Effect of Varying Dietary Crude Protein Level on Milk Production, Nutrient Digestibility, and Serum Metabolites by Lactating Donkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets and Experimental Design
2.2. Feeding Management, Sample Collection and Measurements
2.3. Statistical Analysis
3. Results
3.1. Milk Yield and Components
3.2. Feed Intake and Nutrient Digestibility
3.3. Serum Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salimei, E.; Fantuz, F.; Coppola, R.; Chiofalo, B.; Polidori, P.; Varisco, G. Composition and characteristics of ass’s milk. Anim. Res. 2004, 53, 67–78. [Google Scholar] [CrossRef]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Donkey and human milk: Insights into their compositional similarities. Int. Dairy J. 2018, 89, 111–118. [Google Scholar] [CrossRef]
- El-Hatmi, H.; Jrad, Z.; Salhi, I.; Aguibi, A.; Nadri, A.; Khorchani, T. Comparison of composition and whey protein fractions of human, camel, donkey, goat and cow milk. Mljekarstvo 2015, 65, 159–167. [Google Scholar] [CrossRef]
- Li, M.H.; Liu, Y.M.; Li, Q.L.; Yang, M.; Pi, Y.Z.; Yang, N.; Zheng, Y.; Yue, X.Q. Comparative exploration of free fatty acids in donkey colostrum and mature milk based on a metabolomics approach. J. Dairy Sci. 2020, 103, 6022–6031. [Google Scholar] [CrossRef] [PubMed]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Samperi, R.; Chiozzi, R.Z.; Laganà, A. Peptidome characterization and bioactivity analysis of donkey milk. J. Proteom. 2015, 119, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Souroullas, K.; Aspri, M.; Papademas, P. Donkey milk as a supplement in infant formula: Benefits and technological challenges. Food Res. Int. 2018, 109, 416–425. [Google Scholar] [CrossRef]
- Chiofalo, B.; Dugo, P.; Bonaccorsi, I.L.; Mondello, L. Comparison of major lipid components in human and donkey milk: New perspectives for a hypoallergenic diet in humans. Immunopharmacol. Immunotoxicol. 2011, 33, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Tafaro, A.; Magrone, T.; Jirillo, F.; Martemucci, G.; D’Alessandro, A.G.; Amati, L.; Jirillo, E. Immunological properties of donkey’s milk: Its potential use in the prevention of atherosclerosis. Curr. Pharm. Des. 2007, 13, 3711–3717. [Google Scholar] [CrossRef] [PubMed]
- Vincenzetti, S.; Pucciarelli, S.; Polzonetti, V.; Polidori, P. Role of proteins and of some bioactive peptides on the nutritional quality of donkey milk and their impact on human health. Beverages 2017, 3, 34. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.F.; Guo, H. The nutritional ingredients and antioxidant activity of donkey milk and donkey milk powder. Food Sci. Biotechnol. 2017, 27, 393–400. [Google Scholar] [CrossRef]
- Akan, E. An evaluation of the in vitro antioxidant and antidiabetic potentials of camel and donkey milk peptides released from casein and whey proteins. J. Food Sci. Technol. 2021, 58, 3743–3751. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.G.; Martemucci, G. Lactation curve and effects of milking regimen on milk yield and quality, and udder health in Martina Franca jennies (Equus asinus). J. Anim. Sci. 2012, 90, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Salari, F.; Ciampolini, R.; Mariti, C.; Millanta, F.; Altomonte, I.; Licitra, R.; Auzino, B.; D’Ascenz, C.; Bibbiani, C.; Giuliott, L.; et al. A multi-approach study of the performance of dairy donkey during lactation: Preliminary results. Ital. J. Anim. Sci. 2019, 18, 1135–1141. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Salari, F. Amiata donkeys: Fat globule characteristics, milk gross composition and fatty acids. Ital. J. Anim. Sci. 2014, 13, 56. [Google Scholar] [CrossRef]
