Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Herd Selection
2.2. Data Collection
2.3. Gold Standard Definition
2.4. AMS Data
2.5. Clinical Mastitis Alert
- DeLaval
- GEA Farm Technologies
- Lely
- Lemmer-Fullwood
2.6. DHIA Data
2.7. Statistical Analysis
3. Results
3.1. Sensitivity and Specificity of CM Alerts
- DeLaval
- GEA Farm Technologies
- Lely
- Lemmer-Fullwood
3.2. Sensitivity and Specificity Predictors
- SN Predictors
- SP Predictors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Driessen, C.; Heutinck, L.F.M. Cows desiring to be milked? Milking robots and the co-evolution of ethics and technology on Dutch dairy farms. Agric. Hum. Values 2015, 32, 3–20. [Google Scholar] [CrossRef]
- Schewe, R.L.; Stuart, D. Diversity in agricultural technology adoption: How are automatic milking systems used and to what end? Agric. Hum. Values 2015, 32, 199–213. [Google Scholar] [CrossRef]
- Vik, J.; Stræte, E.P.; Hansen, B.G.; Nærland, T. The political robot—The structural consequences of automated milking systems (AMS) in Norway. NJAS-Wagening. J. Life Sci. 2019, 90–91, 1–9. [Google Scholar] [CrossRef]
- LKV Bayern. Milchleistungsprüfung in Bayern. Landeskuratorium der Erzeugerringe für Tierische Veredelung in Bayern e.V. Available online: https://www.lkv.bayern.de/wp-content/uploads/2021/03/20210310_MLP-Jahresbericht-2020_Online_compressed.pdf (accessed on 2 July 2022).
- Huijps, K.; Lam, T.J.; Hogeveen, H. Costs of mastitis: Facts and perception. J. Dairy Sci. 2008, 75, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, H.; Huijps, K.; Lam, T.J.G.M. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef] [PubMed]
- International Dairy Federation. Suggested interpretation of mastitis terminology. Bull. Int. Dairy Fed. 2011, 448, 309. [Google Scholar]
- The European Parliament and the Council of the European Union. Corrigendum to Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union 2004, 226, 22–82. [Google Scholar]
- Dalen, G.; Rachah, A.; Nørstebø, H.; Schukken, Y.H.; Reksen, O. The detection of intramammary infections using online somatic cell counts. J. Dairy Sci. 2019, 102, 5419–5429. [Google Scholar] [CrossRef]
- Mollenhorst, H.; Rijkaart, L.J.; Hogeveen, H. Mastitis alert preferences of farmers milking with automatic milking systems. J. Dairy Sci. 2012, 95, 2523–2530. [Google Scholar] [CrossRef]
- Van der Voort, M.; Jensen, D.; Kamphuis, C.; Athanasiadis, I.N.; de Vries, A.; Hogeveen, H. Invited review: Toward a common language in data-driven mastitis detection research. J. Dairy Sci. 2021, 104, 10449–10461. [Google Scholar] [CrossRef]
- Mollenhorst, H.; van der Tol, P.P.J.; Hogeveen, H. Somatic cell count assessment at the quarter or cow milking level. J. Dairy Sci. 2010, 93, 3358–3364. [Google Scholar] [CrossRef]
- Steeneveld, W.; Hogeveen, H. Characterization of Dutch dairy farms using sensor systems for cow management. J. Dairy Sci. 2015, 98, 709–717. [Google Scholar] [CrossRef]
- Kitchen, B.J. Bovine mastitis: Milk compositional changes and related diagnostic tests. Res. J. Dairy Sci. 1981, 48, 167–188. [Google Scholar] [CrossRef]
- Hamann, J.; Zecconi, A. Evaluation of the electrical conductivity of milk as a mastitis indicator. Bull. Int. Dairy Fed. 1998, 334, 1–26. [Google Scholar]
- Ontsouka, C.E.; Bruckmaier, R.M.; Blum, J.W. Fractionized Milk Composition During Removal of Colostrum and Mature Milk. J. Dairy Sci. 2003, 86, 2005–2011. [Google Scholar] [CrossRef]
- Norberg, E.; Hogeveen, H.; Korsgaard, I.R.; Friggens, N.C.; Sloth, K.H.M.N.; Løvendahl, P. Electrical Conductivity of Milk: Ability to Predict Mastitis Status. J. Dairy Sci. 2004, 87, 1099–1107. [Google Scholar] [CrossRef]
- Kamphuis, C.; Mollenhorst, H.; Heesterbeek, J.A.P.; Hogeveen, H. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction. J. Dairy Sci. 2010, 93, 3616–3627. [Google Scholar] [CrossRef]
