Anterior Mandibular Displacement in Growing Rats—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Risk of Bias
3. Results
3.1. Article Selection
3.2. Study Characteristics
3.3. Risk of Bias within Studies
3.4. Results of Individual Studies
4. Discussion
4.1. Summary of Evidence
4.2. Strengths, Limitations of Current Studies and Recommendation for Future Ones
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sassouni, V. A classification of skeletal facial types. Am. J. Orthod. 1969, 55, 109–123. [Google Scholar] [CrossRef]
- Shen, G.; Hagg, U.; Darendeliler, M. Skeletal effects of bite jumping therapy on the mandible–removable vs. fixed functional appliances. Orthod. Craniofacial Res. 2005, 8, 2–10. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Verikokos, C.; Perrea, D.; Alexiou, K.; Gizani, S.; Tsolakis, A.I. Effect of Diet Consistency on Rat Mandibular Growth: A Geometric Morphometric and Linear Cephalometric Study. Biology 2022, 11, 901. [Google Scholar] [CrossRef]
- Tulloch, J.F.C.; Proffit, W.R.; Phillips, C. Outcomes in a 2-phase randomized clinical trial of early class II treatment. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 657–667. [Google Scholar] [CrossRef]
- Luder, H.V. Effects of activator treatment-evidence for the occurrence of two different types of reaction. Eur. J. Orthod. 1981, 3, 205–222. [Google Scholar] [CrossRef]
- Pancherz, H. The effect of continuous bite jumping on the dentofacial complex: A follow-up study after Herbst appliance treatment of Class II malocclusion. Eur. J. Orthod. 1981, 3, 4960. [Google Scholar] [CrossRef]
- Forsberg, C.; Odenrick, L. Skeletal and soft tissue response to activator treatment. Eur. J. Orthod. 1981, 3, 241–253. [Google Scholar] [CrossRef]
- Rabie, A.B.; Al-Kalaly, A. Does the degree of advancement during functional appliance therapy matter? Eur. J. Orthod. 2008, 30, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, D.; Santos, M.F.; Kimura, E.T. Propulsive appliance stimulates the synthesis of insulin-like growth factors I and II in the mandibular condylar cartilage of young rats. Arch. Oral Biol. 2003, 48, 635–642. [Google Scholar] [CrossRef]
- Marques, M.R.; Hajjar, D.; Crema, V.O.; Kimura, E.T.; Santos, M.F. A mandibular propulsive appliance modulates collagen-binding integrins distribution in the young rat condylar cartilage. Biorheology 2006, 43, 293–302. [Google Scholar]
- Smith, R.L.; Carter, D.R.; Schurman, D.J. Pressure and shear differentially alter human articular chondrocyte metabolism: A review. Clin. Orthop. Relat. Res. 2004, 427, S89–S95. [Google Scholar]
- Tang, G.H.; Rabie, A.B.; Hägg, U. Indian hedgehog: A mechanotransduction mediator in condylar cartilage. J. Dent. Res. 2004, 83, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Pirttiniemi, P.; Kantomaa, T.; Sorsa, T. Effect of decreased loading on the metabolic activity of the mandibular condylar cartilage in the rat. Eur. J. Orthod. 2004, 26, 1–5. [Google Scholar] [CrossRef]
- Loeser, R.F. Chondrocyte integrin expression and function. Biorheology 2000, 37, 109–116. [Google Scholar] [PubMed]
- McMahon, A.P. More surprises in the Hedgehog signaling pathway. Cell 2000, 100, 185–188. [Google Scholar] [CrossRef]
- Rabie, A.B.; Tang, G.H.; Hägg, U. Cbfa1 couples chondrocytes maturation and endochondral ossification in rat mandibular condylar cartilage. Arch. Oral Biol. 2004, 49, 109–118. [Google Scholar] [CrossRef]
- Shen, G.; Rabie, A.B.; Zhao, Z.H.; Kaluarachchi, K. Forward deviation of the mandibular condyle enhances endochondral ossification of condylar cartilage indicated by increased expression of type X collagen. Arch. Oral Biol. 2006, 51, 315–324. [Google Scholar] [CrossRef]
- Woodside, D.G.; Metaxas, A.; Altuna, G. The influence of functional appliance therapy on glenoid fossa remodeling. Am. J. Orthod. Dentofac. Orthop. 1987, 92, 181–198. [Google Scholar] [CrossRef]
- Hinton, R.J.; McNamara, J.A., Jr. Temporal bone adaptations in response to protrusive function in juvenile and young adult rhesus monkeys (Macaca mulatta). Eur. J. Orthod. 1984, 6, 155–174. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [Updated March 2011]. The Cochrane Collaboration. 2011. Available online: www.cochrane-handbook.org (accessed on 13 June 2021).
