Comparisons of Hematological and Biochemical Profiles in Brahman and Yunling Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Blood Collection and Detection
2.3. Parameters Detected
2.4. Statistical Analyses
3. Results
3.1. The Results of Hematology
3.2. The Comparisons of Blood Biochemical Indicators
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Franke, D.E. Breed and Heterosis Effects of American Zebu Cattle. J. Anim. Sci. 1980, 50, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, W.E.; Bidner, T.D.; Humes, P.E.; Franke, D.E.; Blouin, D.C. Cow-calf and feedlot performances of Brahman-derivative breeds1. J. Anim. Sci. 2002, 80, 3037–3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.W. Genetic and Biological Aspects of Zebu Adaptability. J. Anim. Sci. 1980, 50, 1201–1205. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Qu, K.; Li, F.; Jia, P.; Chen, Q.; Chen, N.; Zhang, J.; Chen, H.; Huang, B.; Lei, C. Abundant Genetic Diversity of Yunling Cattle Based on Mitochondrial Genome. Animals 2019, 9, 641. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Han, Z.; Arbab, A.A.I.; Yang, Y.; Yang, Z. Effect of Aging Time on Meat Quality of Longissimus Dorsi from Yunling Cattle: A New Hybrid Beef Cattle. Animals 2020, 10, 1897. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.K.; Roychoudhury, R.; Saharia, J.; Borah, M.C.; Dutta, D.J.; Bhuyan, R.; Kalita, D. Impact of seasonal thermal stress on physiological and blood biochemical parameters in pigs under different dietary energy levels. Trop. Anim. Health Prod. 2018, 50, 1025–1032. [Google Scholar] [CrossRef]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Chirinos-Quintero, N.; Sánchez-Urdaneta, A. Evaluation of haematological, serum biochemical and histopathological parameters of growing rabbits fed Amaranthus dubius. J. Anim. Physiol. Anim. Nutr. 2018, 102, e12791. [Google Scholar] [CrossRef]
- Pérez-Rojas, J.G.; Mejía-Falla, P.A.; Navia, A.F.; Tarazona, A.M.; Pardo-Carrasco, S.C. Hematology and blood biochemistry profile of the freshwater stingray Potamotrygon magdalenae as a tool for population assessment in artificial environments. Braz. J. Biol. 2022, 82, e233780. [Google Scholar] [CrossRef]
- Bilhalva, L.C.; Winter, A.B.; Oberrather, K.; Toso, M.R.; Oliveira, T.A.; Almeida, B.A.; Soares, J.F.; Valle, S.F. Hematologic and biochemical reference intervals and blood cell morphology in South American pit vipers (Bothrops pubescens). Vet. Clin. Pathol. 2021, 50, 442–447. [Google Scholar] [CrossRef]
- Otomaru, K.; Wataya, K.; Uto, T.; Kasai, K. Blood biochemical values in Japanese Black calves in Kagoshima Prefecture, Japan. J. Vet. Med. Sci. 2016, 78, 301–303. [Google Scholar] [CrossRef] [Green Version]
