Effects of DL and L-Methionine on Growth Rate, Feather Growth, and Hematological Parameters of Tetra-SL Layers from 1–28 Days of Age
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Dietary Treatments
2.2. Measurements
2.3. Collection of Blood and Hematological Analysis
2.4. Statistical Analysis
3. Results
3.1. Growth Rate
3.2. Feather Development
3.3. Hematological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro, F.L.D.S.; Kim, W.K. Secondary Functions of Arginine and Sulfur Amino Acids in Poultry Health: Review. Animals 2020, 10, 2106. [Google Scholar] [CrossRef] [PubMed]
- Bunchasak, C. Role of Dietary Methionine in Poultry Production. J. Poult. Sci. 2009, 46, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, A.; Herbert, U.; Miskel, D.; Heinemann, C.; Braun, C.; Dohlen, S.; Zeitz, J.O.; Eder, K.; Saremi, B.; Kreyenschmidt, J. Effect of methionine supplementation in chicken feed on the quality and shelf life of fresh poultry meat. Poult. Sci. 2017, 96, 2853–2861. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.S.M.; Sousa, L.S.; Nogueira, F.A.; Vaz, D.P.; Saldanha, M.M.; Triginelli, M.V.; Pinto, M.F.V.S.; Baião, N.C.; Lara, L.J.C. Digestible Methionine+cysteine in the Diet of Commercial Layers and Its Influence on the Performance, Quality, and Amino Acid Profile of Eggs and Economic Evaluation. Poult. Sci. 2018, 97, 2044–2052. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Tan, X.; Zhao, G.; Chen, Y.; Zhao, D.; Li, W.; Zheng, M.; Wen, J. Maternal dietary methionine supplementation influences egg production and the growth performance and meat quality of the offspring. Poult. Sci. 2020, 99, 3550–3556. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Jiang, X.Y.; Ding, L.R.; Wang, T.; Zhou, Y.M. Effects of dietary methionine on growth performance, meat quality and oxidative status of breast muscle in fast- and slow-growing broilers. Poult. Sci. 2017, 96, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wang, Y.; Liu, W.; Ju, T.; Zhan, X. Effects of different methionine sources on production and reproduction performance, egg quality and serum biochemical indices of broiler breeders. Asian-Australasian J. Anim. Sci. 2016, 30, 828–833. [Google Scholar] [CrossRef]
- Xie, M.; Hou, S.S.; Huang, W.; Zhao, L.; Yu, J.Y.; Li, W.Y.; Wu, Y.Y. Interrelationship Between Methionine and Cystine of Early Peking Ducklings. Poult. Sci. 2004, 83, 1703–1708. [Google Scholar] [CrossRef]
- Zeng, Q.F.; Zhang, Q.; Chen, X.; Doster, A.; Murdoch, R.; Makagon, M.; Gardner, A.; Applegate, T.J. Effect of Dietary Methionine Content on Growth Performance, Carcass Traits, and Feather Growth of Pekin Duck from 15 to 35 Days of Age. Poult. Sci. 2015, 94, 1592–1599. [Google Scholar] [CrossRef]
- Chen, M.J.; Xie, W.Y.; Pan, N.X.; Wang, X.Q.; Yan, H.C.; Gao, C.Q. Methionine Improves Feather Follicle Development in Chick Embryos by Activating Wnt/β-Catenin Signaling. Poult. Sci. 2020, 99, 4479–4487. [Google Scholar] [CrossRef]
- Jankowski, J.; Tykałowski, B.; Ognik, K.; Koncicki, A.; Kubińska, M.; Zduńczyk, Z. The Effect of Different Dietary Levels of DL-Methionine and DL-Hydroxy Analogue on the Antioxidant Status of Young Turkeys Infected with the Haemorrhagic Enteritis Virus. BMC Vet. Res. 2018, 14, 404. [Google Scholar] [CrossRef]
- Meirelles, H.; Albuquerque, R.; Borgatti, L.; Souza, L.; Meister, N.; Lima, F. Performance of Broilers Fed with Different Levels of Methionine Hydroxy Analogue and DL-Methionine. Rev. Bras. Ciênc. Avícola 2003, 5, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Macelline, S.P.; Toghyani, M.; Chrystal, P.V.; Selle, P.H.; Yun, S. Amino Acid Requirements for Laying Hens: A Comprehensive Review. Poult. Sci. 2021, 100, 101036. [Google Scholar] [CrossRef]