- Giosuè, C.; Alabiso, M.; Russo, G.; Alicata, M.L.; Torrisi, C. Jennet milk production during the lactation in a Sicilian farming system. Animal 2008, 2, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Colmenero, J.J.; Broderick, G.A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef]
- Wang, J.; He, Y.; Pang, K.; Zeng, Q.; Zhang, X.; Ren, F.; Guo, H. Changes in milk yield and composition of colostrum and regular milk from four buffalo breeds in China during lactation. J. Sci. Food Agric. 2019, 99, 5799–5807. [Google Scholar] [CrossRef]
- Marchis, Z.; Odagiu, A.; Coroian, A.; Oroian, I.; Mirza, M.; Burduhos, P. Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. Sustainability 2018, 10, 2958. [Google Scholar] [CrossRef]
- Markiewicz-Kęszycka, M.; Czyżak-Runowska, G.; Wójtowski, J.; Jóźwik, A.; Pankiewicz, R.; Łęska, B.; Krzyżewski, J.; Strzałkowska, N.; Marchewka, J.; Bagnicka, E. Influence of stage of lactation and year season on composition of mares’ colostrum and milk and method and time of storage on vitamin C content in mares’ milk. J. Sci. Food Agric. 2015, 95, 2279–2286. [Google Scholar] [CrossRef]
- Law, R.A.; Young, F.J.; Patterson, D.C.; Kilpatrick, D.J.; Wylie, A.R.; Mayne, C.S. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. J. Dairy Sci. 2009, 92, 1001–1012. [Google Scholar] [CrossRef]
- Farahani, T.A.; Amanlou, H.; Farsuni, N.E.; Kazemi-Bonchenari, M. Interactions of protein levels fed to Holstein cows pre- and postpartum on productive and metabolic responses. J. Dairy Sci. 2018, 102, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Sevi, A.; Albenzio, M.; Annicchiarico, G.; Caroprese, M.; Marino, R.; Santillo, A. Effects of dietary protein level on ewe milk yield and nitrogen utilization, and on air quality under different ventilation rates. J. Dairy Res. 2006, 73, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.G.; Shaw, J.M.; Edwards, S.A.; Hoste, S.; McCartney, A. The effect of dietary protein level on milk yield and composition and piglet growth and composition of the Meishan synthetic and European White breeds of sow. Anim. Sci. 1999, 68, 701–708. [Google Scholar] [CrossRef]
- Katongole, C.B.; Yan, T. Effect of Varying Dietary Crude Protein Level on Feed Intake, Nutrient Digestibility, Milk Production, and Nitrogen Use Efficiency by Lactating Holstein-Friesian Cows. Animals 2020, 10, 2439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Yu, J.; Zhou, X.; Ji, C.; Wu, S.; Chen, Y.; Liu, J.; Zhao, F. Label-free based comparative proteomic analysis of whey proteins between different milk yields of Dezhou donkey. Biochem. Biophys. Res. Commun. 2019, 508, 237–242. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Zhang, Y.D.; Zhao, M.; Zhang, T.; Zhu, D.; Bu, D.P.; Wang, J.Q. Effect of dietary energy source and level on nutrient digestibility, rumen microbial protein synthesis, and milk performance in lactating dairy cows. J. Dairy Sci. 2015, 98, 7209–7217. [Google Scholar] [CrossRef]
- Leiber, F.; Dorn, K.; Probst, J.K.; Isensee, A.; Ackermann, N.; Kuhn, A.; Spengler Neff, A. Concentrate reduction and sequential roughage offer to dairy cows: Effects on milk protein yield, protein efficiency and milk quality. J. Dairy Res. 2015, 82, 272–278. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Arlington, MA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Aherne, F.X.; Okai, D.B. Use of HCl insoluble ash as an index material for determining apparent digestibility with pigs. Can. J. Anim. Sci. 1974, 54, 107–109. [Google Scholar] [CrossRef]
