Evaluation of a Phytogenic Compound with Minerals as a Possible Alternative to Ractopamine for Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Additive
2.2. Experimental Design and Formulas
2.3. Carcass Analysis
2.4. Meat Quality
2.5. Color and pH
2.6. Cooking Losses and Shear Force
2.7. Drip Losses
2.8. Lipid Oxidation
2.9. Statistical Analysis
- Y is the response variable.
- m is the overall mean of the experiment.
- bj is the block effect.
- Ak is the A factor, with k levels: sex effect with 2 levels.
- Bl is the B factor, with l levels: diet effect with 3 levels.
- (AB)kl is the interaction between the factors.
- eklj is the error associated with observation yklj.
- Y is the response variable.
- m is the overall mean of the experiment.
- Ak is the A factor, with k levels: sex effect with 2 levels.
- Bl is the B factor, with l levels: diet effect with 3 levels.
- (AB)kl is the interaction between the factors.
- eklj is the error associated with observation yklj.
3. Results
3.1. Animal Performance
3.2. Carcass Characteristics
3.3. Meat Quality—24 h after Slaughter
3.4. Shelf Life of Meat—3 Days after Slaughter
4. Discussion
4.1. Performance
4.2. Carcass Characteristics
4.3. Meat Quality—24 h after Slaughter and 3 Days of Storage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bridi, A.M.; Silva, C.A. Avaliação da Carne Suína; Midiofgraf: Londrina, Brazil, 2009. [Google Scholar]
- Donzele, J.L.; Abreu, M.L.T.; Orlando, U.A.D. Exigências Nutricionais e Qualidade de Carcaça de Suínos de Diferentes Sexos. In Proceedings of the II Conferência Internacional Virtual Sobre Qualidade de Carne Suína, Concórdia, Brazil, 5 November–6 December 2001. [Google Scholar]
- Moraes, E.; Kiefer, C.; Silva, I.S. Ractopamina em dietas para suínos machos imunocastrados, castrados e fêmeas. Ciência Rural 2010, 40, 379–384. [Google Scholar] [CrossRef]
- Schinckel, A.P.; Richert, B.T.; Kendall, D.C. Modeling the Response to Paylean and Dietary Lysine Requirements. Pardue Universiry, Swine Day. 2000, Volume 19, p. 8. Available online: http://www.ansc.purdue.edu/swine/swineday/sday00/14.pdf> (accessed on 21 May 2022).
- Marchant-Forde, J.N.; Lay, D.C., Jr.; Pajor, E.A.; Richert, B.T.; Schinckel, A.P. The effects of ractopamine on the behavior and physiology of finishing pigs. J. Anim. Sci. 2003, 81, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.J.; Johnson, A.K.; Benjamin, M.E.; Carr, S.N.; Ellis, M.; Faucitano, L.; Calvo-Lorenzo, M.S. Effects of Ractopamine Hydrochloride (Paylean) on welfare indicators for market weight pigs. Transl. Anim. Sci. 2017, 1, 533–558. [Google Scholar] [CrossRef] [PubMed]
- Agostini, P.S.; Silva, C.A.; Bridi, A.M.; Abrami, R.A.M.; Pacheco, G.D.; Lozano, A.P.; Ywazaki, M.S.; Dalto, D.B.; Gavioli, D.F.; Oliveira, E.R.; et al. Efeito da ractopamina na performance e na fisiologia do suíno. Arch. Zootec. 2011, 60, 659–670. [Google Scholar] [CrossRef]
- Onishchenko, G.G.; Popova, A.Y.; Tutel’yan, V.A.; Zaitseva, N.V.; Khotimchenko, S.A.; Gmoshinskii, I.V.; Sheveleva, S.A.; Rakitskii, V.N.; Shur, P.Z.; Lisitsyn, A.B.; et al. About the human health safety estimation of ractopamine intake together with the food. Ann. Russ. Acad. Med. Sci. 2013, 68, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Pacelle, W. Banned in 160 Nations, why is ractopamine in US Pork? LiveScience 2014. [Google Scholar]
- Codex Alimentarius. Maximum Residue Limits (mrls) and Risk Management Recommendations (rmrs) for Residues of Veterinary Drugs in Foods. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXM%2B2%252FMRL2e.pdf (accessed on 6 February 2022).