- Millecam, J.; Khan, D.R.; Dedeurwaerder, A.; Saremi, B. Optimal Methionine plus Cystine Requirements in Diets Supplemented with L-Methionine in Starter, Grower and Finisher Broilers. Poult. Sci. 2020, 100, 910–917. [Google Scholar] [CrossRef]
- Tian, Q.Y.; Zeng, Z.K.; Zhang, Y.X.; Long, S.F.; Piao, X.S. Effect of L- or DL-Methionine Supplementation on Nitrogen Retention, Serum Amino Acid Concentrations and Blood Metabolites Profile in Starter Pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Martín-Venegas, R.; Geraert, P.A.; Ferrer, R. Conversion of the Methionine Hydroxy Analogue Dl-2-Hydroxy-(4-Methylthio) Butanoic Acid to Sulfur-Containing Amino Acids in the Chicken Small Intestine1 1The Present Study Was Supported by Project 3891 from the Fundació Bosch i Gimpera and Adisseo France S.A.S. and by Grant 2005-SGR-0632 from the Generalitat de Catalunya. R. Martín-Venegas Holds a Recerca i Docència Fellowship from the Universitat de Barcelona. Poult. Sci. 2006, 85, 1932–1938. [Google Scholar] [CrossRef]
- Ruan, D.; Fouad, A.M.; Fan, Q.; Xia, W.; Wang, S.; Chen, W.; Lin, C.; Wang, Y.; Yang, L.; Zheng, C. Effects of Dietary Methionine on Productivity, Reproductive Performance, Antioxidant Capacity, Ovalbumin and Antioxidant-Related Gene Expression in Laying Duck Breeders. Br. J. Nutr. 2018, 119, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Kadam, M.M.; Barekatain, M.R.; Bhanja, S.K.; Iji, P.A. Prospects of in Ovo Feeding and Nutrient Supplementation for Poultry: The Science and Commercial Applications—A Review. J. Sci. Food Agric. 2013, 93, 3654–3661. [Google Scholar] [CrossRef]
- Agostini, P.S.; Dalibard, P.; Mercier, Y.; Van der Aar, P.; Van der Klis, J.D. Comparison of Methionine Sources around Requirement Levels Using a Methionine Efficacy Method in 0 to 28 Day Old Broilers. Poult. Sci. 2016, 95, 560–569. [Google Scholar] [CrossRef]
- Kratzer, D.D.; Littell, R.C. Appropriate Statistical Methods to Compare Dose Responses of Methionine Sources1. Poult. Sci. 2006, 85, 947–954. [Google Scholar] [CrossRef]
- Lemme, A.; Hoehler, D.; Brennan, J.J.; Mannion, P.F. Relative Effectiveness of Methionine Hydroxy Analog Compared to DL-Methionine in Broiler Chickens. Poult. Sci. 2002, 81, 838–845. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, J.; Cao, J.; Zhang, B.; Chen, Y.; Xie, M.; Zhou, Z.; Hou, S. Effect of Dietary L-Methionine Supplementation on Growth Performance, Carcass Traits, and Plasma Parameters of Starter Pekin Ducks at Different Dietary Energy Levels. Animals 2021, 11, 144. [Google Scholar] [CrossRef]
- Shen, Y.B.; Ferket, P.; Park, I.; Malheiros, R.D.; Kim, S.W. Effects of Feed Grade L-Methionine on Intestinal Redox Status, Intestinal Development, and Growth Performance of Young Chickens Compared with Conventional DL-Methionine. J. Anim. Sci. 2015, 93, 2977–2986. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.N.; Xu, R.S.; Min, L.; Ruan, D.; Kim, H.Y.; Hong, Y.G.; Chen, W.; Wang, S.; Xia, W.G.; Luo, X.; et al. Effects of L-Methionine on Growth Performance, Carcass Quality, Feather Traits, and Small Intestinal Morphology of Pekin Ducks Compared with Conventional DL-Methionine. Poult. Sci. 2019, 98, 6866–6872. [Google Scholar] [CrossRef]
- Ameha, N.; Girma, M.; Mulatu, K. Effects of Feeding Different Levels of Baker s Yeast on Performance and Hematological Parameters in Broiler Chickens. J. Worlds Poult. Res. 2019, 9, 38–49. [Google Scholar] [CrossRef]
- Martínez, Y.; Almendares, C.I.; Hernández, C.J.; Avellaneda, M.C.; Urquía, A.M.; Valdivié, M. Effect of Acetic Acid and Sodium Bicarbonate Supplemented to Drinking Water on Water Quality, Growth Performance, Organ Weights, Cecal Traits and Hematological Parameters of Young Broilers. Animals 2021, 11, 1865. [Google Scholar] [CrossRef] [PubMed]
- Tetra-SL LL Commercial Layer Management Guide. Available online: http://www.babolnatetra.com/en/home/ (accessed on 7 October 2021).