- Khatun, M.; Clark, C.E.F.; Lyons, N.A.; Thomson, P.C.; Kerrisk, K.L.; García, S.C. Early detection of clinical mastitis from electrical conductivity data in an automatic milking system. Anim. Prod. Sci. 2017, 57, 1226–1232. [Google Scholar] [CrossRef]
- Sørensen, L.P.; Bjerring, M.; Løvendahl, P. Monitoring individual cow udder health in automated milking systems using online somatic cell counts. J. Dairy Sci. 2016, 99, 608–620. [Google Scholar] [CrossRef]
- Lusis, I.; Laurs, A.; Antane, V. Viscosity method in robotic milking system for detection of somatic cell count in milk. In Engineering for Rural Development, Proceedings of the 18th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 22–24 May 2019; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2019; pp. 324–329. [Google Scholar]
- Walsh, S.; Buckley, F.; Berry, D.P.; Rath, M.; Pierce, K.; Byrne, N.; Dillon, P. Effects of breed, feeding system, and parity on udder health and milking characteristics. J. Dairy Sci. 2007, 90, 5767–5779. [Google Scholar] [CrossRef] [PubMed]
- Schepers, A.J.; Lam, T.; Schukken, Y.H.; Wilmink, J.B.M.; Hanekamp, W.J.A. Estimation of variance components for somatic cell counts to determine thresholds for uninfected quarters. J. Dairy Sci. 1997, 80, 1833–1840. [Google Scholar] [CrossRef]
- Edwards, J.L.; Tozer, P.R. Using Activity and Milk Yield as Predictors of Fresh Cow Disorders. J. Dairy Sci. 2004, 87, 524–531. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Hertl, J.; Bar, D.; Bennett, G.J.; González, R.N.; Rauch, B.J.; Santisteban, C.; Schulte, H.F.; Tauer, L.; Welcome, F.L.; et al. Effects of repeated gram-positive and gram-negative clinical mastitis episodes on milk yield loss in Holstein dairy cows. J. Dairy Sci. 2009, 92, 3091–3105. [Google Scholar] [CrossRef]
- Melfsen, A.; Hartung, E.; Haeussermann, A. Accuracy of in-line milk composition analysis with diffuse reflectance near-infrared spectroscopy. J. Dairy Sci. 2012, 95, 6465–6476. [Google Scholar] [CrossRef]
- Hogeveen, H.; Kamphuis, C.; Steeneveld, W.; Mollenhorst, H. Sensors and clinical mastitis--the quest for the perfect alert. Sensors 2010, 10, 7991–8009. [Google Scholar] [CrossRef]
- Rasmussen, M.D.; Bjerring, M. Visual scoring of milk mixed with blood. J. Dairy Sci. 2005, 72, 257–263. [Google Scholar] [CrossRef]
- Chagunda, M.G.; Larsen, T.; Bjerring, M.; Ingvartsen, K.L. L-lactate dehydrogenase and N-acetyl-beta-D-glucosaminidase activities in bovine milk as indicators of non-specific mastitis. J. Dairy Sci. 2006, 73, 431–440. [Google Scholar] [CrossRef]
- Hernández-Castellano, L.; Wall, S.K.; Stephan, R.; Corti, S.; Bruckmaier, R. Somatische Zellzahl, Laktatdehydrogenase, und Immunglobulin G in der Milch bei Mastitiden, die durch verschiedene Pathogene verursacht wurden: Eine Feldstudie. Schweiz. Arch. Tierheilkd. 2017, 159, 283–290. [Google Scholar] [CrossRef]
- Zaninelli, M.; Redaelli, V.; Luzi, F.; Bronzo, V.; Mitchell, M.; Dell’Orto, V.; Bontempo, V.; Cattaneo, D.; Savoini, G. First Evaluation of Infrared Thermography as a Tool for the Monitoring of Udder Health Status in Farms of Dairy Cows. Sensors 2018, 18, 862. [Google Scholar] [CrossRef]
- Steeneveld, W.; van der Gaag, L.C.; Ouweltjes, W.; Mollenhorst, H.; Hogeveen, H. Discriminating between true-positive and false-positive clinical mastitis alerts from automatic milking systems. J. Dairy Sci. 2010, 93, 2559–2568. [Google Scholar] [CrossRef]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef]
- Khatun, M.; Thomson, P.C.; Kerrisk, K.L.; Lyons, N.A.; Clark, C.E.F.; Molfino, J.; García, S.C. Development of a new clinical mastitis detection method for automatic milking systems. J. Dairy Sci. 2018, 101, 9385–9395. [Google Scholar] [CrossRef]
- Penry, J.F. Mastitis Control in Automatic Milking Systems. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 439–456. [Google Scholar] [CrossRef]
- Sergeant, E.S.G. Epitools Epidemiological Calculators. Available online: https://epitools.ausvet.com.au/prevalencess (accessed on 2 July 2022).
