Effect of Dietary Supplementation of Hydrolyzed Yeast on Growth Performance, Digestibility, Rumen Fermentation, and Hematology in Growing Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Procedure
2.2. Animals, Treatments, and Experimental Design
2.3. Data Collection and Sampling Procedures
2.4. Statistical Analysis
3. Results
3.1. Performance
3.2. Nutrient Intake and Digestibility
3.3. Rumen Fermentation and Microbial Population
3.4. Blood Urea Nitrogen and Hematological Parameters
4. Discussion
4.1. Performance
4.2. Nutrient Intake and Digestibility
4.3. Rumen Fermentation and Microbial Population
4.4. Blood Urea Nitrogen and Hematological Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broadway, P.R.; Carroll, J.A.; Sanchez, N.C.B. Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: A review. Microorganisms 2015, 3, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.H.; Cheng, L.; Kang, K.; Tian, G.; Mohammad, A.M.; Xue, B.; Wang, L.Z.; Zou, H.W.; Mathew, G.G.; Wang, Z.S. Effects of yeast and yeast cell wall polysaccharides supplementation on beef cattle growth performance, rumen microbial populations and lipopolysaccharides production. J. Integr. Agric. 2020, 19, 810–819. [Google Scholar] [CrossRef]
- Gunun, P.; Cherdthong, A.; Khejornsart, P.; Wanapat, M.; Polyorach, S.; Kang, S.; Kaewwongsa, W.; Gunun, N. The Effect of phytonutrients in Terminalia chebula Retz. on rumen fermentation efficiency, nitrogen utilization, and protozoal population in goats. Animals 2022, 12, 2022. [Google Scholar] [CrossRef]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, M.K. Use of antibiotics as feed additives: A burning question. Front. Microbiol. 2014, 5, 334. [Google Scholar] [CrossRef]
- Russell, J.B.; Strobel, H. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 1989, 55, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T.F.; Merrill, J.K.; Bagg, R.N. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci. 2012, 90, 4583–4592. [Google Scholar] [CrossRef]
- Oliver, S.P.; Murinda, S.E.; Jayarao, B.M. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: A comprehensive review. Foodborne Pathog. Dis. 2011, 8, 337–355. [Google Scholar] [CrossRef]
- Smith, H.; Grant, S.; Parker, J.; Murphy, R. Yeast cell wall mannan rich fraction modulates bacterial cellular respiration potentiating antibiotic efficacy. Sci. Rep. 2020, 10, 21880. [Google Scholar] [CrossRef]
- Perricone, V.; Sandrini, S.; Irshad, N.; Savoini, G.; Comi, M.; Agazzi, A. yeast-derived products: The role of hydrolyzed yeast and yeast culture in poultry nutrition—A review. Animals 2022, 12, 1426. [Google Scholar] [CrossRef]
- Takalloo, Z.; Nikkhah, M.; Nemati, R.; Jalilian, N.; Sajedi, R.H. Autolysis, plasmolysis and enzymatic hydrolysis of baker’s yeast (Saccharomyces cerevisiae): A comparative study. World J. Microbiol. Biotechnol. 2020, 36, 68. [Google Scholar] [CrossRef] [PubMed]
- Boontiam, W.; Bunchasak, C.; Kim, Y.Y.; Kitipongpysan, S.; Hong, J. Hydrolyzed yeast supplementation to newly weaned piglets: Growth performance, gut health, and microbial fermentation. Animals 2022, 12, 350. [Google Scholar] [CrossRef] [PubMed]