- Kelly, L.M.; Alworth, L.C. Techniques for Collecting Blood from the Domestic Chicken. Lab Anim. 2013, 42, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting Outliers: Do Not Use Standard Deviation around the Mean, Use Absolute Deviation around the Median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.B.; Weaver, A.C.; Kim, S.W. Effect of Feed Grade L-Methionine on Growth Performance and Gut Health in Nursery Pigs Compared with Conventional DL-Methionine. J. Anim. Sci. 2014, 92, 5530–5539. [Google Scholar] [CrossRef] [Green Version]
- Dilger, R.N.; Baker, D.H. Dl-Methionine Is as Efficacious as l-Methionine, but Modest l-Cystine Excesses Are Anorexigenic in Sulfur Amino Acid-Deficient Purified and Practical-Type Diets Fed to Chicks. Poult. Sci. 2007, 86, 2367–2374. [Google Scholar] [CrossRef]
- Jankowski, J.; Ognik, K.; Kubińska, M.; Czech, A.; Juśkiewicz, J.; Zduńczyk, Z. The Effect of DL-, L-Isomers and DL-Hydroxy Analog Administered at 2 Levels as Dietary Sources of Methionine on the Metabolic and Antioxidant Parameters and Growth Performance of Turkeys. Poult. Sci. 2017, 96, 3229–3238. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Pasquetti, T.; Malheiros, R.D.; Ferket, P.R.; Kim, S.W. Effects of Supplemental L-Methionine on Growth Performance and Redox Status of Turkey Poults Compared with the Use of DL-Methionine. Poult. Sci. 2018, 97, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, N.-Y.; Pan, Y.-X.; Zhu, L.-Y.; Batonon-Alavo, D.I.; Ma, L.-B.; Khalil, M.M.; Qi, D.; Sun, L.-H. Efficacy of 2-Hydroxy-4-Methylthiobutanoic Acid Compared to DL-Methionine on Growth Performance, Carcass Traits, Feather Growth, and Redox Status of Cherry Valley Ducks. Poult. Sci. 2018, 97, 3166–3175. [Google Scholar] [CrossRef] [PubMed]
- Talebi, A.; Asri-Rezaei, S.; Rozeh-Chai, R.; Sahraei, R. Comparative Studies on Haematological Values of Broiler Strains (Ross, Cobb, Arbor-Acres and Arian). Int. J. Poult. Sci. 2005, 4, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Tombarkiewicz, B.; Trzeciak, K.; Bojarski, B.; Lis, M.W. The Effect of Methionine and Folic Acid Administered in Ovo on the Hematological Parameters of Chickens (Gallus Gallus Domesticus). Poult. Sci. 2020, 99, 4578–4585. [Google Scholar] [CrossRef]
- Toue, S.; Kodama, R.; Amao, M.; Kawamata, Y.; Kimura, T.; Sakai, R. Screening of Toxicity Biomarkers for Methionine Excess in Rats. J. Nutr. 2006, 136, 1716S–1721S. [Google Scholar] [CrossRef] [Green Version]
- Maoba, S.; Ogbuewu, I.P.; Oguttu, J.W.; Mbajiorgu, C.A. Haematological Profiles of Indigenous Boschveld Chickens on Probiotic-Yeast (Saccharomyces Cerevisiae) Supplementation. Comp. Clin. Pathol. 2021, 30, 293–299. [Google Scholar] [CrossRef]
- Simaraks, S.; Chinrasri, O.; Aengwanich, W. Hematological, Electrolyte and Serum Biochemical Values of the Thai Indigenous Chickens (Gallus Domesticus) in Northeastern, Thailand. J Sci Technol 2004, 26, 425–430. Available online: https://rdo.psu.ac.th/sjst/journal/26-3/14Thai-chicken.pdf (accessed on 30 June 2022).