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef]
- NMC. Guidelines for Evaluating Teat Skin Condition. National Mastitis Council. Available online: https://www.nmconline.org/wp-content/uploads/2016/09/Guidelines-for-Evaluating.pdf (accessed on 2 July 2022).
- NMPF. Animal Care Reference Manual. National Milk Producers Federation. Available online: https://www.nmpf.org/wp-content/uploads/2015/08/FARM_manual_2013_WEB.pdf (accessed on 2 July 2022).
- Bradley, A.J.; Green, M.J. An Investigation of the Impact of Intramammary Antibiotic Dry Cow Therapy on Clinical Coliform Mastitis. J. Dairy Sci. 2001, 84, 1632–1639. [Google Scholar] [CrossRef]
- Perrotin, T. Milking robots can help farmers in their fight against mastitis. Int. Dairy Top. 2015, 14, 15. [Google Scholar]
- Hillerton, J.E. Detecting mastitis at cow-sided. In Proceedings of the 39th National Mastitis Council Annual Meeting Proceedings, Atlanta, GA, USA, 13–16 February 2000; pp. 48–53. [Google Scholar]
- ISO/DIS 20966; Automatic Milking Installations—Requirements and Testing. International Organization for Standardization: Genf, Switzerland, 2007; p. 20966.
- Hogeveen, H.; Klaas, I.C.; Dalen, G.; Honig, H.; Zecconi, A.; Kelton, D.F.; Sánchez Mainar, M. Novel ways to use sensor data to improve mastitis management. J. Dairy Sci. 2021, 104, 11317–11332. [Google Scholar] [CrossRef]
- Shim, E.H.; Shanks, R.D.; Morin, D.E. Milk Loss and Treatment Costs Associated with Two Treatment Protocols for Clinical Mastitis in Dairy Cows. J. Dairy Sci. 2004, 87, 2702–2708. [Google Scholar] [CrossRef]
- Brandt, M.; Haeussermann, A.; Hartung, E. Invited review: Technical solutions for analysis of milk constituents and abnormal milk. J. Dairy Sci. 2010, 93, 427–436. [Google Scholar] [CrossRef]
- Castro, A.; Pereira, J.M.; Amiama, C.; Bueno, J. Estimating efficiency in automatic milking systems. J. Dairy Sci. 2012, 95, 929–936. [Google Scholar] [CrossRef]
- Castro, A.; Pereira, J.M.; Amiama, C.; Bueno, J. Mastitis diagnosis in ten Galician dairy herds (NW Spain) with automatic milking systems. Span. J. Agric. Res. 2015, 13, e0504. [Google Scholar] [CrossRef]
- Kamphuis, C.; Dela Rue, B.; Mein, G.; Jago, J. Development of protocols to evaluate in-line mastitis-detection systems. J. Dairy Sci. 2013, 96, 4047–4058. [Google Scholar] [CrossRef]
- Brandt, M. Evaluation of presently used sensor systems for mastitis detection in automatic milking farms in Schleswig-Holstein. Ph.D. Thesis, Institut für Landwirtschaftliche Verfahrenstechnik der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 2012. [Google Scholar]
- Nielen, M.; Deluyker, H.; Schukken, Y.H.; Brand, A. Electrical Conductivity of Milk: Measurement, Modifiers, and Meta Analysis of Mastitis Detection Performance. J. Dairy Sci. 1992, 75, 606–614. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Weiss, D.; Wiedemann, M.; Schmitz, S.; Wendl, G. Changes of physicochemical indicators during mastitis and the effects of milk ejection on their sensitivity. J. Dairy Sci. 2004, 71, 316–321. [Google Scholar] [CrossRef]
- Zucali, M.; Bava, L.; Tamburini, A.; Gislon, G.; Sandrucci, A. Association between Udder and Quarter Level Indicators and Milk Somatic Cell Count in Automatic Milking Systems. Animals 2021, 11, 3485. [Google Scholar] [CrossRef]