- Mahima; Singh, K.V.; Verma, A.K.; Kumar, V.; Singh, S.K.; Roy, D. Hematological and Serum Biochemical Profile of Apparently Healthy Hariana Cattle Heifers in Northern India. Pak. J. Biol. Sci. 2013, 16, 1423–1425. [Google Scholar] [CrossRef] [PubMed]
- Dolka, B.; Włodarczyk, R.; Żbikowski, A.; Dolka, I.; Szeleszczuk, P.; Kluciński, W. Hematological parameters in relation to age, sex and biochemical values for mute swans (Cygnus olor). Vet. Res. Commun. 2014, 38, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, P.P.A.; Narciso, L.G.; Alcindo, J.F.; Deschk, M.; Ciarlini, P.C.; Dos Santos, P.S.P.; de Almeida, B.F.M. Evaluation of hematological, biochemical and oxidative stress profile in calves under propofol anesthesia. Vet. Res. Commun. 2022, 46, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.B.; Restrepo, M.A.; Auzenne, D.; Molina, K.; O’Sullivan, M.; Machado, M.V.; Cavanaugh, S.M. Mild to moderate overweight in dogs: Is there an impact on routine hematological and biochemical profiles, echocardiographic parameters and cardiac autonomic modulation? Vet. Res. Commun. 2022, 46, 527–535. [Google Scholar] [CrossRef]
- Rogers, S.; Doctor, A. Red Blood Cell Dysfunction in Critical Illness. Crit. Care Clin. 2020, 36, 267–292. [Google Scholar] [CrossRef]
- Stark, H.; Schuster, S. Comparison of various approaches to calculating the optimal hematocrit in vertebrates. J. Appl. Physiol. 2012, 113, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Maouia, A.; Rebetz, J.; Kapur, R.; Semple, J.W. The Immune Nature of Platelets Revisited. Transfus. Med. Rev. 2020, 34, 209–220. [Google Scholar] [CrossRef]
- Watson, S.P.; Harrison, P.; Halford, G.M. Platelets: The next decade. Platelets 2020, 31, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Joerin, L.; Kauschka, M.; Bonnländer, B.; Pischel, I.; Benedek, B.; Butterweck, V. Ficus carica Leaf Extract Modulates the Lipid Profile of Rats Fed with a High-Fat Diet through an Increase of HDL-C. Phytother. Res. 2014, 28, 261–267. [Google Scholar] [CrossRef]
- Bi, X.; Loo, Y.T.; Henry, C.J. Ultrasound measurement of intraabdominal fat thickness as a predictor of insulin resistance and low HDL cholesterol in Asians. Nutrition 2018, 55–56, 99–103. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Takizawa, S.; Ogawa, M. Plasma insulin, metabolite concentrations, and carcass characteristics of Japanese Black, Japanese Brown, and Holstein steers. J. Anim. Sci. 1997, 75, 3287–3293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caraceni, P.; Domenicali, M.; Tovoli, A.; Napoli, L.; Ricci, C.S.; Tufoni, M.; Bernardi, M. Clinical indications for the albumin use: Still a controversial issue. Eur. J. Intern. Med. 2013, 24, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Małkowski, P. Human albumin: Old, new, and emerging applications. Ann. Transpl. 2013, 18, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Gatta, A.; Verardo, A.; Bolognesi, M. Hypoalbuminemia. Intern. Emerg. Med. 2012, 7, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martinez, R.; Caraceni, P.; Bernardi, M.; Gines, P.; Arroyo, V.; Jalan, R. Albumin: Pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology 2013, 58, 1836–1846. [Google Scholar] [CrossRef]