- Ding, B.; Zheng, J.; Wang, X.; Zhang, L.; Sun, D.; Xing, Q.; Pirone, A.; Fronte, B. Effects of Dietary Yeast Beta-1,3-1,6-Glucan on Growth Performance, Intestinal Morphology and Chosen Immunity Parameters Changes in Haidong Chicks. Asian-Australas. J. Anim. Sci. 2019, 32, 1558–1564. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; GayatriAcharya, S.M. Comparative Haematology And Biochemical Parametrs Of Indigenous And Broiler Chicken. Int. J. Sci. Technol. Res. 2020, 9, 972–979. Available online: https://www.ijstr.org/final-print/apr2020/Comparative-Haematology-And-Biochemical-Parametrs-Of-Indigenous-And-Broiler-Chicken.pdf (accessed on 30 June 2022).
- Campbell, T.W. Hematology of Birds. In Veterinary Hematology and Clinical Chemistry, 2nd ed.; Thrall, M.A., Weiser, G., Allison, R., Campbell, T.M., Eds.; Wiley-Blackwell: Ames, IA, USA, 2012; pp. 238–376. [Google Scholar]
- Chen, N.N.; Liu, B.; Xiong, P.W.; Guo, Y.; He, J.N.; Hou, C.C.; Ma, L.X.; Yu, D.Y. Safety Evaluation of Zinc Methionine in Laying Hens: Effects on Laying Performance, Clinical Blood Parameters, Organ Development, and Histopathology. Poult. Sci. 2018, 97, 1120–1126. [Google Scholar] [CrossRef]
- Chukwudi, A.P.; Solomon, K.A.; Camilo, O.-R.I.; Eiko, A. Comparative Effect of Different Detoxified Rubber Seed Meal on Haematological and Serum Biochemical Indices of Broilers. J. Anim. Health Prod. 2017, 5, 50–57. [Google Scholar] [CrossRef]
- Odunitan-Wayas, F.; Kolanisi, U.; Chimonyo, M. Haematological and Serum Biochemical Responses of Ovambo Chickens Fed Provitamin A Biofortified Maize. Braz. J. Poult. Sci. 2018, 20, 425–434. [Google Scholar] [CrossRef]
- Adeyemo, G.O.; Ologhobo, A.D.; Adebiyi, O.A. The Effect of Graded Levels of Dietary Methionine on the Haematology and Serum Biochemistry of Broilers. Int. J. Poult. Sci. 2010, 9, 158–161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Saremi, B.; Gilbert, E.R.; Wong, E.A. Physiological and Biochemical Aspects of Methionine Isomers and a Methionine Analogue in Broilers. Poult. Sci. 2017, 96, 425–439. [Google Scholar] [CrossRef]
Component | DL-Met | L-Met | |||||
---|---|---|---|---|---|---|---|
90% | 100% | 110% | 90% | 100% | 110% | ||
Corn | 59.79 | 59.84 | 59.88 | 59.79 | 59.84 | 59.88 | |
Soybean meal, 46% | 27.99 | 27.92 | 27.86 | 27.99 | 27.92 | 27.86 | |
Fishmeal 65% | 5 | 5 | 5 | 5 | 5 | 5 | |
Sunflower oil | 3.64 | 3.62 | 3.6 | 3.64 | 3.62 | 3.6 | |
Limestone | 1.13 | 1.13 | 1.13 | 1.13 | 1.13 | 1.13 | |
MCP | 1.61 | 1.61 | 1.61 | 1.61 | 1.61 | 1.61 | |