- Kamphuis, C.; Pietersma, D.; van der Tol, R.; Wiedemann, M.; Hogeveen, H. Using sensor data patterns from an automatic milking system to develop predictive variables for classifying clinical mastitis and abnormal milk. Comput. Electron. Agric. 2008, 62, 169–181. [Google Scholar] [CrossRef]
- Lusis, I.; Antane, V.; Laurs, A. Effectiveness of mastitis detection index for cow monitoring and abnormal milk detection in milking robots. Eng. Rural. Dev. 2017, 16, 1383–1387. [Google Scholar]
- Hovinen, M.; Aisla, A.-M.; Pyörälä, S. Accuracy and reliability of mastitis detection with electrical conductivity and milk colour measurement in automatic milking. Acta Agric. Scand. Anim. Sci. 2006, 56, 121–127. [Google Scholar] [CrossRef]
- Kamphuis, C.; Sherlock, R.; Jago, J.; Mein, G.; Hogeveen, H. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count. J. Dairy Sci. 2008, 91, 4560–4570. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.; Bruckmaier, R.M.; Thomson, P.C.; House, J.; García, S.C. Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection. J. Dairy Sci. 2019, 102, 9200–9212. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, C.H.; Kristensen, A.R.; Østergaard, S.; Bennedsgaard, T.W. Use of inline measures of l-lactate dehydrogenase for classification of posttreatment mammary Staphylococcus aureus infection status in dairy cows. J. Dairy Sci. 2016, 99, 8375–8383. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.; Thomson, P.C.; García, S.C.; Bruckmaier, R.M. Suitability of milk lactate dehydrogenase and serum albumin for pathogen-specific mastitis detection in automatic milking systems. J. Dairy Sci. 2022, 105, 2558–2571. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.W.; Davison, C.; Tachtatzis, C.; Andonovic, I.; Michie, C.; Ferguson, H.J.; Somerville, L.; Jonsson, N.N. Identification of the Rumination in Cattle Using Support Vector Machines with Motion-Sensitive Bolus Sensors. Sensors 2019, 19, 1165. [Google Scholar] [CrossRef]
- Elischer, M.F.; Arceo, M.E.; Karcher, E.L.; Siegford, J.M. Validating the accuracy of activity and rumination monitor data from dairy cows housed in a pasture-based automatic milking system. J. Dairy Sci. 2013, 96, 6412–6422. [Google Scholar] [CrossRef]
- King, M.T.M.; DeVries, T.J. Graduate Student Literature Review: Detecting health disorders using data from automatic milking systems and associated technologies. J. Dairy Sci. 2018, 101, 8605–8614. [Google Scholar] [CrossRef]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part II. Mastitis. J. Dairy Sci. 2016, 99, 7411–7421. [Google Scholar] [CrossRef]
- Televičius, M.; Juozaitiene, V.; Malašauskienė, D.; Antanaitis, R.; Rutkauskas, A.; Urbutis, M.; Baumgartner, W. Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows. Agriculture 2021, 11, 38. [Google Scholar] [CrossRef]
- Hovinen, M.; Pyörälä, S. Invited review: Udder health of dairy cows in automatic milking. J. Dairy Sci. 2011, 94, 547–562. [Google Scholar] [CrossRef]
- Steeneveld, W.; van der Gaag, L.C.; Barkema, H.W.; Hogeveen, H. Simplify the interpretation of alert lists for clinical mastitis in automatic milking systems. Comput. Electron. Agric. 2010, 71, 50–56. [Google Scholar] [CrossRef]