- Wang, S.; Ye, L.; Li, M.; Zhan, H.; Ye, R.; Li, Y.; Zhao, Z. Effects of growth hormone and functional appliance on mandibular growth in an adolescent rat model. Angle Orthod. 2018, 88, 624–631. [Google Scholar] [CrossRef]
- Oksayan, R.; Sokucu, O.; Ucuncu, N. Effects of bite-jumping appliances on mandibular advancement in growing rats: A radiographic study. Eur. J. Dent. 2014, 8, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Owtad, P.; Potres, Z.; Shen, G.; Petocz, P.; Darendeliler, M.A. A histochemical study on condylar cartilage and glenoid fossa during mandibular advancement. Angle Orthod. 2011, 81, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Tewson, D.H.; Heath, J.K.; Meikle, M.C. Biochemical and autoradiographical evidence that anterior mandibular displacement in the young growing rat does not stimulate cell proliferation or matrix formation at the mandibular condyle. Arch. Oral Biol. 1988, 33, 99–107. [Google Scholar] [CrossRef]
- Tonge, E.A.; Heath, J.K.; Meikle, M.C. Anterior mandibular displacement and condylar growth. An experimental study in the rat. Am. J. Orthod. 1982, 82, 277–287. [Google Scholar] [CrossRef]
- Marques, M.R.; Hajjar, D.; Franchini, K.G.; Moriscot, A.S.; Santos, M.F. Mandibular appliance modulates condylar growth through integrins. J. Dent. Res. 2008, 87, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Rabie, A.B.; She, T.T.; Hägg, U. Functional appliance therapy accelerates and enhances condylar growth. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 40–48. [Google Scholar] [CrossRef]
- Erlebacher, A.; Filvaroff, E.H.; Gitelman, S.E.; Derynck, R. Toward a molecular understanding of skeletal development. Cell 1995, 80, 371–378. [Google Scholar] [CrossRef]
- Xiong, H.; Rabie, M.B.; Hagg, U. Neovascularization and mandibular condylar bone remodelling in adult rats under mechanical strain. Front. Biosci. 2005, 10, 74–82. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Seko, Y.; Fujikura, H.; Pang, J.; Tokoro, T.; Shimokawa, H. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Investig. Ophthalmol. Vis. Sci. 1999, 40, 3287–3291. [Google Scholar]
- Seko, Y.; Takahashi, M.; Shibuya, M.; Yazaki, Y. Pulsatile stretch stimulates vascular endothelial growth factor (VEGF) secretion by cultured rat cardiac myocytes. Biochem. Biophys. Res. Commun. 1999, 254, 462–465. [Google Scholar] [CrossRef]
- Rabie, A.B.; Leung, F.Y.; Chayanupatkul, A.; Hagg, U. The correlation between neovascularization and bone formation in the condyle during forward mandibular positioning. Angle Orthod. 2002, 72, 431–438. [Google Scholar] [PubMed]
- Milauer, B.; Wizigmann-Voos, S.; Schnurch, H.; Martinez, R.; Moller, N.P.; Risau, W.; Ullrich, A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulatorof vasculogenesis and angiogenesis. Cell 1993, 72, 835–846. [Google Scholar] [CrossRef]
- De Vries, C.; Escobedo, J.A.; Ueno, H.; Houck, K.; Ferrara, N.; Williams, L.T. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992, 255, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Carlevaro, M.F.; Cermelli, S.; Cancedda, R.; Descalzi Cancedda, F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: Auto-paracrine role during endochondral bone formation. J. Cell Sci. 2000, 113, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, A.I.; Spyropoulos, M.N. An appliance designed for experimental mandibular hyperpropulsion in rats. Eur. J. Orthod. 1997, 19, 1–7. [Google Scholar] [CrossRef]
- Hiiemae, K.M.; Ardran, G.M. A cinefluorographic study of mandibular movement during feedin in the rat. J. Zool. 1968, 154, 139–154. [Google Scholar] [CrossRef]
- Turner, C.H.; Forwood, M.R.; Rho, J.Y.; Yoshikawa, T. Mechanical loading thresholds for lamellar and woven bone formation. J. Bone Min. Res. 1994, 9, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Lyros, I.; Ferdianakis, E.; Halazonetis, D.; Lykogeorgos, T.; Alexiou, A.; Alexiou, K.-E.; Georgaki, M.; Vardas, E.; Yfanti, Z.; Tsolakis, A.I. Three-Dimensional Analysis of Posterior Mandibular Displacement in Rats. Vet. Sci. 2022, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Lyros, I.; Makrygiannakis, M.A.; Lykogeorgos, T.; Ferdianakis, E.; Tsolakis, A.I. Posterior Mandibular Displacement—A Systematic Review Based on Animal Studies. Animals 2021, 11, 823. [Google Scholar] [CrossRef] [PubMed]
Population | Growing Rats |