- Commission Internationale de l’Eclairage (CIE). Colorimetry, 2nd ed.; Publication no. 15.2; CIE: Vienna, Austria, 1986. [Google Scholar]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association Champaign: Kansas, IL, USA, 2015. [Google Scholar]
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Vyncke, W. Evaluation of direct thiobarbituric acid extraction method for determining oxidative rancidity in mackerel. Fatte Seifen Anstrichm. 1975, 77, 239–240. [Google Scholar] [CrossRef]
- Sørensen, G.; Jørgensen, S.S. A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Zeitschrft Lebensm. Unters. Forsch. 1996, 202, 205–210. [Google Scholar] [CrossRef]
- Moody, D.E.; Hancock, D.L.; Anderson, D.B. Phenethanolamine repartitioning agents. Farm Anim. Metab. Nutr. 2000, 2000, 65–96. [Google Scholar]
- Elmes, C.A.; Bustamante, O.H.; González, F.; Larraín, R.E.; Gandarillas, M. Effects of ractopamine plus amino acids on growth performance, carcass characteristics, meat quality, and ractopamine residues of finishing pigs. Cienc. Investig. Agrar. 2014, 41, 97–308. [Google Scholar] [CrossRef]
- Park, M.Y.; Choi, S.W.; Jung, S.W.; Whang, K.Y. 353 A plant extract with manganese, Vali MP, promotes myotube hypertrophy in mouse C2C12 skeletal muscle cells. J. Anim. Sci. 2017, 95, 175. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, J.; Jung, S.W.; Whang, K.Y. 1002 A plant extract with manganese, Vali MP®, decreased adipogenesis in 3T3-L1 pre-adipocytes by modulating adipogenic gene expression and cellular energy level. J. Anim. Sci. 2016, 94, 480. [Google Scholar] [CrossRef]
- Choi, S.; Park, M.; Kwak, M.; Lee, J.; Whang, K. ValiMP, a mixture of phytogenic compounds with manganese, reduces abdominal fat in broilers. J. Anim. Sci. 2018, 96, 290–291. [Google Scholar] [CrossRef]
- Luo, Q.; Li, N.; Zheng, Z.; Chen, L.; Mu, S.; Chen, L.; Liu, Z.; Yan, J.; Sun, C. Dietary cinnamaldehyde supplementation improves the growth performance, oxidative stability, immune function, and meat quality in finishing pigs. Livest. Sci. 2020, 240, 104–221. [Google Scholar] [CrossRef]
- Li, H.L.; Zhao, P.Y.; Lei, Y.; Hossain, M.; Kang, J.; Kim, I.H. Dietary phytoncide supplementation improved growth performance and meat quality of finishing pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 1314. [Google Scholar] [CrossRef]
- Korniewicz, D.; Rózanski, H.; Usydus, Z.; Dobrzanski, Z.; Korniewicz, A.; Kaczmarek, P.; Frankiewicz, A.; Szulc, K. Efficiency of plant extracts [Herbiplant CS] in pigs fattening. Pol. J. Food Nutr. Sci. 2007, 57, 309–315. [Google Scholar]
- Tonietti, A.P. Avaliações Do Desempenho Zootécnico, Qualidade Da Carcaça E Carne Em Suíno Macho Inteiro Imunocastrado. Doctoral Thesis, Universidade de São Paulo, São Paulo, Brasil, 2009; p. 083809. [Google Scholar] [CrossRef]
- Bridi, A.M. Crescimento E Desenvolvimento Do Tecido Muscular; Universidade Estadual de Londrina: Londrina, Paraná, Brasil, 2006; Available online: http://www.uel.br/pessoal/ambridi/Carnesecarcacasarquivos/Crescimentoedesenvolvimentomuscular.pdf (accessed on 9 June 2008).