- Molist, F.; van Earden, F.; Parmentier, H.K.; Vuorenmaa, I. Effect of inclusion of hydrolyzed yeast on the immune response and performance of piglets after weaning. Anim. Feed Sci. Technol. 2014, 195, 136–141. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Puntenney, S.B.; Burton, J.L.; Forsberg, N.E. Use of gene profiling to evaluate the effects of a feed additive on immune function in periparturient dairy cattle. J. Anim. Physiol. Anim. Nutr. 2009, 93, 66–75. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Chevaux, E.; Martin, C.; Forano, E. Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. In Probiotic in Animals; Rigobelo, E.C., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 119–162. [Google Scholar]
- Chaucheyras-Durand, F.; Fonty, G.; Bertin, G.; Salmon, J.M.; Gouet, P. Effects of a strain of Saccharomyces cerevisiae (Levucell®SC1) a microbial additive for ruminants, on lactate metabolisms in vitro. Can. J. Microbiol. 1996, 42, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, V.; Petri, R.; Humer, E.; Kröger, I.; Mann, E.; Reisinger, N.; Wagner, M.; Zebeli, Q. High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows. J. Dairy Sci. 2018, 101, 2335–2349. [Google Scholar] [CrossRef]
- Petri, R.M.; Neubauer, V.; Humer, E.; Kröger, I.; Reisinger, N.; Zebeli, Q. Feed additives differentially impact the epimural microbiota and host epithelial gene expression of the bovine rumen fed diets rich in concentrates. Front. Microbiol. 2020, 11, 119. [Google Scholar] [CrossRef]
- Díaz, A.; Ranilla, M.J.; Saro, C.; Tejido, M.L.; Pérez-Quintana, M.; Carro, M.D. Influence of increasing doses of a yeast hydrolyzate obtained from sugarcane processing on in vitro rumen fermentation of two different diets and bacterial diversity in batch cultures and Rusitec fermenters. Anim. Feed Sci. Technol. 2017, 232, 129–138. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2016. [Google Scholar]
- Udén, P.; Robinson, P.H.; Wiseman, J. Use of detergent system terminology and criteria for submission of manuscripts on new, or revised, analytical methods as well as descriptive information on feed analysis and/or variability. Anim. Feed Sci. Technol. 2005, 118, 181–186. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Galyean, M. Laboratory Procedures in Animal Nutrition Research; Department of Animals and Range Science, New Mexico State University: Las Cruces, NM, USA, 1989. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Cai, Y. Analysis method for silage. In Field and Laboratory Methods for Grassland Science; Japanese Society of Grassland Science, Ed.; Tosho Printing Co., Ltd.: Tokyo, Japan, 2004; pp. 279–282. [Google Scholar]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 1967, 33, 361–365. [Google Scholar] [PubMed]