- Ren, H.; Bai, H.X.; Su, X.D.; Pang, J.; Li, X.Y.; Wu, S.R.; Cao, Y.C.; Cai, C.J.; Yao, J.H. Decreased amylolytic microbes of the hindgut and increased blood glucose implied improved starch utilization in the small intestine by feeding rumen-protected leucine in dairy calves. J. Dairy Sci. 2020, 103, 4218–4235. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.S.; Shen, Y.J.; Qi, J.Y.; Hao, Y.; Li, Y.H.; Zhao, Y.L.; Guo, X.Y.; Shi, B.L.; Yan, S.M. Effects of Dietary Protein Level of Female Donkeys during Late Gestation on Protein, Fat and Amino Acid Contents in Colostrum and Regular Milk. Chin. J. Anim. Nutr. 2021, 33, 2815–2826. [Google Scholar] [CrossRef]
- Broderick, G.A. Effects of varying dietary protein and energy levels on the production of lactating dairy cows. J. Dairy Sci. 2003, 86, 1370–1381. [Google Scholar] [CrossRef]
- Barros, T.; Quaassdorff, M.A.; Aguerre, M.A.; Colmenero, J.J.O.; Bertics, S.J.; Crump, P.M.; Wattiaux, M.A. Effects of dietary crude protein concentration on late-lactation dairy cow performance and indicators of nitrogen utilization. J. Dairy Sci. 2017, 100, 5434–5448. [Google Scholar] [CrossRef]
- Leonardi, C.; Stevenson, M.; Armentano, L.E. Effect of two levels of crude protein and methionine supplementation on performance of dairy cows. J. Dairy Sci. 2003, 86, 4033–4042. [Google Scholar] [CrossRef]
- Tebbe, A.W.; Weiss, W.P. Effects of oscillating dietary crude protein concentrations on production, nutrient digestion, plasma metabolites, and body composition in lactating dairy cows. J. Dairy Sci. 2020, 103, 10219–10232. [Google Scholar] [CrossRef]
- Zhao, F.Q. Biology of glucose transport in the mammary gland. J. Mammary Gland Biol. Neoplasia 2014, 19, 3–17. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Capozzolo, M.C.; Lencioni, P.; Cabral, C.; Wattiaux, M.A. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 2016, 99, 4476–4486. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Long, M.; Corl, B.A.; Karnati, S.K. Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows. J. Dairy Sci. 2011, 94, 5544–5557. [Google Scholar] [CrossRef]
- Oliveira, C.A.A.; Azevedo, J.F.; Martins, J.A.; Barreto, M.P.; Silva, V.P.; Julliand, V.; Almeida, F.Q. The impact of dietary protein levels on nutrient digestibility and water and nitrogen balances in eventing horses. J. Anim. Sci. 2015, 93, 229–327. [Google Scholar] [CrossRef]
- Bahrami-yekdangi, M.; Ghorbani, G.R.; Khorvash, M.; Khan, M.A.; Ghaffari, M.H. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites. J. Anim. Sci. 2016, 94, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Mutsvangwa, T.; Davies, K.L.; McKinnon, J.J.; Christensen, D.A. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows. J. Dairy Sci. 2016, 99, 6298–6310. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.Q.; Filho, S.C.; Queiroz, A.C.; Leão, A.I.; Silva, J.F.C.; Cecon, P.R. Apparent and true prececal and total digestibility of protein in diets with different protein levels in equines. R. Bras. Zootec. 1998, 27, 521–529. [Google Scholar]
- Karlsson, P.C.; Lindberg, J.E.; Rundgren, M. Associative effects on total tract digestibility in horses fed different ratios of grass hay and whole oats. Livest. Prod. Sci. 2000, 65, 143–153. [Google Scholar] [CrossRef]
- Julliand, V.; Prevost, H.; Tisserand, J.L. Preliminary study of the cecal bacterial flora in the pony: Quantification and diet effect. Ann. Zootech. 1993, 42, 183. [Google Scholar] [CrossRef]
- Kohn, R.A.; Dinneen, M.M.; Russek-Cohen, E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 2005, 83, 879–889. [Google Scholar] [CrossRef]