- Fávero, J.A.; Bellaver, C. Produção de carne de suínos. In Proceedings of the Congresso Brasileiro de Ciência E Tecnologia de Carnes, Campinas, Brazil, 23–25 October 2001. [Google Scholar]
- Dávila-Ramírez, J.L.; Munguía-Acosta, L.L.; Morales-Coronado, J.G.; García-Salinas, A.D.; González-Ríos, H.; Celaya-Michel, H.; Sosa-Costañeda, J.; Sánchez-Villalba, E.; Anaya-Islas, J.; Barrera-Silva, M.A.; et al. Addition of a mixture of plant extracts to diets for growing-finishing pigs on growth performance, blood metabolites, carcass traits, organ weight as a percentage of live weight, quality and sensorial analysis of meat. Animals 2020, 10, 1229. [Google Scholar] [CrossRef]
- Leonardo, E.F. A Expressão Da Isoforma de Calpastatina Responsiva à Ractopamina Altera a Maciez Da Carne, Com Implicações NA Eficiência de Crescimento de Suínos. Doctoral Thesis, Universidade de São Paulo, São Paulo, Brasil, 2008. [Google Scholar]
- de Oliveria, S.R. Efeito da adição de ractopamina e da imunocastração na carne in natura de suínos. Doctoral Thesis, Universidade de São Paulo, São Paulo, Brasil, 2016. [Google Scholar] [CrossRef]
- Hanczakowska, E.; Światkiewicz, M.; Grela, E.R. Effect of dietary supplement of herbal extract from hop (Humulus lupulus) on pig performance and meat quality. Czech J. Anim. Sci. 2017, 62, 287–295. [Google Scholar] [CrossRef]
- Campos, P.F.; Scottá, B.A.; De Oliveria, B.L. Influência da ractopamina na qualidade da carne de suínos. Rev. Bras. Agropecuária Sustentável 2013, 3, 164–172. [Google Scholar] [CrossRef]
- Joo, S.T.; Lee, J.I.; Ha, Y.L.; Park, G.B. Effects of dietary conjugated linoleic acid on fatty acid composition, lipid oxidation, color, and water-holding capacity of pork loin. J. Anim. Sci. 2002, 80, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.R.; Gomide, L.A.M. Avaliação da Qualidade de Carnes: Fundamentos e Metodologias, 2nd ed.; UFV: Viçosa, Brazil, 2017. [Google Scholar]
- Lima, I.G. Desempenho, características de carcaça e Qualidade de carnes de suínos alimentados com glicerina bruta e ractopamina. Master’s Thesis, Universidade Federal de Lavras, Minas Gerais, Brazil, 2017. [Google Scholar]
- Stella, I.L. Comportamento Suíno, Interações Com Ractopamina E Suas Possíveis Implicações na Qualidade de Carne. Master’s Thesis, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, São Paulo, Brasil, 2007. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Brustolini, A.P.L.; Rodrigues, L.A.; Silva, F.C.O.; Peloso, J.V.; Aldaz, A.; Junior, M.B.C.; Figueiredo, T.C.; Alkmina, D.V.; Fontes, D.O. Interactive effects of feed allowance and ractopamine supplementation on growth performance and carcass traits of physically and immunologically castrated heavy weight pigs. Livest. Sci. 2019, 228, 120–126. [Google Scholar] [CrossRef]