Salt | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | |
L-Lys | - | - | - | - | - | - | |
DL-Met | 0.04 | 0.08 | 0.12 | - | - | - | |
L-Met | - | - | - | 0.04 | 0.08 | 0.12 | |
Vit. and mi. premix a | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
Total | 100 | 100 | 100 | 100 | 100 | 100 | |
Requirement | Calculated nutrient content | ||||||
AMEn, MJ/kg | 12.35 | 12.35 | 12.35 | 12.35 | 12.35 | 12.35 | 12.35 |
CP | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
sidLys | 1.00 | 1.008 | 1.007 | 1.005 | 1.008 | 1.007 | 1.005 |
sidMet | 0.40 | 0.36 | 0.40 | 0.44 | 0.36 | 0.40 | 0.44 |
sidThr | 0.63 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
sidTrp | 0.20 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 |
Ca | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Available P | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
Na | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
Met/Lys | 0.40 | 0.357 | 0.397 | 0.438 | 0.357 | 0.397 | 0.438 |
Thr/Lys | 0.63 | 0.647 | 0.647 | 0.647 | 0.647 | 0.647 | 0.647 |
Trp/Lys | 0.20 | 0.413 | 0.414 | 0.414 | 0.413 | 0.414 | 0.414 |
Treatment | BW on Day 1, g | BW on Day 7, g | ADG, g/day | BW on Day 14, g | ADG, g/day | BW on Day 21, g | ADG, g/day | BW on Day 28, g | ADG, g/day | ADG, g/day | |
---|---|---|---|---|---|---|---|---|---|---|---|
Effect of Met source | Week 1 | Week 2 | Week 3 | Week 4 | Overall | ||||||
DL-Met | 42.39 | 78.22 | 5.11 | 124.05 | 6.50 | 205.01 | 11.57 | 271.05 | 10.34 | 8.39 | |
L-Met | 42.38 | 76.77 | 5.04 | 117.86 | 6.03 | 197.37 | 11.41 | 265.85 | 9.48 | 8.02 | |
Effect of Met level | |||||||||||
90% | 42.36 | 77.58 | 5.02 | 121.88 | 6.75 | 203.69 | 11.69 | 260.83 | 8.38 | 7.99 | |
100% | 42.40 | 78.27 | 5.21 | 120.59 | 5.97 | 198.27 | 10.67 | 263.15 | 9.50 | 8.04 | |
110% | 42.40 | 76.71 | 4.98 | 120.55 | 6.16 | 202.04 | 12.15 | 281.30 | 11.74 | 8.59 | |
Effect of interaction source x level | |||||||||||
DL-Met | 90% | 42.35 | 77.86 | 5.04 | 125.63 | 6.69 | 205.59 | 11.42 | 250.46 a | 8.22 a | 7.88 |
100% | 42.41 | 77.68 | 5.04 | 120.76 | 6.16 | 197.85 | 11.02 | 255.49 a,b | 8.23 a | 7.61 | |
110% | 42.41 | 79.06 | 5.24 | 125.78 | 6.67 | 211.61 | 12.26 | 306.87 b | 14.56 b | 9.68 | |
L-Met | 90% | 42.37 | 77.36 | 5.00 | 118.13 | 6.84 | 201.67 | 12.04 | 270.5 a,b | 8.52 a,b | 7.90 |
100% | 42.37 | 79.00 | 5.39 | 120.40 | 5.71 | 198.78 | 10.20 | 271.33 a,b | 10.76 a,b | 8.47 | |
110% | 42.38 | 74.03 | 4.72 | 115.19 | 5.65 | 191.84 | 12.00 | 255.72 a,b | 8.91 a,b | 7.49 | |