- Statistical Analysis Systems (SAS). SAS/STAT User’s Guide. In Statistical Analysis Systems Institute, 5th ed.; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Salinas-Chavira, J.; Arzola, C.; González-Vizcarra, V.; Manríquez-Núñez, O.M.; Montaño-Gómez, M.F.; Navarrete-Reyes, J.D.; Raymundo, C.; Zinn, R.A. Influence of feeding enzymatically hydrolyzed yeast cell wall on growth performance and digestive function of feedlot cattle during periods of elevated ambient temperature. Anim. Biosci. 2015, 9, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Chavira, J.; Montano, M.F.; Torrentera, N.; Zinn, R.A. Influence of feeding enzymatically hydrolyzed yeast cell wall + yeast culture on growth performance of calf-fed Holstein steers. J. Appl. Anim. Res. 2018, 46, 327–330. [Google Scholar] [CrossRef]
- Pukrop, J.R.; Brennan, K.M.; Funnell, B.J.; Schoonmaker, J.P. Effect of a hydrolyzed mannan-and glucan-rich yeast fraction on performance and health status of newly received feedlot cattle. J. Anim. Sci. 2018, 96, 3955–3966. [Google Scholar] [CrossRef]
- Pontarolo, G.B.; Neumann, M.; Cristo, F.B.; Junior, E.S.S.; de Souza, A.M.; Machado, M.P.; Bonato, M.A.; Borges, L.L.; Junior, V.H.B.; da Silva, M.R.H. Effects of including autolyzed yeast in the finishing of feedlot steers. Semin. Ciênc. Agrár. Londrina 2021, 42, 2471–2488. [Google Scholar] [CrossRef]
- Harrison, G.A.; Hemken, R.W.; Dawson, K.A.; Harmon, R.J.; Barker, K.B. Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial populations. J. Dairy Sci. 1988, 71, 2967–2975. [Google Scholar] [CrossRef]
- Lei, C.; Dong, G.; Jin, L.; Zhang, S.; Zhou, J. Effects of dietary supplementation of montmorillonite and yeast cell wall on lipopolysaccharide adsorption, nutrient digestibility and growth performance in beef cattle. Livest. Sci. 2013, 158, 57–63. [Google Scholar] [CrossRef]
- Hhansen, H.; Eel-Bordeny, N.; Mebeid, H. Response of primiparous and multiparous buffaloes to yeast culture supplementation during early and mid-lactation. Anim. Nutr. 2017, 3, 411–418. [Google Scholar] [CrossRef]
- Zhang, J.; He, H.; Yuan, Y.; Wan, K.; Li, L.; Liu, A. Effects of yeast culture supplementation on growth performance, nutrient digestibility, blood metabolites, and immune response in geese. Animals 2022, 12, 1270. [Google Scholar] [CrossRef]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. The effect of yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native beef cattle. Animals 2022, 12, 53. [Google Scholar] [CrossRef]
- Jouany, J.P. Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Anim. Reprod. Sci. 2006, 96, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Chanjula, P.; Wanapat, M.; Wachirapakorn, C.; Rowlinson, P. Effect of various levels of cassava hay on rumen ecology and digestibility in swamp buffaloes. Asian Australas. J. Anim. Sci. 2004, 17, 663–669. [Google Scholar] [CrossRef]
- Kröger, I.; Humer, E.; Neubauer, V.; Reisinger, N.; Aditya, S.; Zebeli, Q. Modulation of chewing behavior and reticular pH in nonlactating cows challenged with concentrate-rich diets supplemented with phytogenic compounds and autolyzed yeast. J. Dairy Sci. 2017, 100, 9702–9714. [Google Scholar] [CrossRef]
- Karsli, M.K.; Russell, J.R. Effects of source and concentrations of nitrogen and carbohydrate on ruminal microbial protein synthesis. Turk. J. Vet. Anim. Sci. 2002, 26, 201–207. [Google Scholar]