Growing Feed | Growing Feed PC | Feed Finishing 1 | Feed Finishing 1 PC | Feed Finishing 2 | Feed Finishing 2 PC | Feed Finishing 2 RAC | ||
---|---|---|---|---|---|---|---|---|
Ingredients | Unit | |||||||
Ground corn | kg/ton | 728 | 728 | 760 | 760 | 790 | 790 | 727.5 |
Soybean meal | kg/ton | 237 | 237 | 213 | 213 | 187 | 187 | 237 |
Soybean oil | kg/ton | 10 | 10 | 7 | 7 | 5 | 5 | 10 |
RAC 1 | kg/ton | 0.5 | ||||||
PC 2 | kg/ton | 2.5 | 2.5 | 2.5 | ||||
Px G 3 | kg/ton | 25 | ||||||
Px F 4 | kg/ton | 20 | ||||||
PX F II 5 | kg/ton | 18 | ||||||
PX F-II RAC 5 | kg/ton | 25 | ||||||
Nutrients | Unit | |||||||
Moisture | % | 11.98 | 11.98 | 12.08 | 12.08 | 12.14 | 12.14 | 11.98 |
Dry matter | % | 86.72 | 86.72 | 86.78 | 86.78 | 86.74 | 86.74 | 86.67 |
Crude protein | % | 17.00 | 17.00 | 16.00 | 16.00 | 15.00 | 15.00 | 17.00 |
Ethereal extract | % | 4.01 | 4.01 | 3.82 | 3.82 | 3.71 | 3.71 | 4.01 |
Crude fiber | % | 2.73 | 2.73 | 2.64 | 2.64 | 2.53 | 2.53 | 2.73 |
Calcium | % | 0.57 | 0.57 | 0.49 | 0.49 | 0.44 | 0.44 | 0.57 |
Total phosphorus | % | 0.40 | 0.40 | 0.36 | 0.36 | 0.34 | 0.34 | 0.40 |
Phosphorus disp | % | 0.28 | 0.28 | 0.24 | 0.24 | 0.22 | 0.22 | 0.28 |
Metabolizable energy | kcal/kg | 3350.00 | 3350.00 | 3350.00 | 3350.00 | 3350.00 | 3350.00 | 3350.00 |
Lysine dig | % | 0.9270 | 0.9270 | 0.8100 | 0.8100 | 0.7000 | 0.7000 | 0.9270 |
Methionine dig | % | 0.2905 | 0.2905 | 0.2400 | 0.2400 | 0.2241 | 0.2241 | 0.2905 |
Total Met + Cis | % | 0.5470 | 0.5470 | 0.4866 | 0.4866 | 0.4599 | 0.4599 | 0.5470 |
Threonine dig | % | 0.6030 | 0.6030 | 0.5425 | 0.5425 | 0.5103 | 0.5103 | 0.6030 |
Tryptophan dig | % | 0.1850 | 0.1850 | 0.1600 | 0.1600 | 0.1413 | 0.1413 | 0.1850 |
Ractopamine | ppm | 10.00 |
p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | CONT | PC | RAC | Gilt | Barrow | SEM | Diet | Sex | Diet × Sex |
n | 16 | 16 | 16 | 24 | 24 | ||||
Growth—1 to 15 days | |||||||||
1 ADFI | 2.36 | 2.35 | 2.37 | 2.22 b | 2.50 a | 42.200 | 0.988 | 0.001 | 0.906 |
2 ADG | 1.17 | 1.17 | 1.15 | 1.11 b | 1.22 a | 18.700 | 0.920 | 0.002 | 0.747 |
3 FC | 2.03 | 2.035 | 2.05 | 2.02 | 2.05 | 0.028 | 0.898 | 0.600 | 0.719 |