- Friggens, N.C.; Chagunda, M.G.G.; Bjerring, M.; Ridder, C.; Hojsgaard, S.; Larsen, T. Estimating degree of mastitis from time-series measurements in milk: A test of a model based on lactate dehydrogenase measurements. J. Dairy Sci. 2007, 90, 5415–5427. [Google Scholar] [CrossRef]
- Kamphuis, C.; Dela Rue, B.T.; Eastwood, C.R. Field validation of protocols developed to evaluate in-line mastitis detection systems. J. Dairy Sci. 2016, 99, 1619–1631. [Google Scholar] [CrossRef]
- Anglart, D.; Emanuelson, U.; Rönnegård, L.; Hallén Sandgren, C. Detecting and predicting changes in milk homogeneity using data from automatic milking systems. J. Dairy Sci. 2021, 104, 11009–11017. [Google Scholar] [CrossRef]
- Rasmussen, M.D. Visual scoring of clots in foremilk. J. Dairy Sci. 2005, 72, 406–414. [Google Scholar] [CrossRef]
- King, M.T.M.; LeBlanc, S.J.; Pajor, E.A.; Wright, T.C.; DeVries, T.J. Behavior and productivity of cows milked in automated systems before diagnosis of health disorders in early lactation. J. Dairy Sci. 2018, 101, 4343–4356. [Google Scholar] [CrossRef]
- Hallén Sandgren, C.; Anglart, D.; Klaas, I.C.; Rönnegård, L.; Emanuelson, U. Homogeneity density scores of quarter milk in automatic milking systems. J. Dairy Sci. 2021, 104, 10121–10130. [Google Scholar] [CrossRef]
- Slob, N.; Catal, C.; Kassahun, A. Application of machine learning to improve dairy farm management: A systematic literature review. Prev. Vet. Med. 2021, 187, 105237. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Mohammadi-Dehcheshmeh, M.; Ebrahimie, E.; Petrovski, K.R. Comprehensive analysis of machine learning models for prediction of sub-clinical mastitis: Deep Learning and Gradient-Boosted Trees outperform other models. Comput. Biol. Med. 2019, 114, 103456. [Google Scholar] [CrossRef]
- Naqvi, S.A.; King, M.T.M.; DeVries, T.J.; Barkema, H.W.; Deardon, R. Data considerations for developing deep learning models for dairy applications: A simulation study on mastitis detection. Comput. Electron. Agric. 2022, 196, 106895. [Google Scholar] [CrossRef]
- Louton, H.; Erhard, M.; Wirsch, K.; Bergmann, S.; Piller, A.; Schmidt, P.; Rauch, E. Vergleich von vier Beurteilungsmethoden zur Erfassung von Kontaktdermatitiden am Fußballen und Fersenhöcker von Masthühnern. Berl. Münch. Tierärztl. Wochenschr. 2020, 133, 1–11. [Google Scholar] [CrossRef]
AMS/Software | Lists | Content and Explanation |
---|---|---|
DeLaval/ DelPro Farm Manager 5.5 | cow_monitoring 1 | Sensor (e.g., EC 2,*, MY 3,*, blood occurrence *, etc.) and cow data (e.g., MDi 4,**, MI 5,, DIM 6 etc.). |
Milking_data_last_30_days 1 | Sensor and cow data of the last 30 days. | |
GEA Farm Technologies/Dairy Plan C21 | Daily_checked_lists 1 | Summary of lists to be checked daily in the program. Indicates whether cows appear on these lists or not (1/0). |
AMS_udder_health_monitoring-List1 | Displays cows with a deviation in EC 2 value between the quarter with the highest average EC2 value and the quarter with the lowest average EC2 value in the last 4 milkings. | |
AMS_udder_health_monitoring-List2 | Displays cows with an EC 2 deviation within a quarter. | |
AMS_udder_health_monitoring-Acute_warnings | Summarized cows which have been flagged on both List1 and List2. | |
AMS_increased_conductivity | Displays cows with an EC deviation within a quarter. | |