- Gunun, N.; Ouppamong, T.; Khejornsart, P.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Kaewpila, C.; Kang, S.; Gunun, P. Effects of rubber seed kernel fermented with yeast on feed utilization, rumen fermentation and microbial protein synthesis in dairy heifers. Fermentation 2022, 8, 288. [Google Scholar] [CrossRef]
- Öztürk, H.; Demirbas, Y.S.; Aydin, F.G.; Pískin, I.; Ünler, F.M.; Emre, M.B. Effects of hydrolyzed and live yeasts on rumen microbial fermentation in a semicontinuous culture system (Rusitec). Turk. J. Vet. Anim. Sci. 2015, 39, 556–559. [Google Scholar] [CrossRef]
- Oeztuerk, H.; Emre, B.; Breves, G. Effects of hydrolysed yeast on ruminal fermentation in the rumen simulation technique (Rusitec). Vet. Med. 2016, 61, 195–203. [Google Scholar] [CrossRef]
- Wanapat, M.; Pimpa, O. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian Australas. J. Anim. Sci. 1999, 12, 904–907. [Google Scholar] [CrossRef]
- Gunun, P.; Wanapat, M.; Gunun, N.; Cherdthong, A.; Sirilaophaisan, S.; Kaewwongsa, W. Effects of condensed tannins in mao (Antidesma thwaitesianum Muell. Arg.) seed meal on rumen fermentation characteristics and nitrogen utilization in goats. Asian Australas. J. Anim. Sci. 2016, 29, 1111–1119. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A.; Wanapat, M.; Chanjula, P.; Uriyapongson, S. Effects of sulfur levels in fermented total mixed ration containing fresh cassava root on feed utilization, rumen characteristics, microbial protein synthesis, and blood metabolites in Thai native beef cattle. Animals 2019, 9, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kettunen, H.; Vuorenmaa, J.; Gaffney, D.; Apajalahti, J. Yeast hydrolysate product enhances ruminal fermentation in vitro. J. Appl. Anim. Nutr. 2016, 4, e1. [Google Scholar] [CrossRef]
- Xiao, J.X.; Alugongo, G.M.; Chung, R.; Dong, S.Z.; Li, S.L.; Yoon, I.; Wu, Z.H.; Cao, Z.J. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community. J. Dairy Sci. 2016, 99, 5401–5412. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfar, S.; Khalid, N.; Ahmed, I.; Imran, M. Probiotic yeast: Mode of action and its effects on ruminant nutrition. In Yeast Industrial Applications; IntechOpen: Rijeka, Croatia, 2017; pp. 179–202. [Google Scholar]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Roughage to concentrate ratio and Saccharomyces cerevisiae inclusion could modulate feed digestion and in vitro ruminal fermentation. Vet. Sci. 2020, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Hungate, R.E. The Rumen and its Microbes; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Hammond, A.C. The use of blood urea nitrogen concentration as an indicator of protein status in cattle. Bov. Pract. 1983, 18, 114–118. [Google Scholar]
- Gunun, P.; Gunun, N.; Khejornsart, P.; Ouppamong, T.; Cherdthong, A.; Wanapat, M.; Sililaophaisan, S.; Yuangklang, C.; Polyorach, S.; Kenchaiwong, W.; et al. Effects of Antidesma thwaitesianum Muell. Arg. pomace as a source of plant secondary compounds on digestibility, rumen environment, hematology, and milk production in dairy cows. Anim. Sci. J. 2019, 90, 372–381. [Google Scholar] [CrossRef]