4 FE | 0.60 | 0.50 | 0.49 | 0.50 | 0.49 | 0.007 | 0.884 | 0.460 | 0.761 |
Weight 15 days | 66.20 | 65.80 | 66.10 | 64.50 | 67.60 | 0.950 | 0.988 | 0.119 | 0.963 |
Finishing I—16 to 41 days | |||||||||
ADFI | 2.81 | 2.85 | 2.85 | 2.58 b | 3.09 a | 50.300 | 0.852 | <0.001 | 0.749 |
ADG | 1.03 | 1.09 | 1.09 | 1.00 b | 1.15 a | 16.700 | 0.135 | <0.001 | 0.407 |
FC | 2.71 | 2.63 | 2.62 | 2.61 | 2.70 | 0.030 | 0.366 | 0.115 | 0.143 |
FE | 0.37 | 0.38 | 0.38 | 0.39 | 0.37 | 0.004 | 0.395 | 0.152 | 0.148 |
Weight 41 days | 93.03 | 94.10 | 94.50 | 90.40 b | 97.40 a | 1.130 | 0.857 | 0.002 | 0.802 |
Finishing 2—42 to 69 days | |||||||||
ADFI | 2.96 | 3.06 | 3.07 | 2.80 b | 3.25 a | 60.430 | 0.627 | <0.001 | 0.480 |
ADG | 1.02 c | 1.06 b | 1.19 a | 1.06 | 1.12 | 22.400 | 0.040 | 0.149 | 0.356 |
FC | 2.60 a | 2.91 b | 2.61 a | 2.67 a | 2.94 b | 0.054 | 0.019 | 0.007 | 0.491 |
FE | 0.35 b | 0.35 c | 0.39 a | 0.38 a | 0.35 b | 0.007 | 0.018 | 0.007 | 0.656 |
Final weight | 121.70 | 123.70 | 127.70 | 120.00 a | 128.70 b | 1.260 | 0.071 | <0.001 | 0.625 |
Total period—1 to 69 days | |||||||||
ADFI | 2.756 | 2.825 | 2.833 | 2.583 b | 3.027 a | 43.600 | 0.527 | <0.001 | 0.907 |
ADG | 1.059 c | 1.092 b | 1.143 a | 1.045 b | 1.151 a | 13.400 | 0.006 | <0.001 | 0.429 |
FC | 2.597 b | 2.587 b | 2.479 a | 2.472 a | 2.636 b | 0.025 | 0.050 | <0.001 | 0.627 |
FE | 0.387 b | 0.387 b | 0.405 a | 0.406 a | 0.381 b | 0.004 | 0.043 | <0.001 | 0.701 |
p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | CONT | PC | RAC | Gilt | Barrow | SEM | Diet | Sex | Diet × Sex |
n | 46 | 47 | 47 | 71 | 69 | ||||
Yield % | 78.77 | 78.86 | 79.24 | 78.59 b | 79.32 a | 0.140 | 0.352 | 0.010 | 0.331 |
1 BfT, mm | 14.75 | 14.33 | 14.61 | 14.34 | 14.79 | 0.270 | 0.814 | 0.410 | 0.554 |
2 MD, mm | 46.10 | 49.40 | 48.90 | 47.80 | 48.50 | 0.870 | 0.246 | 0.656 | 0.908 |
3 LM% | 56.05 | 56.63 | 56.42 | 56.46 | 56.27 | 0.170 | 0.377 | 0.590 | 0.603 |
p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | CONT | PC | RAC | Gilt | Barrow | SEM | Diet | Sex | Diet × Sex |
n | 10 | 10 | 10 | 15 | 15 | ||||
pH 45 min | 7.27 | 7.24 | 7.31 | 7.35 | 7.20 | 0.070 | 0.925 | 0.322 | 0.217 |
pH 24 h | 5.72 | 5.78 | 5.81 | 5.75 | 5.79 | 0.020 | 0.350 | 0.365 | 0.886 |
1 SF (N) | 39.10 b | 37.00 c | 48.00 a | 42.30 | 40.40 | 1.710 | 0.023 | 0.558 | 0.962 |
2 CL % | 23.10 | 22.30 | 23.30 | 23.60 | 22.10 | 0.890 | 0.909 | 0.431 | 0.588 |
3 DL % | 2.26 | 1.94 | 2.01 | 2.11 | 2.03 | 0.200 | 0.799 | 0.834 | 0.309 |