Mrobot_milk_decline | Displays cows with a milk decline. | |
Mrobot_to_be_milked | Displays cows overdue for milking. | |
Herd_status_current_last_milking 1 | Sensor (e.g., EC 2,*, MY 3,*, blood occurrence *, MT 7,* etc.), and cow data (e.g., MI 5, DIM 6 etc.). | |
Milking_data_for_the_last_10_days 1 | Sensor and cow data of the last 10 days. | |
QuarterCellCount_alert | Alert list using SCC 8*. | |
Lely/ T4C-Time for cows | Dailymilkproduction 10 | Sensor (e.g., MYD 9,**, milk fat **, milk protein **, etc.) and cow data (e.g., feed intake, DIM 6, etc.) of current milking. |
Milkings_last_7 days 10 | Sensor (e.g., EC 2,*, milk color *) and cow data (e.g., DIM 6 etc.) of the last seven days. | |
Action_list 10,11 | Displays cows and their sensor data with a new indication such as MYD 9,**, EC 2,*, MT 7,**, SCC 8,** for 24 h on this list. | |
Monitor_list 10,11 | Displays cows until a milking without mastitis indicator (MYD 9, EC 2,*, MT 7,**, SCC 8,**) occurred. | |
Lemmer-Fullwood/ Chrystal Fusion | Control_report_10_days 10 | Sensor (e.g., milk protein, milk fat, lactose, etc.) and cow (e.g., DIM, MI) data of the last 10 days including an alert for suspected mastitis, based on EC 2,*. |
Kick_off 10 | Kick-off event (yes/no) of the teat cups per quarter of the last 10 days. | |
4qcm_10_days 10 | Displays data of EC 2,* at quarter level for each milking of the last 10 days. | |
Control_report_milking 10 | Displays cows for udder health monitoring. |
Source | Variable |
---|---|
Test day data | Cow identification |
Date of birth | |
Breed | |
Lactation number | |
Days in milk at the test day | |
Date of monthly test day | |
Milk yield (kg) | |
Fat (%) | |
Protein (%) | |
Urea concentration (ppm) | |
SCC (cells/mL) | |
Generated 1 | Test day with SCC ≥ 700,000 cells/mL (1/0) |
Number of test days with SCC ≥ 700,000 cells/mL (n) | |
Test day with SCC ≥ 400, 000 cells/mL (1/0) | |
Number of test days with SCC ≥ 400, 000 cells/mL (n) | |
Number of missing test day data (n) | |
Udder health status (categorization, based on two subsequent test days in that lactation): | |
chronic: two subsequent tests with >100.000 cells/mL | |
new IMI 2: previous SCC < 100.000 and current SCC > 100.000 cells/mL | |
cured: previous SCC > 100.000 and current SCC < 100.000 cells/mL | |
healthy: both tests < 100.000 cells/mL | |
no current test data: only data of 1 test day available | |
no DHIA data available |
DeLaval | GEA | Lely | Lemmer-Fullwood | Overall | ||
---|---|---|---|---|---|---|
Study herds, n | 27 | 29 | 31 | 27 | 114 | |
AMS data | Backup at farm visit, n (restored 1) | 20 (7) | 29 | 31 | 26 2 | 113 |
Last milking data, n | 2047 | 1721 | 2247 | 1974 | 7989 | |
Evaluated cows at farm visit, n | 1904 | 1664 | 2152 | 1691 | 7411 | |
Cows excluded due to, n | Incorrect identification | 13 | 8 | 21 | 31 | 73 |
Not matching with AMS data | 12 | 6 | 16 | 68 | 102 | |
DIM < 3d | 22 | 21 | 18 | 11 | 72 | |
>24 h since last milking | 11 | 9 | 11 | 6 | 37 | |
3-teater cows, i.e., quarter with CM 3 not milked by AMS | 15 | 4 | 10 | 8 | 37 | |
No alert information available | - | - | - | 22 | 22 | |
Cows in final statistical analysis, n | 1831 | 1616 | 2076 | 1545 | 7090 | |
Additional DHIA 4 Data | 1665 | 1462 | 1879 | 1534 | 6540 | |
Last three test day data available | 1517 | 1309 | 1636 | 1425 | 5887 | |