- Hanigan, M.H. Gamma-glutamyl transpeptidase: Redox regulation and drug resistance. Adv. Cancer Res. 2014, 122, 103–141. [Google Scholar] [CrossRef] [Green Version]
- Xing, M.; Gao, M.; Li, J.; Han, P.; Mei, L.; Zhao, L. Characteristics of peripheral blood Gamma-glutamyl transferase in different liver diseases. Medicine 2022, 101, e28443. [Google Scholar] [CrossRef]
- Engeroff, T.; Fleckenstein, J.; Banzer, W. Glucose metabolism from mouth to muscle: A student experiment to teach glucose metabolism during exercise and rest. Adv. Physiol Educ 2017, 41, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Wilms, J.N.; Berends, H.; Leal, L.N.; Martín-Tereso, J. Determining the nutritional boundaries for replacing lactose with glucose in milk replacers for calves fed twice daily. J. Dairy Sci. 2020, 103, 7018–7027. [Google Scholar] [CrossRef]
- Bailey, E.A.; Titgemeyer, E.C.; Olson, K.C.; Brake, D.W.; Jones, M.L.; Anderson, D.E. Effects of ruminal casein and glucose on forage digestion and urea kinetics in beef cattle1. J. Anim. Sci. 2012, 90, 3505–3514. [Google Scholar] [CrossRef] [Green Version]
- Chikhou, F.H.; Moloney, A.P.; Allen, P.; Quirke, J.F.; Austin, F.H.; Roche, J.F. Long-term effects of cimaterol in Friesian steers: I. Growth, feed efficiency, and selected carcass traits. J. Anim. Sci. 1993, 71, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Carneiro De Souza, V.; Duarte Messana, J.; Darlisson Batista, E.; Larissa Gomes Carvalho Alves, K.; Titgemeyer, E.C.; Vaz Pires, A.; Vinícius Ferraz Junior, M.; Galoro Silva, L.; Alberto Negrão, J.; Eliodoro Costa, V.; et al. Effects of protein sources and inclusion levels on nitrogen metabolism and urea kinetics of Nellore feedlot steers fed concentrate-based diets. J. Anim. Sci. 2021, 99, skab185. [Google Scholar] [CrossRef] [PubMed]
Item | Yunling Cattle | Brahman | ||
---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | |
WBCs (×10−9/L) | 9.78 ± 2.53 | 5.85–15.63 | 9.29 ± 2.29 | 4.95–14.44 |
MONO% | 7.13 ± 2.06 | 2.7–12.7 | 6.74 ± 1.88 | 3.4–11.2 |
BAS% | 0.33 ± 0.14 a | 0.1–0.7 | 0.26 ± 0.12 b | 0.1–1 |
MONO# | 0.66 ± 0.21 | 0.3–1.34 | 0.62 ± 0.17 | 0.28–0.91 |
BAS# | 0.0311 ± 0.0134 a | 0.01–0.07 | 0.0258 ± 0.0090 b | 0.01–0.05 |
RBCs (×10−12/L) | 8.41 ± 0.94 a | 7.16–11.36 | 7.94 ± 0.99 b | 5.18–9.55 |
HGB (g/L) | 150.39 ± 13.76 A | 122–194 | 140.39 ± 14.29 B | 112–166 |
HCT (L/L) | 0.41 ± 0.04 A | 0.35–0.5 | 0.38 ± 0.05 B | 0.31–0.48 |
MCV (fL) | 48.87 ± 4.55 | 37–57.9 | 48.40 ± 6.72 | 37.9–64.1 |
MCH (pg) | 17.95 ± 1.28 | 14.3–20.6 | 17.64 ± 1.41 | 15–20.5 |