RMSE | 2.96 | 7.81 | 0.58 | 18.84 | 0.87 | 34.85 | 2.05 | 51.07 | 2.62 | 1.27 | |
p-value | Met sources | 0.984 | 0.403 | 0.783 | 0.120 | 0.260 | 0.304 | 0.867 | 0.638 | 0.404 | 0.504 |
Met levels | 0.998 | 0.676 | 0.692 | 0.948 | 0.217 | 0.839 | 0.388 | 0.240 | 0.064 | 0.607 | |
Interaction | 0.999 | 0.281 | 0.351 | 0.558 | 0.442 | 0.485 | 0.813 | 0.013 | 0.017 | 0.067 | |
Model | 1.000 | 0.563 | 0.691 | 0.580 | 0.318 | 0.704 | 0.792 | 0.040 | 0.022 | 0.214 |
Effect of Met Source | Feather length on Day 7 (mm) | Feather Length on Day 14 (mm) | Feather Length on Day 21 (mm) | Feather Length on Day 28 (mm) | |
---|---|---|---|---|---|
DL-Met | 38.58 | 57.50 | 73.80 | 84.94 | |
L-Met | 36.67 | 55.99 | 72.74 | 84.24 | |
Effect of Met level | |||||
90% | 36.32 | 56.46 | 72.98 | 84.98 | |
100% | 39.71 | 57.88 | 73.80 | 83.87 | |
110% | 36.85 | 55.92 | 73.08 | 84.96 | |
Effect of interaction source x level | |||||
DL-Met | 90% | 35.37 | 55.76 | 73.37 | 84.96 |
100% | 40.38 | 58.13 | 73.09 | 83.14 | |
110% | 39.99 | 58.62 | 74.96 | 86.72 | |
L-Met | 90% | 37.26 | 57.20 | 72.54 | 85.01 |
100% | 39.04 | 57.62 | 74.51 | 84.59 | |
110% | 33.71 | 53.23 | 71.07 | 83.09 | |
RMSE | 7.07 | 5.24 | 3.83 | 4.34 | |
p-Value | Source | 0.190 | 0.170 | 0.171 | 0.431 |
Level | 0.125 | 0.313 | 0.625 | 0.522 | |
Source x Level | 0.072 | 0.033 | 0.027 | 0.063 | |
GLM-model | 0.053 | 0.052 | 0.080 | 0.187 |
RBC (1012/L) | Hb (g/dL) | Ht (%) | MCV (fL) | MCH (pg) | MCHC g/dL | Platelet (109/L) | WBC (109/L) | LYM (%) | MID (%) | GRAN (%) | LYM (109 cells/L) | MID (109 cells/L) | GRAN (109 cells/L) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Effect of Met source | |||||||||||||||
Dl Met | 2.99 b | 11.91 b | 38.42 b | 127.66 | 39.5 | 30.76 | 2.70 a | 84.49 b | 45.09 a | 13.04 | 41.77 b | 38.35 b | 11.06 b | 36.15 b | |
L Met | 2.77 a | 10.99 a | 35.67 a | 127.70 | 39.11 | 30.84 | 8.00 b | 77.39 a | 47.45 b | 12.97 | 40.05 a | 36.06 a | 9.92 a | 31.85 a | |
Effect of Met level | |||||||||||||||
90% | 2.94 a,b | 11.4 a,b | 36.56 a,b | 126.79 | 38.62 | 30.70 | 5.54 | 78.82 a | 46.50 b | 13.17 | 40.47 a,b | 35.41 a | 10.02 a | 32.52 a | |
100% | 2.97 b | 11.96b | 38.77 b | 129.21 | 39.69 | 30.68 | 3.86 | 86.67 b | 44.57 a | 12.85 | 42.36 b | 39.21 b | 11.27 b | 38.01 b | |
110% | 2.76 a | 11.05 a | 35.62 a | 126.55 | 39.56 | 31.01 | 6.76 | 78.94 a | 47.61 b | 13.02 | 39.97 a | 37.04 a,b | 10.22 a,b | 31.69 a | |
Effect of interaction source x level | |||||||||||||||
DL-Met | 90% | 2.97 | 11.49 | 36.14 a,b | 126.53 | 38.85 | 30.69 | 2.52 | 76.54 a,b | 46.30 a | 13.18 | 40.59 | 35.32 | 10.05 | 31.17 a,b |