- Adili, S.; Sadeghi, A.A.; Chamani, M.; Shawrang, P.; Forodi, F. Auto-lysed yeast and yeast extract effects on dry matter intake, blood cells counts, IGG titer and gene expression of IL-2 in lactating dairy cows under heat stress. Acta Sci. Anim. Sci. 2020, 42, e48425. [Google Scholar] [CrossRef]
- Bassel, L.L.; Caswell, J.L. Bovine neutrophils in health and disease. Cell Tissue Res. 2018, 371, 617–637. [Google Scholar] [CrossRef]
- Kim, E.T.; Lee, H.G.; Kim, D.H.; Son, J.K.; Kim, B.W.; Joo, S.S.; Park, D.S.; Park, Y.J.; Lee, S.Y.; Kim, M.H. Hydrolyzed yeast supplementation in calf starter promotes innate immune responses in Holstein calves under weaning stress condition. Animals 2020, 10, 1468. [Google Scholar] [CrossRef]
- Pedro, A.R.V.; Lima, T.; Fróis-Martins, R.; Leal, B.; Ramos, I.C.; Martins, E.G.; Cabrita, A.R.J.; Fonseca, A.J.M.; Maia, M.R.G.; Vilanova, M.; et al. Dectin-1-mediated production of pro-inflammatory cytokines induced by yeast β-glucans in bovine monocytes. Front. Immunol. 2021, 12, 689879. [Google Scholar] [CrossRef]
- Hussen, J.; Koy, M.; Petzi, W.; Schuberth, H.J. Neutrophil degranulation differentially modulates phenotype and function of bovine monocyte subsets. Innate Immun. 2016, 22, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Ouppamong, T.; Gunun, N.; Tamkhonburee, C.; Khejornsart, P.; Kaewpila, C.; Kesorn, P.; Kimprasit, T.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; et al. Fermented rubber seed kernel with yeast in the diets of tropical lactating dairy cows: Effects on feed intake, hematology, microbial protein synthesis, milk yield and milk composition. Vet. Sci. 2022, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Herman, N.; Trumel, C.; Geffré, A.; Braun, J.-P.; Thibault, M.; Schelcher, F.; Bourgès-Abella, N. Hematology reference intervals for adult cows in France using the Sysmex XT-2000iV analyzer. J. Vet. Diagn. 2018, 30, 678–687. [Google Scholar] [CrossRef]
- Radkowska, I.; Herbut, E. Hematological and biochemical blood parameters in dairy cows depending on the management system. Anim. Sci. Pap. Rep. 2014, 32, 317–325. [Google Scholar]
Item | TMR |
---|---|
Ingredient, kg dry matter (DM) | |
Rice straw | 40.0 |
Cassava chip | 30.0 |
Rice bran | 14.0 |
Soybean meal | 10.0 |
Urea | 2.0 |
Molasses | 2.0 |
Minerals and vitamins | 1.0 |
Sulfur | 0.5 |
Salt | 0.5 |
Chemical composition | |
Dry matter, % | 66.4 |
Organic matter, %DM | 91.8 |
Crude protein, %DM | 13.8 |
Ether extract, %DM | 1.0 |
Neutral detergent fiber, %DM | 37.9 |
Acid detergent fiber, %DM | 19.7 |
Ash, %DM | 8.2 |
Item | HY (g/kg DM) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | SEM | L | Q | C | |
Body weight, kg | ||||||||
Initial | 128.8 (±19.97) | 154.8 (±34.39) | 136.4 (±18.79) | 140.6 (±33.48) | 4.13 | 0.61 | 0.17 | 0.07 |
30 | 150.2 (±23.71) | 177.6 (±42.67) | 155.2 (±21.32) | 163.8 (±44.32) | 4.49 | 0.65 | 0.32 | 0.06 |