MCHC (g/L) | 368.40 ± 15.49 | 330–401 | 372.48 ± 17.77 | 337–400 |
RDW-CV% | 23.13 ± 1.84 | 20.3–29 | 23.65 ± 2.33 | 18–29 |
RDW-SD (fL) | 36.40 ± 2.66 | 30.7–41.4 | 36.01 ± 3.43 | 31.6–44.4 |
RET (10−12/L) | 0.0067 ± 0.0017 | 0–0.01 | 0.0076 ± 0.0023 | 0–0.01 |
PLTs (10−9/L) | 258.43 ± 99.98 | 33–475 | 266.62 ± 98.65 | 8–487 |
PCT% | 0.22 ± 0.06 | 0.06–0.35 | 0.24 ± 0.07 | 0.14–0.42 |
MPV (fL) | 7.94 ± 0.76 b | 6.6–9.8 | 8.36 ± 0.64 a | 7–9.7 |
PDW% | 9.06 ± 1.30 a | 6.9–11.5 | 9.78 ± 1.10 b | 7.5–11.8 |
P-LCR% | 12.53 ± 5.07 a | 4.4–25.1 | 15.15 ± 4.50 b | 6.1–24.4 |
RET% | 0.0827 ± 0.02 | 0.05–0.14 | 0.0861 ± 0.02 | 0.06–0.14 |
Item | Yunling Cattle | Brahman | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | n | Mean ± SD | n | ||
BAS (%) | 0.33 ± 0.14 a | 65 | 0.26 ± 0.12 b | 25 | 0.047 |
BAS# (10−9/L) | 0.0311 ± 0.0134 a | 64 | 0.0258 ± 0.0090 b | 26 | 0.032 |
RBCs (10−12/L) | 8.41 ± 0.94 a | 65 | 7.94 ± 0.99 b | 26 | 0.037 |
HGB (g/L) | 150.39 ± 13.76 A | 65 | 140.39 ± 14.29 B | 26 | 0.003 |
HCT (L/L) | 0.41 ± 0.04 A | 65 | 0.38 ± 0.05 B | 26 | 0.002 |
MPV (fL) | 7.94 ± 0.76 b | 54 | 8.36 ± 0.64 a | 21 | 0.027 |
PDW% | 9.06 ± 1.30 a | 54 | 9.78 ± 1.10 b | 21 | 0.028 |
P-LCR% | 12.53 ± 5.07 a | 53 | 15.15 ± 4.50 b | 21 | 0.042 |
Item | Yunling Cattle | Brahman | ||
---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | |
TG (μmol/L) | 0.24 ± 0.09 | 0.11–0.41 | 0.23 ± 0.07 | 0.13–0.37 |
T-CHOL (mmol/L) | 3.24 ± 0.79 | 1.97–5.36 | 3.48 ± 0.81 | 2.15–5.13 |
HDL-C (mmol/L) | 2.14 ± 0.37 B | 1.44–3.11 | 2.37 ± 0.39 A | 1.63–3.04 |
LDL-C (mmol/L) | 0.3069 ± 0.1557 | 0.02–0.8 | 0.3221 ± 0.1360 | 0.13–0.59 |
TBIL (μmol/L) | 2.85 ± 0.99 a | 1–5.3 | 2.44 ± 0.74 b | 1.2–4.1 |
DBIL (μmol/L) | 1.13 ± 0.40 | 0.4–2.1 | 1.10 ± 0.33 | 0.3–1.9 |
IBIL (μmol/L) | 1.74 ± 0.75 A | 0.4–3.4 | 1.33 ± 0.50 B | 0.4–2.3 |
TP (g/L) | 81.17 ± 7.48 | 65.4–95.4 | 81.41 ± 6.17 | 71.2–95.2 |
ALB (g/L) | 36.43 ± 2.01 A | 31.9–42.4 | 33.63 ± 3.15 B | 26.7–38.4 |
GLO (g/L) | 44.73 ± 7.59 | 30.8–58.6 | 46.58 ± 9.17 | 21.2–67.5 |
ALB:GLO | 0.84 ± 0.16 a | 0.61–1.21 | 0.76 ± 0.19 b | 0.41–1.26 |
PAB (mg/L) | 38.57 ± 4.93 | 29–49 | 39.67 ± 4.69 | 32–48 |
AST (U/L) | 83.79 ± 33.07 | 35–195 | 93.96 ± 29.93 | 51–160 |
ALT (U/L) | 28.42 ± 8.05 | 13–50 | 27.68 ± 6.83 | 12–43 |
AST:ALT | 3.00 ± 1.09 | 1.36–6.59 | 3.33 ± 0.84 | 2–5.5 |
GGT (U/L) | 19.51 ± 9.42 B | 3–57 | 32.04 ± 15.82 A | 1–67 |
ALP (U/L) | 90.97 ± 43.40 B | 30–220 | 114.43 ± 39.55 A | 39–224 |
CHE (U/L) | 242.19 ± 58.10 | 120–354 | 238.93 ± 38.72 | 161–302 |
TBA (μmol/L) | 18.45 ± 10.26 | 4.7–42.2 | 14.82 ± 8.81 | 3.9–39.5 |
GLU (mmol/L) | 4.28 ± 0.49 A | 3.56–6.18 | 3.80 ± 0.82 B | 2.54–5.9 |
BUN (mmol/L) | 4.99 ± 1.78 | 2.16–8.67 | 4.82 ± 1.24 | 2.53–7.64 |
URIC (μmol/L) | 39.86 ± 14.25 b | 16–82 | 47.75 ± 13.81 a | 19–71 |