Only last test day data available | 99 | 107 | 156 | 45 | 407 | |
No test day data available | 166 | 154 | 197 | 33 | 550 | |
Cows with CM 3, n (affected quarters, n) | 70 | 54 | 78 | 37 | 239 | |
Grade 1—mild: abnormal milk | 60 (62) | 52 (59) | 69 (76) | 31 (42) | 212 (239) | |
Grade 2—medium: abnormal milk and/or swollen quarter | 9 (10) | 2 (2) | 8 (8) | 5 (5) | 24 (25) | |
Grade 3—Severe: grade 1 or 2 with systemic signs | 1 | - | 1 | 1 | 3 |
Characteristic | DeLaval | GEA | Lely | Lemmer-Fullwood | Overall | |
---|---|---|---|---|---|---|
Participating herds, n | 27 | 29 | 31 | 27 | 114 | |
Number of AMSs, n | 31 | 30 | 35 | 30 | 126 | |
Year of AMS installation, | median | 2014 | 2018 | 2015 | 2017 | 2017 |
(min–max) | (2007–2020) | (2016–2020) | (2009–2019) | (2011–2019) | (2007–2020) | |
Herd size 1 | mean, ±SEM | 71 ± 4.8 | 57 ± 3.1 | 69 ± 4,3 | 63 ± 2.9 | 65 ± 1.9 |
(min–max) | (40–139) | (28–106) | (35–127) | (31–100) | (28–139) | |
Herd average milk yield 2, kg | 8424 (7905–8875) | 7700 (7126–8573) | 8949 (8515–9325) | 8400 (7981–9106) | 8525 (7700–9135) | |
Bulk tank 3 (×103/mL) | ||||||
Somatic cells/mL | 176 | 126 | 202 | 130 | 155 | |
(140–240) | (103–154) | (155–241) | (101–178) | (124–210) | ||
Bacterial count, cfu/mL | 13 | 17 | 12 | 17 | 15 | |
(10–19) | (11–25) | (9–17) | (13–26) | (10–21) | ||
Clinical mastitis prevalence 4, % | 4.1 | 2.7 | 3.8 | 2.9 | 3.4 | |
Herds without clinical mastitis, n | 3 | 4 | 3 | 6 | 16 | |
Operating structure, % herds | ||||||
Conventional | 85 | 86 | 97 | 93 | 90 | |
Organic | 15 | 14 | 3 | 7 | 10 | |
DHIA 5 member | 96 | 97 | 97 | 100 | ||
Breed, % herds | ||||||
Simmental | 19 | 86 | 58 | 82 | 61 | |
Mixed | 37 | 7 | 23 | 11 | 19 | |
Brown Swiss | 26 | 3 | 10 | 7 | 11 | |
Other (incl. Holstein Friesian) | 19 | 4 | 10 | - | 8 | |
Period of the farm visits (2019–2020) | Oct–Aug | Apr–Aug | Sep–Mar | Feb–Aug | Sep–Aug |
AMS | Cows, n | CM, n Cases | AMS Alert Used | Sensitivity, % | 95% CI, % 1 | Specificity, % | 95% CI, % 1 | |
---|---|---|---|---|---|---|---|---|
DeLaval | 1831 | 70 | MDi 2 | ≥1.4 | 61.4 | 49.0–72.8 | 89.3 | 87.7–90.7 |
≥2.0 | 31.4 | 20.9–43.6 | 97.2 | 96.3–97.9 | ||||
GEA | 1616 | 54 | AMS_udder_health_monitoring 3 | |||||
List1 4 | 75.9 | 62.4–86.5 | 79.2 | 77.1–81.2 | ||||
List2 5 | 48.2 | 34.3–62.2 | 93.5 | 92.1–94.6 | ||||
Acute_Udder_Health_warnings 6 | 38.9 | 25.9–53.1 | 94.9 | 93.7–95.9 | ||||
Lely | 2076 | 78 | Monitor_list 7,9 | 78.2 | 67.4–86.7 | 86.2 | 84.6–87.7 | |
Action_list 7,9 | 28.2 | 18.6–39.5 | 94.9 | 93.8–95.8 | ||||
Lemmer-Fullwood | 1545 | 37 | 4QCM alert 8,9 | 67.6 | 50.2–82.0 | 92.2 | 90.8–93.5 |
AMS | CM, n | AMS Alert | Predictor | β 1 | SEM | Odds Ratio | 95% CI | p-Value |
---|---|---|---|---|---|---|---|---|
DeLaval | 70 | MDi 2 ≥ 1.4 | Intercept | −3.56 | 1.76 | 0.05 | ||
EC of current milking | 0.22 | 0.10 | 1.24 | 1.03–1.51 | 0.03 | |||
GEA | 54 | List 1 3 | Intercept | −4.43 | 1.77 | 0.02 | ||
ΔQEC 4 | 0.03 | 0.01 | 1.03 | 1.01–1.05 | 0.01 | |||
Lely | 78 | Monitor list 5 | Intercept | −7.56 | 2.62 | 0.01 | ||
LogSCC 6 | 1.41 | 0.42 | 4.10 | 1.75–9.52 | <0.01 | |||
Lemmer-Fullwood | 37 | 4QCM 7 Alert | - | - | - | - | - | - |
AMS, n Cows | Predictor | β 1 | SEM | Odds Ratio | 95% CI | p-Value | |
