB | Breed | Diet | B*D | ||
Time spent eating, min | 119 | 136 | 130 | 173 | 16.9 | 0.16 | 0.07 | 0.45 |
Time spent ruminating, min | 139 | 287 | 125 | 199 | 20.0 | 0.01 | <0.01 | 0.07 |
Time spent chewing, min | 258 | 423 | 255 | 372 | 20.6 | 0.32 | <0.01 | 0.36 |
Dry matter | ||||||||
Eating rate of DM, min/kg | 17.6 | 17.3 | 17.3 | 20.2 | 2.22 | 0.57 | 0.59 | 0.43 |
Rumination rate of DM, min/kg | 20.3 b | 36.8 a | 17.4 b | 22.9 b | 2.39 | <0.01 | <0.01 | 0.03 |
Chewing/DM, min/kg | 38.0 | 54.0 | 34.7 | 43.1 | 3.43 | 0.01 | <0.01 | 0.43 |
Neutral detergent fiber | ||||||||
NDF intake, kg 4 | 1.06 | 1.58 | 1.13 | 1.73 | 0.052 | 0.04 | <0.01 | 0.39 |
Eating rate of NDF, min/kg | 117 | 87 | 114 | 103 | 12.8 | 0.64 | 0.11 | 0.43 |
Rumination rate of NDF, min/kg | 135 | 185 | 114 | 116 | 16.4 | <0.01 | 0.09 | 0.11 |
Chewing/NDF, min/kg | 252 | 272 | 228 | 219 | 20.3 | 0.06 | 0.77 | 0.47 |
Passage rate, %/h | 4.44 | 4.75 | 3.14 | 4.89 | 0.52 | 0.25 | 0.05 | 0.16 |
Item | Nellore | Angus × Nellore | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
WSC 1 | WSCB 2 | GMI | GMIB | Breed | Diet | B*D | ||
D-Lactate, mM | 2.11 | 2.26 | 1.58 | 1.90 | 0.24 | 0.07 | 0.32 | 0.72 |
Haptoglobin, ug/mL | 80.93 | 70.46 | 119.40 | 144.16 | 21.54 | <0.01 | 0.71 | 0.36 |
TNF-α, ng/mL | 4.40 | 4.61 | 4.55 | 4.68 | 0.43 | 0.79 | 0.69 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, A.C.; Teixeira, P.D.; Casagrande, D.R.; Peconick, A.P.; Coelho, T.C.; Paulino, P.V.R.; Ladeira, M.M. Performance, Feeding Behavior and Immune Response in Nellore and Angus × Nellore Steers Fed Whole Shelled Corn Diets with or without Fiber. Animals 2022, 12, 2692. https://doi.org/10.3390/ani12192692
Rodrigues AC, Teixeira PD, Casagrande DR, Peconick AP, Coelho TC, Paulino PVR, Ladeira MM. Performance, Feeding Behavior and Immune Response in Nellore and Angus × Nellore Steers Fed Whole Shelled Corn Diets with or without Fiber. Animals. 2022; 12(19):2692. https://doi.org/10.3390/ani12192692
Chicago/Turabian StyleRodrigues, Aline Castro, Priscilla Dutra Teixeira, Daniel Rume Casagrande, Ana Paula Peconick, Tamara Cristina Coelho, Pedro Veiga Rodrigues Paulino, and Márcio Machado Ladeira. 2022. "Performance, Feeding Behavior and Immune Response in Nellore and Angus × Nellore Steers Fed Whole Shelled Corn Diets with or without Fiber" Animals 12, no. 19: 2692. https://doi.org/10.3390/ani12192692
APA StyleRodrigues, A. C., Teixeira, P. D., Casagrande, D. R., Peconick, A. P., Coelho, T. C., Paulino, P. V. R., & Ladeira, M. M. (2022). Performance, Feeding Behavior and Immune Response in Nellore and Angus × Nellore Steers Fed Whole Shelled Corn Diets with or without Fiber. Animals, 12(19), 2692. https://doi.org/10.3390/ani12192692