- Broderick, G.A.; Clayton, M.K. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci. 1997, 80, 2964–2971. [Google Scholar] [CrossRef]
- Gustafsson, A.H.; Palmquist, D.L. Diurnal variation of rumen ammonia, serum urea, and milk urea in dairy cows at high and low yields. J. Dairy Sci. 1993, 76, 475–484. [Google Scholar] [CrossRef]
- Sticker, L.S.; Thompson, D.L., Jr.; Bunting, L.D.; Fernandez, J.M.; DePew, C.L. Dietary protein and(or) energy restriction in mares: Plasma glucose, insulin, nonesterified fatty acid, and urea nitrogen responses to feeding, glucose, and epinephrine. J. Anim. Sci. 1995, 73, 136–144. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, W.; Wei, C.C.; Zhang, Z.J.; Jiang, C.C.; Chen, X.Y. Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids (Caprahircus). Animals 2020, 10, 151. [Google Scholar] [CrossRef]
- Xia, C.Q.; Aziz Ur Rahman, M.; Yang, H.; Shao, T.Q.; Qiu, Q.H.; Su, H.W.; Cao, B.H. Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian-Australas J. Anim. Sci. 2018, 31, 1643–1653. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T.F.; Lissemore, K.D.; McBride, B.W.; Leslie, K.E. Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 2009, 92, 571–580. [Google Scholar] [CrossRef]
- Adewuyi, A.A.; Gruys, E.; van Eerdenburg, F.J. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 2005, 27, 117–126. [Google Scholar] [CrossRef]
- Mohsin, M.A.; Yu, H.R.; He, R.Z.; Wang, P.; Gan, L.L.; Du, Y.L.; Huang, Y.F.; Abro, M.B.; Sohaib, S.; Pierzchala, M.; et al. Differentiation of Subclinical Ketosis and Liver Function Test Indices in Adipose Tissues Associated with Hyperketonemia in Postpartum Dairy Cattle. Front. Vet. Sci. 2022, 8, 796494. [Google Scholar] [CrossRef] [PubMed]
- Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakorn, C.; Everts, H.; Hendriks, W.H. The effects of high levels of rumen degradable protein on rumen pH and histamine concentrations in dairy cows. J. Anim. Physiol. Anim. Nutr. 2012, 96, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Albino, R.L.; Marcondes, M.I.; Akers, R.M.; Detmann, E.; Carvalho, B.C.; Silva, T.E. Mammary gland development of dairy heifers fed diets containing increasing levels of metabolisable protein: Metabolisable energy. J. Dairy Res. 2015, 82, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Sanz, M.C.; Liu, J.M.; Huang, H.H.; Hawrylewicz, E.J. Effect of dietary protein on morphologic development of rat mammary gland. J. Natl. Cancer. Inst. 1986, 77, 477–487. [Google Scholar] [CrossRef]
- Velázquez-Villegas, L.A.; López-Barradas, A.M.; Torres, N.; Hernández-Pando, R.; León-Contreras, J.C.; Granados, O.; Ortíz, V.; Tovar, A.R. Prolactin and the dietary protein/carbohydrate ratio regulate the expression of SNAT2 amino acid transporter in the mammary gland during lactation. Biochim. Biophys. Acta. 2015, 1848, 1157–1164. [Google Scholar] [CrossRef]
Items | HP | MP | LP |
---|---|---|---|
Ingredients (% of DM) | |||
Millet straw | 51.86 | 51.95 | 51.96 |
Alfalfa | 15.87 | 15.88 | 15.84 |
Corn | 15.65 | 17.67 | 19.79 |
Soybean meal | 8.24 | 7.91 | 6.97 |
Corn gluten meal | 3.27 | 1.63 | 0.33 |
Flax cake | 1.92 | 1.92 | 1.92 |
Corn germ meal | 0.64 | 0.48 | 0.49 |
Bran | 0.48 | 0.47 | 0.63 |
NaCl | 0.44 | 0.44 | 0.44 |
CaCO3 | 0.38 | 0.38 | 0.38 |
CaHPO4 | 0.76 | 0.76 | 0.76 |
Premix 1 | 0.50 | 0.50 | 0.50 |
Total | 100.00 | 100.00 | 100.00 |
Chemical composition (% of DM) | |||
DE (MJ/kg) 2 | 12.39 | 12.40 | 12.41 |
CP | 15.30 | 14.20 | 13.10 |
EE | 2.96 | 2.94 | 2.95 |
NDF | 50.78 | 50.75 | 50.87 |
ADF | 30.14 | 30.10 | 30.06 |