---|---|---|---|---|---|---|---|
DeLaval | Intercept | −1.93 | 2.11 | 0.37 | |||
1761 | Milking interval in hours | −0.20 | 0.03 | 0.82 | 0.78–0.88 | <0.01 | |
Δ highest and lowest quarter EC 2 | −0.59 | 0.10 | 0.56 | 0.46–0.67 | <0.01 | ||
DHIA 3 lactose concentration | 1.60 | 0.42 | 4.94 | 2.16–11.29 | <0.01 | ||
Udder health status 4 | chronic | −1.70 | 0.27 | 0.18 | 0.10–0.30 | <0.01 | |
new IMI 5 | −1.11 | 0.34 | 0.33 | 0.17–0.64 | <0.01 | ||
cured | −0.20 | 0.44 | 0.82 | 0.35–1.93 | 0.65 | ||
no DHIA data | −0.83 | 0.61 | 0.44 | 0.13–1.46 | 0.18 | ||
no current test data | −0.64 | 0.67 | 0.53 | 0.14–1.96 | 0.34 | ||
healthy | Referent | ||||||
GEA | Intercept | 1.72 | 0.28 | <0.01 | |||
1562 | Milk yield of last milking, kg | 0.01 | 0.02 | 1.12 | 1.08–1.17 | <0.01 | |
Milking interval in hours | −0.10 | 0.02 | 0.90 | 0.87–0.93 | <0.01 | ||
Lactation number | 1 | 0.60 | 0.17 | 1.82 | 1.30–2.55 | <0.01 | |
2 | 0.11 | 0.16 | 1.11 | 0.81–1.54 | 0.51 | ||
≥3 | Referent | ||||||
Udder health status 4 | chronic | −1.64 | 0.20 | 0.19 | 0.13–0.29 | <0.01 | |
new IMI 5 | −1.46 | 0.23 | 0.23 | 0.15–0.36 | <0.01 | ||
cured | −0.74 | 0.25 | 0.48 | 0.29–0.79 | <0.01 | ||
no DHIA data | −1.03 | 0.24 | 0.37 | 0.23–0.58 | <0.01 | ||
no current test data | −0.98 | 0.34 | 0.38 | 0.19–0.73 | <0.01 | ||
healthy | Referent | ||||||
Lely, | Intercept | 8.89 | 0.72 | <0.01 | |||
1998 | Quarter based EC threshold of 72 | 0 | 1.32 | 0.20 | 3.73 | 2.54–5.47 | <0.01 |
1 | Referent | ||||||
Fat content (measured by AMS) | −0.31 | 0.10 | 0.74 | 0.60–0.90 | 0.03 | ||
LogSCC 6 | −1.19 | 0.12 | 0.30 | 0.24–0.38 | <0.01 | ||
Udder health status 4 | chronic | −0.80 | 0.25 | 0.45 | 0.27–0.73 | <0.01 | |
new IMI 5 | −0.33 | 0.33 | 0.72 | 0.38–1.38 | 0.32 | ||
cured | −0.57 | 0.38 | 0.95 | 0.45–2.01 | 0.88 | ||
no DHIA data | −0.68 | 0.38 | 0.51 | 0.24–1.06 | 0.07 | ||
no current test data | −0.09 | 0.45 | 0.91 | 0.38–2.21 | 0.84 | ||
healthy | Referent | ||||||
Lemmer-Fullwood, 1508 | Intercept | 1.19 | 0.33 | <0.01 | |||
Quarter based EC threshold of 5.6 | 0 | 2.58 | 0.32 | 13.13 | 7.03–24.51 | <0.01 | |
1 | Referent | ||||||
Udder health status 4 | chronic | −1.60 | 0.31 | 0.20 | 0.11–0.37 | <0.01 | |
new IMI 5 | −0.35 | 0.45 | 0.71 | 0.29–1.72 | 0.44 | ||
cured | −0.40 | 0.55 | 0.67 | 0.23–1.97 | 0.47 | ||
no DHIA data | −0.20 | 0.60 | 0.82 | 0.26–2.63 | 0.74 | ||
no current test data | −0.80 | 0.58 | 0.45 | 0.14–1.41 | 0.17 | ||
healthy | Referent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bausewein, M.; Mansfeld, R.; Doherr, M.G.; Harms, J.; Sorge, U.S. Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. Animals 2022, 12, 2131. https://doi.org/10.3390/ani12162131
Bausewein M, Mansfeld R, Doherr MG, Harms J, Sorge US. Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. Animals. 2022; 12(16):2131. https://doi.org/10.3390/ani12162131
Chicago/Turabian StyleBausewein, Mathias, Rolf Mansfeld, Marcus G. Doherr, Jan Harms, and Ulrike S. Sorge. 2022. "Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds" Animals 12, no. 16: 2131. https://doi.org/10.3390/ani12162131
APA StyleBausewein, M., Mansfeld, R., Doherr, M. G., Harms, J., & Sorge, U. S. (2022). Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. Animals, 12(16), 2131. https://doi.org/10.3390/ani12162131