CREA (μmol/L) | 123.03 ± 32.97 | 77–218 | 112.85 ± 27.39 | 72–178 |
HCO3− (mmol/L) | 25.83 ± 2.62 | 18.6–32.3 | 26.34 ± 3.30 | 17.4–30.3 |
K+ (mmol/L) | 4.12 ± 0.46 | 3.17–5.28 | 4.25 ± 0.65 | 2.22–5.86 |
Na+ (mmol/L) | 141.23 ± 3.46 | 133.1–149 | 142.36 ± 2.17 | 136.6–148.3 |
Cl− (mmol/L) | 98.32 ± 3.21 b | 88–103.9 | 100.06 ± 3.94 a | 88.6–106.9 |
Ca2+ (mmol/L) | 2.38 ± 0.11 A | 2.08–2.63 | 2.31 ± 0.13 B | 1.99–2.54 |
P5+ (mmol/L) | 1.64 ± 0.56 b | 0.49–3.18 | 1.92 ± 0.57 a | 1.25–3.46 |
Mg2+ (mmol/L) | 0.9543 ± 0.0975 | 0.77–1.21 | 0.9439 ± 0.0950 | 0.77–1.14 |
HCY (μmol/L) | 6.18 ± 2.87 | 0.6–13.6 | 5.97 ± 2.90 | 2–12.4 |
CK (U/L) | 143.03 ± 61.02 | 54–375 | 147.96 ± 57.41 | 95–340 |
CKMB (U/L) | 115.25 ± 38.06 | 54–207 | 110.68 ± 30.68 | 58–187 |
LDH (U/L) | 1489.12 ± 276.37 | 803–2331 | 1540.54 ± 275.62 | 1177–2218 |
HBDH (U/L) | 1381.17 ± 262.94 | 754–2185 | 1436.64 ± 265.32 | 1103–2085 |
Item | Yunling Cattle | Brahman | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | n | Mean ± SD | n | ||
HDL-C (mmol/L) | 2.14 ± 0.37 B | 65 | 2.37 ± 0.39 A | 28 | 0.010 |
TBIL (μmol/L) | 2.85 ± 0.99 a | 65 | 2.44 ± 0.74 b | 28 | 0.039 |
IBIL (μmol/L) | 1.74 ± 0.75 A | 65 | 1.33 ± 0.50 B | 28 | 0.002 |
ALB (g/L) | 36.43 ± 2.01 A | 65 | 33.63 ± 3.15 B | 28 | 0.000 |
ALB:GLO | 0.84 ± 0.16 a | 65 | 0.76 ± 0.19 b | 28 | 0.029 |
GGT (U/L) | 19.51 ± 9.42 B | 65 | 32.04 ± 15.82 A | 28 | 0.000 |
ALP (U/L) | 90.97 ± 43.40 b | 63 | 114.43 ± 39.55 a | 28 | 0.017 |
GLU (mmol/L) | 4.28 ± 0.49 A | 65 | 3.80 ± 0.82 B | 28 | 0.003 |
URIC (μmol/L) | 39.86 ± 14.25 b | 65 | 47.75 ± 13.81 a | 28 | 0.015 |
Cl− (mmol/L) | 98.32 ± 3.21 b | 65 | 100.06 ± 3.94 a | 28 | 0.027 |
Ca2+ (mmol/L) | 2.38 ± 0.11 A | 65 | 2.31 ± 0.13 B | 28 | 0.006 |
P5+ (mmol/L) | 1.64 ± 0.56 b | 65 | 1.92 ± 0.57 a | 28 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yang, S.; Tang, J.; Ren, G.; Shen, J.; Huang, B.; Lei, C.; Chen, H.; Qu, K. Comparisons of Hematological and Biochemical Profiles in Brahman and Yunling Cattle. Animals 2022, 12, 1813. https://doi.org/10.3390/ani12141813
Yang Y, Yang S, Tang J, Ren G, Shen J, Huang B, Lei C, Chen H, Qu K. Comparisons of Hematological and Biochemical Profiles in Brahman and Yunling Cattle. Animals. 2022; 12(14):1813. https://doi.org/10.3390/ani12141813
Chicago/Turabian StyleYang, Yu, Shuling Yang, Jia Tang, Gang Ren, Jiafei Shen, Bizhi Huang, Chuzhao Lei, Hong Chen, and Kaixing Qu. 2022. "Comparisons of Hematological and Biochemical Profiles in Brahman and Yunling Cattle" Animals 12, no. 14: 1813. https://doi.org/10.3390/ani12141813
APA StyleYang, Y., Yang, S., Tang, J., Ren, G., Shen, J., Huang, B., Lei, C., Chen, H., & Qu, K. (2022). Comparisons of Hematological and Biochemical Profiles in Brahman and Yunling Cattle. Animals, 12(14), 1813. https://doi.org/10.3390/ani12141813