---|---|
Intervention | Functional appliances |
Comparison | Control group |
Outcomes | Prospective studies |
Study design |
|
Article | Sample | Intervention | Method of Assessment | Results |
---|---|---|---|---|
Wang et al. 2018 [21] | 40 6-week-old female Wistar rats 4 groups:
| Functional appliance (inclined plane on upper incisors and occlusal plane on lower incisors) and growth hormone used. |
| Experimental groups had statistically significant differences in mandibular growth with the control group. No differences among experimental groups. |
Rabie et al. 2008 [8] | 335 rats
| Bite-jumping appliance: inclined planes bonded on both upper and lower incisors | Immunohistology | 4mm protrusion group showed more bone formation than the 2mm group and the control group. |
Owtad et al. 2011 [22] | 55 24-days-old female Sprague–Dawley rats | Crown former on lower incisors that caused a mandibular forward and downward positioning. | Immunohistology (FFG8) | FFG8 expression greater in condyle and glenoid fossa of experimental group, thus concluding bone formation. Condylar cartilage depicts endochondral ossification, whereas glenoid fossa intramembranous ossification. |
Oksayan et al. 2014 [23] | 24 8-week-old male Wistar albino rats | Bite-jumping appliance on mandibular incisors (3.5 mm anterior displacement) | Lateral cephalometric X-ray | Increased mandibular and condylar growth but not in the vertical dimension. |
Tewson et al. 1988 [24] | 114 male 4-week-old Lister Hood and Sprague–Dawley rats | Removable bite plate retainer 10 h a day (2 mm anterior displacement, 3 mm inferior) |
| No differences in control and experimental groups. |
Tonge et al. 1982 [25] | 55 female Lister Hood rats | Cast gold bite plane on upper incisors and stainless-steel mesh with elastics | Histological analysis | Differences observed only 30 days after the beginning of experiment. |
Marques et al. 2008 [10] | 56 28-day-old male Wistar rats | Inclined plane 6 h a day |
|
|
Shen et al. 2006 [17] |
| Bite-jumping appliance on upper incisors (3.5 mm forward positioning) | Histological analysis | Condylar forward positioning results in enhanced maturation of chondrocytes and increased type X collagen synthesis. |
Rabie et al. 2003 [26] | 160 5-week-old female Sprague–Dawley rats | Bite-jumping appliances on upper incisors | Histological analysis | Forward mandibular positioning accelerates and enhances chondrocyte differentiation and cartilage formation. |
Hajjar et al. 2003 [9] | 70 21-day-old Wistar rats |
| Histological analysis | Increase of IGF I and IGF II showing their important role in cell differentiation and remodeling of the mandible. |
Studies | Selection | Performance | Detection | Attrition | Reporting |
---|---|---|---|---|---|
Wang et al. 2018 [21] | Low | High | High | Low | Low |
Rabie et al. 2008 [8] | Low | High | High | Low | Low |
Owtad et al. 2011 [23] | Low | High | Low | High | Low |
Oksayan et al. 2014 [22] | Low | High | Unclear | Low | Unclear |
Tewson et al. 1988 [24] | High | High | Low | Unclear | Low |
Tonge et al. 1982 [25] | High | High | High | Low | Unclear |
Marques et al. 2008 [10] | Unclear | High | High | Low | Low |
Shen et al. 2006 [17] | Low | High | Low | Low | Low |
Rabie et al. 2003 [26] | Low | High | High | Low | Low |
Hajjar et al. 2003 [9] | High | High | High | Low | Unclear |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdianakis, E.; Lyros, I.; Tsolakis, I.A.; Alexiou, A.; Alexiou, K.; Tsolakis, A.I. Anterior Mandibular Displacement in Growing Rats—A Systematic Review. Animals 2022, 12, 2059. https://doi.org/10.3390/ani12162059
Ferdianakis E, Lyros I, Tsolakis IA, Alexiou A, Alexiou K, Tsolakis AI. Anterior Mandibular Displacement in Growing Rats—A Systematic Review. Animals. 2022; 12(16):2059. https://doi.org/10.3390/ani12162059
Chicago/Turabian StyleFerdianakis, Efstratios, Ioannis Lyros, Ioannis A. Tsolakis, Antigoni Alexiou, Konstantina Alexiou, and Apostolos I. Tsolakis. 2022. "Anterior Mandibular Displacement in Growing Rats—A Systematic Review" Animals 12, no. 16: 2059. https://doi.org/10.3390/ani12162059
APA StyleFerdianakis, E., Lyros, I., Tsolakis, I. A., Alexiou, A., Alexiou, K., & Tsolakis, A. I. (2022). Anterior Mandibular Displacement in Growing Rats—A Systematic Review. Animals, 12(16), 2059. https://doi.org/10.3390/ani12162059