60 | 165.0 (±24.15) | 190.8 (±39.92) | 171.4 (±23.95) | 180.2 (±43.88) | 4.46 | 0.52 | 0.36 | 0.09 |
Final | 178.6 (±19.64) | 204.6 (±45.75) | 188.0 (±28.57) | 192.8 (±42.96) | 4.54 | 0.54 | 0.27 | 0.15 |
ADG, kg/d | ||||||||
0 to 30 d | 0.7 (±0.14) | 0.8 (±0.34) | 0.6 (±0.22) | 0.8 (±0.37) | 0.51 | 0.97 | 0.53 | 0.20 |
31 to 60 d | 0.5 (±0.09) | 0.4 (±0.17) | 0.5 (±0.24) | 0.5 (±0.15) | 0.64 | 0.45 | 0.69 | 0.47 |
61 to 90 d | 0.4 (±0.19) | 0.5 (±0.34) | 0.6 (±0.35) | 0.5 (±0.15) | 0.53 | 0.72 | 0.42 | 0.51 |
0 to 90 d | 0.5 (±0.06) | 0.6 (±0.18) | 0.6 (±0.25) | 0.6 (±0.14) | 0.38 | 0.94 | 0.93 | 0.88 |
DMI, kg/d | ||||||||
0 to 30 d | 4.8 (±0.82) | 4.9 (±1.28) | 4.8 (±0.91) | 4.7 (±1.06) | 0.81 | 0.73 | 0.56 | 0.82 |
31 to 60 d | 4.5 (±0.72) | 5.0 (±1.02) | 4.4 (±0.84) | 4.9 (±0.73) | 0.71 | 0.70 | 0.99 | 0.41 |
61 to 90 d | 4.8 (±1.13) | 4.9 (±1.29) | 5.0 (±1.07) | 5.0 (±1.38) | 0.82 | 0.78 | 0.70 | 0.83 |
0 to 90 d | 4.7 (±1.14) | 4.9 (±0.74) | 4.7 (±0.41) | 4.9 (±0.81) | 0.78 | 0.83 | 0.66 | 0.63 |
G:F | ||||||||
0 to 30 d | 0.2 (±0.03) | 0.2 (±0.06) | 0.1 (±0.03) | 0.2 (±0.05) | 0.19 | 0.95 | 0.37 | 0.28 |
31 to 60 d | 0.1 (±0.02) | 0.1 (±0.06) | 0.1 (±0.04) | 0.1 (±0.04) | 0.17 | 0.66 | 0.95 | 0.48 |
61 to 90 d | 0.1 (±0.05) | 0.1 (±0.07) | 0.1 (±0.05) | 0.1 (±0.07) | 0.23 | 0.57 | 0.61 | 0.62 |
0 to 90 d | 0.1 (±0.03) | 0.1 (±0.03) | 0.1 (±0.03) | 0.1 (±0.03) | 0.13 | 0.61 | 0.68 | 0.51 |
Item | HY (g/kg DM) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | SEM | L | Q | C | |
Nutrient intake, kg/d | ||||||||
Organic matter | 4.3 (±0.86) | 4.6 (±1.13) | 4.4 (±0.84) | 4.4 (±1.06) | 0.13 | 0.82 | 0.66 | 0.63 |
Crude protein | 0.7 (±0.13) | 0.7 (±0.17) | 0.7 (±0.13) | 0.7 (±0.16) | 0.18 | 0.74 | 0.67 | 0.63 |
Ether extract | 0.05 (±0.01) | 0.05 (±0.01) | 0.05 (±0.01) | 0.05 (±0.01) | 0.05 | 0.75 | 0.48 | 0.53 |
Neutral detergent fiber | 1.8 (±0.36) | 1.8 (±0.53) | 1.8 (±0.35) | 1.8 (±0.44) | 0.03 | 0.86 | 0.66 | 0.64 |
Acid detergent fiber | 0.9 (±0.19) | 1.0 (±0.27) | 1.0 (±0.18) | 1.0 (±0.23) | 0.04 | 0.85 | 0.66 | 0.63 |
Digestibility, % | ||||||||
Dry matter | 74.5 (±1.59) | 74.9 (±1.91) | 75.3 (±1.82) | 73.7 (±2.26) | 0.64 | 0.50 | 0.14 | 0.46 |
Organic matter | 77.8 (±1.53) | 78.3 (±1.90) | 78.6 (±1.83) | 77.0 (±2.27) | 0.62 | 0.46 | 0.12 | 0.48 |
Crude protein | 80.0 (±2.64) | 81.9 (±2.18) | 82.4 (±2.71) | 80.3 (±0.69) | 0.41 | 0.70 | 0.03 | 0.75 |
Ether extract | 86.8 (±0.88) | 86.9 (±0.62) | 86.0 (±1.81) | 85.2 (±1.63) | 0.31 | 0.06 | 0.50 | 0.69 |
Neutral detergent fiber | 57.7 (±1.21) | 56.9 (±4.48) | 57.6 (±3.56) | 54.2 (±4.13) | 1.69 | 0.21 | 0.47 | 0.46 |
Acid detergent fiber | 49.2 (±1.92) | 48.2 (±4.96) | 50.8 (±5.95) | 44.8 (±5.26) | 2.25 | 0.31 | 0.28 | 0.24 |
Item | HY, g/kg DM | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | SEM | L | Q | C | |
pH | 6.8 (±0.65) | 6.9 (±0.36) | 6.8 (±0.11) | 6.9 (±0.44) | 0.65 | 0.22 | 0.36 | 0.97 |
NH3-N, mg/dL | 15.5 (±1.32) | 18.0 (±2.31) | 17.7 (±2.67) | 18.3 (±1.58) | 0.53 | 0.02 | 0.17 | 0.23 |
Total VFA, mmol/d | 100.8 (±5.98) | 104.5 (±4.13) | 110.8 (±3.01) | 106.0 (±2.12) | 0.85 | 0.01 | 0.03 | 0.10 |