100% | 3.09 | 12.51 | 40.17 b | 128.03 | 39.73 | 30.98 | 3.22 | 92.34 c | 43.56 a | 12.97 | 42.90 | 40.13 | 11.75 | 40.15 c | |
110% | 2.91 | 11.68 | 37.99 b | 128.14 | 39.77 | 30.60 | 2.33 | 86.83 b,c | 45.36 a | 13.00 | 41.65 | 39.59 | 11.22 | 36.42 b,c | |
L-Met | 90% | 2.91 | 11.32 | 36.81 a,b | 126.95 | 38.42 | 30.71 | 9.06 | 81.11a,b,c | 46.68 a | 13.15 | 40.36 | 35.48 | 9.99 | 33.87 b,c |
100% | 2.85 | 11.31 | 37.14 b | 130.58 | 39.64 | 30.39 | 4.50 | 82.13 b,c | 45.57 a | 12.71 | 41.72 | 38.29 | 10.70 | 35.52 b,c | |
110% | 2.54 | 10.15 | 32.31 a | 125.28 | 39.31 | 31.43 | 10.44 | 69.73 a | 50.24 b | 13.04 | 37.63 | 34.50 | 9.06 | 26.18 a | |
RMSE | 0.21 | 0.77 | 2.55 | 3.68 | 1.05 | 0.73 | 4.09 | 6.69 | 1.95 | 0.39 | 2.13 | 3.27 | 1.36 | 4.08 | |
p-Value | Met-Source | 0.004 | 0.001 | 0.005 | 0.981 | 0.365 | 0.715 | 0.001 | 0.003 | 0.001 | 0.512 | 0.014 | 0.044 | 0.004 | 0.005 |
Met-Levels | 0.016 | 0.013 | 0.007 | 0.170 | 0.049 | 0.470 | 0.310 | 0.009 | 0.001 | 0.124 | 0.012 | 0.023 | 0.015 | 0.001 | |
Source x Level | 0.240 | 0.086 | 0.024 | 0.259 | 0.893 | 0.073 | 0.124 | 0.001 | 0.020 | 0.586 | 0.090 | 0.146 | 0.065 | 0.002 | |
GLM -model | 0.006 | 0.001 | 0.001 | 0.282 | 0.182 | 0.225 | 0.004 | 0.0002 | 0.0001 | 0.357 | 0.006 | 0.016 | 0.002 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kachungwa Lugata, J.; Oláh, J.; Ozsváth, X.E.; Knop, R.; Angyal, E.; Szabó, C. Effects of DL and L-Methionine on Growth Rate, Feather Growth, and Hematological Parameters of Tetra-SL Layers from 1–28 Days of Age. Animals 2022, 12, 1928. https://doi.org/10.3390/ani12151928
Kachungwa Lugata J, Oláh J, Ozsváth XE, Knop R, Angyal E, Szabó C. Effects of DL and L-Methionine on Growth Rate, Feather Growth, and Hematological Parameters of Tetra-SL Layers from 1–28 Days of Age. Animals. 2022; 12(15):1928. https://doi.org/10.3390/ani12151928
Chicago/Turabian StyleKachungwa Lugata, James, János Oláh, Xénia Erika Ozsváth, Renáta Knop, Eszter Angyal, and Csaba Szabó. 2022. "Effects of DL and L-Methionine on Growth Rate, Feather Growth, and Hematological Parameters of Tetra-SL Layers from 1–28 Days of Age" Animals 12, no. 15: 1928. https://doi.org/10.3390/ani12151928
APA StyleKachungwa Lugata, J., Oláh, J., Ozsváth, X. E., Knop, R., Angyal, E., & Szabó, C. (2022). Effects of DL and L-Methionine on Growth Rate, Feather Growth, and Hematological Parameters of Tetra-SL Layers from 1–28 Days of Age. Animals, 12(15), 1928. https://doi.org/10.3390/ani12151928