Ca | 1.18 | 1.20 | 1.19 |
P | 0.37 | 0.36 | 0.36 |
Items | HP | MP | LP | SEM | p-Value |
---|---|---|---|---|---|
DMI (kg/day) | 7.38 | 7.39 | 7.49 | 0.163 | 0.862 |
Milking yield (kg/day) | 0.85 a | 0.82 a | 0.70 b | 0.016 | <0.0001 |
EMY (kg/day) | 3.41 a | 3.27 a | 2.80 b | 0.064 | <0.0001 |
ECM (kg/day) | 1.73 a | 1.65 a | 1.39 b | 0.041 | <0.0001 |
SCM (kg/day) | 1.84 a | 1.73 a | 1.50 b | 0.043 | <0.0001 |
EMY/DMI | 0.46 a | 0.44 a | 0.37 b | 0.010 | <0.0001 |
SCM/DMI | 025 a | 0.24 a | 0.20 b | 0.006 | <0.0001 |
ECM/DMI | 0.23 a | 0.22 a | 0.19 b | 0.006 | <0.0001 |
Milk protein synthesis efficiency | 0.059 a | 0.061 a | 0.054 b | 0.0014 | 0.003 |
Milk components | |||||
Fat (%) | 0.28 | 0.27 | 0.25 | 0.012 | 0.146 |
Protein (%) | 1.89 a | 1.87 a | 1.82 b | 0.010 | <0.0001 |
Lactose (%) | 7.11 | 7.08 | 7.07 | 0.016 | 0.256 |
SNF (%) | 8.94 | 8.93 | 8.89 | 0.017 | 0.079 |
TS (%) | 9.20 a | 9.18 a | 9.13 b | 0.018 | 0.013 |
MUN (mg/dL) | 41.06 a | 39.89 a | 33.98 b | 1.253 | 0.039 |
Milk component yield | |||||
Fat (g/day) | 9.58 a | 8.83 ab | 6.98 b | 0.580 | <0.0001 |
Protein (g/day) | 64.44 a | 60.84 a | 50.93 b | 1.500 | <0.0001 |
Lactose (g/day) | 243.34 a | 232.27 a | 197.29 b | 5.415 | <0.0001 |
SNF (g/day) | 304.53 a | 291.50 a | 247.78 b | 6.746 | <0.0001 |
TS (g/day) | 313.54 a | 299.68 a | 254.91 b | 7.201 | <0.0001 |
Items | HP | WP | LP | SEM | p-Value |
---|---|---|---|---|---|
DM (%) | 73.92 a | 73.63 a | 69.88 b | 0.969 | 0.041 |
CP (%) | 82.21 a | 80.28 a | 74.40 b | 1.299 | 0.034 |
EE (%) | 58.32 a | 57.47 a | 50.67 b | 1.419 | 0.003 |
NDF (%) | 45.17 a | 43.42 a | 34.03 b | 1.112 | <0.001 |
ADF (%) | 31.69 a | 28.92 a | 22.34 b | 1.198 | 0.002 |
Ca (%) | 40.01 a | 38.31 a | 34.17 b | 0.988 | 0.024 |
P (%) | 48.80 a | 46.26 a | 39.64 b | 0.820 | <0.001 |
Items | HF | WF | LP | SEM | p-Value |
---|---|---|---|---|---|
TP, g/L | 66.70 a | 62.38 a | 57.08 b | 1.505 | 0.010 |
ALB, g/L | 35.21 a | 34.41 a | 29.49 b | 1.067 | 0.011 |
BUN, mmol/L | 8.89 a | 8.31 a | 7.10 b | 0.251 | 0.002 |
ALP, U/L | 176.30 | 174.08 | 188.42 | 4.542 | 0.112 |
GLU, mmol/L | 5.18 a | 5.02 ab | 4.71 b | 0.107 | 0.018 |
NEFA, umol/L | 0.17 b | 0.19 b | 0.28 a | 0.017 | 0.002 |
BHBA, mmol/L | 0.36 b | 0.39 b | 0.43 a | 0.011 | 0.013 |
TC, mmol/L | 1.85 | 1.88 | 2.05 | 0.090 | 0.264 |
Ca, mg/L | 2.73 | 2.78 | 2.78 | 0.059 | 0.848 |
P, mg/L | 1.29 | 1.33 | 1.30 | 0.045 | 0.778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Li, L.; Tong, M.; Li, S.; Zhao, Y.; Guo, X.; Guo, Y.; Shi, B.; Yan, S. Effect of Varying Dietary Crude Protein Level on Milk Production, Nutrient Digestibility, and Serum Metabolites by Lactating Donkeys. Animals 2022, 12, 2066. https://doi.org/10.3390/ani12162066
Yue Y, Li L, Tong M, Li S, Zhao Y, Guo X, Guo Y, Shi B, Yan S. Effect of Varying Dietary Crude Protein Level on Milk Production, Nutrient Digestibility, and Serum Metabolites by Lactating Donkeys. Animals. 2022; 12(16):2066. https://doi.org/10.3390/ani12162066
Chicago/Turabian StyleYue, Yuanxi, Li Li, Manman Tong, Shuyi Li, Yanli Zhao, Xiaoyu Guo, Yongmei Guo, Binlin Shi, and Sumei Yan. 2022. "Effect of Varying Dietary Crude Protein Level on Milk Production, Nutrient Digestibility, and Serum Metabolites by Lactating Donkeys" Animals 12, no. 16: 2066. https://doi.org/10.3390/ani12162066
APA StyleYue, Y., Li, L., Tong, M., Li, S., Zhao, Y., Guo, X., Guo, Y., Shi, B., & Yan, S. (2022). Effect of Varying Dietary Crude Protein Level on Milk Production, Nutrient Digestibility, and Serum Metabolites by Lactating Donkeys. Animals, 12(16), 2066. https://doi.org/10.3390/ani12162066