VFA, mol/100 mol | ||||||||
Acetate (C2) | 67.5 (±2.27) | 67.3 (±3.92) | 63.3 (±1.24) | 66.0 (±2.09) | 0.46 | 0.06 | 0.14 | 0.03 |
Propionate (C3) | 22.6 (±0.71) | 22.6 (±1.07) | 24.4 (±0.90) | 23.4 (±0.95) | 0.17 | 0.03 | 0.23 | 0.01 |
Butyrate (C4) | 9.9 (±2.41) | 10.1 (±3.05) | 12.3 (±0.98) | 9.5 (±1.93) | 0.28 | 0.80 | 0.03 | 0.02 |
C2:C3 | 3.0 (±0.17) | 3.0 (±0.32) | 2.6 (±0.14) | 2.9 (±0.18) | 0.04 | 0.09 | 0.13 | 0.01 |
Item | HY, g/kg DM | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | L | Q | C | ||
Microbial population, cell/mL | ||||||||
Bacteria, ×1010 | 2.3 (±0.97) | 2.3 (±1.06) | 2.4 (±0.65) | 2.4 (±1.02) | 0.01 | <0.01 | 0.78 | 0.05 |
Protozoa, ×105 | 4.1 (±0.82) | 4.3 (±1.15) | 4.6 (±0.89) | 4.3 (±1.04) | 0.43 | 0.66 | 0.58 | 0.72 |
Fungi, ×104 | 0.4 (±0.22) | 0.3 (±0.27) | 0.4 (±0.22) | 0.7 (±0.45) | 0.09 | 0.11 | 0.15 | 1.00 |
Item | HY (g/kg DM) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | SEM | L | Q | C | |
BUN, mg/dL | 17.4 (±3.13) | 18.4 (±3.29) | 18.0 (±3.54) | 18.4 (±3.36) | 1.87 | 0.71 | 0.85 | 0.75 |
Red blood cell, 1012/L | 5.6 (±0.57) | 6.0 (±1.05) | 6.2 (±1.48) | 5.5 (±1.01) | 1.03 | 0.97 | 0.28 | 0.73 |
Hemoglobin, g/dL | 7.9 (±1.00) | 8.4 (±1.34) | 8.9 (±2.49) | 7.9 (±1.57) | 1.29 | 0.84 | 0.35 | 0.71 |
Hematocrit, % | 23.8 (±3.03) | 25.4 (±4.04) | 26.8 (±7.43) | 24.0 (±4.64) | 2.28 | 0.84 | 0.34 | 0.69 |
White blood cells, 109/L | 10.7 (±1.25) | 13.2 (±2.29) | 11.2 (±2.73) | 12.1 (±0.80) | 4.61 | 0.62 | 0.41 | 0.11 |
Neutrophils, % | 33.0 (±3.87) | 35.4 (±9.40) | 40.6 (±5.13) | 46.4 (±8.14) | 2.76 | 0.01 | 0.62 | 0.88 |
Lymphocytes, % | 47.6 (±13.96) | 56.4 (±10.45) | 56.0 (±13.78) | 44.0 (±9.87) | 3.66 | 0.18 | 0.10 | 0.93 |
Monocytes, % | 0.08 (±1.10) | 2.20 (±1.30) | 1.20 (±1.10) | 3.00 (±1.41) | 0.83 | 0.04 | 0.73 | 0.07 |
Eosinophils, % | 7.2 (±3.42) | 6.0 (±2.16) | 6.8 (±3.16) | 7.6 (±4.16) | 2.10 | 0.82 | 0.62 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunun, N.; Sanjun, I.; Kaewpila, C.; Foiklang, S.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Khota, W.; Kimprasit, T.; Kesorn, P.; et al. Effect of Dietary Supplementation of Hydrolyzed Yeast on Growth Performance, Digestibility, Rumen Fermentation, and Hematology in Growing Beef Cattle. Animals 2022, 12, 2473. https://doi.org/10.3390/ani12182473
Gunun N, Sanjun I, Kaewpila C, Foiklang S, Cherdthong A, Wanapat M, Polyorach S, Khota W, Kimprasit T, Kesorn P, et al. Effect of Dietary Supplementation of Hydrolyzed Yeast on Growth Performance, Digestibility, Rumen Fermentation, and Hematology in Growing Beef Cattle. Animals. 2022; 12(18):2473. https://doi.org/10.3390/ani12182473
Chicago/Turabian StyleGunun, Nirawan, Ittipol Sanjun, Chatchai Kaewpila, Suban Foiklang, Anusorn Cherdthong, Metha Wanapat, Sineenart Polyorach, Waroon Khota, Thachawech Kimprasit, Piyawit Kesorn, and et al. 2022. "Effect of Dietary Supplementation of Hydrolyzed Yeast on Growth Performance, Digestibility, Rumen Fermentation, and Hematology in Growing Beef Cattle" Animals 12, no. 18: 2473. https://doi.org/10.3390/ani12182473