p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | CONT | PC | RAC | Gilt | Barrow | SEM | Diet | Sex | Diet × Sex |
n | 10 | 10 | 10 | 15 | 15 | ||||
pH 3 d | 5.73 | 5.72 | 5.77 | 5.71 | 5.77 | 0.02 | 0.483 | 0.144 | 0.517 |
L* 24 h | 51.30 | 51.80 | 50.10 | 49.89 | 52.20 | 0.640 | 0.520 | 0.083 | 0.889 |
a* 24 h | 11.60 a | 10.60 b | 9.41 c | 9.98 b | 11.09 a | 0.280 | 0.001 | 0.014 | 0.273 |
b* 24 h | 16.28 a | 15.68 b | 14.30 c | 14.86 b | 15.98 a | 0.260 | 0.001 | 0.005 | 0.281 |
Chroma value 24 h | 19.89 a | 18,93 a | 16.99 b | 17.91 b | 19.43 a | 0.379 | 0.001 | 0.128 | 0.308 |
Hue Angle 24 h | 54.67 | 56.01 | 56.89 | 56.28 | 55.38 | 0.379 | 0.053 | 0.206 | 0.377 |
Color L* 3 d | 58.13 | 57.92 | 58.59 | 57.65 | 58.76 | 0.380 | 0.759 | 0.158 | 0.312 |
Color a* 3 d | 12.23 a | 11.76 b | 10.59 c | 11.44 | 11.61 | 0.230 | 0.005 | 0.649 | 0.084 |
Color b* 3 d | 14.15 a | 13.73 b | 12.52 c | 13.54 | 13.39 | 0.190 | <0.001 | 0.626 | 0.284 |
Chroma values 3 d | 18.68 a | 18.08 a | 16.36 b | 17.73 | 17.70 | 0.300 | 0.002 | 0.961 | 0.177 |
Hue Angle 3 d | 49.29 | 49.46 | 49.94 | 49.91 | 49.16 | 0.314 | 0.680 | 0.224 | 0.089 |
1 TBARS μg/kg | 1.67 c | 1.49 b | 1.29 a | 1.53 | 1.44 | 0.050 | 0.010 | 0.359 | 0.424 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, V.d.S.; Garbossa, C.A.P.; Guimarães, E.B.B.; Hirai, W.Y.; da Cruz, T.A.; Alves, L.K.S.; Araujo, L.F. Evaluation of a Phytogenic Compound with Minerals as a Possible Alternative to Ractopamine for Finishing Pigs. Animals 2022, 12, 2311. https://doi.org/10.3390/ani12182311
Moreira VdS, Garbossa CAP, Guimarães EBB, Hirai WY, da Cruz TA, Alves LKS, Araujo LF. Evaluation of a Phytogenic Compound with Minerals as a Possible Alternative to Ractopamine for Finishing Pigs. Animals. 2022; 12(18):2311. https://doi.org/10.3390/ani12182311
Chicago/Turabian StyleMoreira, Valéria dos Santos, Cesar Augusto Pospissil Garbossa, Eduarda Buck Bernardes Guimarães, Welinton Yoshio Hirai, Thiago Augusto da Cruz, Laya Kannan Silva Alves, and Lucio Francelino Araujo. 2022. "Evaluation of a Phytogenic Compound with Minerals as a Possible Alternative to Ractopamine for Finishing Pigs" Animals 12, no. 18: 2311. https://doi.org/10.3390/ani12182311
APA StyleMoreira, V. d. S., Garbossa, C. A. P., Guimarães, E. B. B., Hirai, W. Y., da Cruz, T. A., Alves, L. K. S., & Araujo, L. F. (2022). Evaluation of a Phytogenic Compound with Minerals as a Possible Alternative to Ractopamine for Finishing Pigs. Animals, 12(18), 2311. https://doi.org/10.3390/ani12182311