Replacing the Concentrate Feed Mixture with Moringa oleifera Leaves Silage and Chlorella vulgaris Microalgae Mixture in Diets of Damascus Goats: Lactation Performance, Nutrient Utilization, and Ruminal Fermentation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Moringa Oleifera and Chlorella Vulgaris Microalgae Cultivation
2.3. Goats, Feeding and Management
2.4. Feed Intake and Apparent Nutrient Digestibility
2.5. Sampling and Analysis of Rumen Fluid
2.6. Sampling and Analysis of Blood Serum
2.7. Milk Sampling and Composition
2.8. Statistical Analyses
3. Results
3.1. Feed Intake and Apparent Nutrient Digestibility
3.2. Ruminal Fermentation
3.3. Blood Chemistry
3.4. Milk Yield, Composition, and Fatty Acids
3.5. Milk Fatty Acids
4. Discussion
4.1. Feed Intake and Nutrient Apparent Digestibility
4.2. Ruminal Fermentation
4.3. Blood Chemistry Measurements
4.4. Milk Yield and Composition
4.5. Milk Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valdivié-Navarro, M.; Martínez-Aguilar, Y.; Mesa-Fleitas, O.; Botello-León, A.; Betancur Hurtado, C.; Velázquez-Martí, B. Review of Moringa oleifera as forage meal (leaves plus stems) intended for the feeding of non-ruminant animals. Anim. Feed Sci. Technol. 2020, 260, 114338. [Google Scholar] [CrossRef]
- Sultana, S. Nutritional and functional properties of Moringa oleifera. Metab. Open 2020, 8, 100061. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.E.; Kassab, A.Y.; Hamdon, H.A. Chlorella vulgaris microalgae and copper mixture supplementation enhanced the nutrient digestibility and milk attributes in lactating boer goats. Ann. Anim. Sci. 2021, 21, 939–957. [Google Scholar] [CrossRef]
- Yusuf, A.O.; Mlambo, V.; Iposu, S.O. A nutritional and economic evaluation of Moringa oleifera leaf meal as a dietary supplement in West African Dwarf goats. S. Afr. J. Anim. Sci. 2018, 48, 81. [Google Scholar] [CrossRef] [Green Version]
- Saadaoui, I.; Rasheed, R.; Aguilar, A.; Cherif, M.; Al Jabri, H.; Sayadi, S.; Manning, S.R. Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotechnol. 2021, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.E.; Gouda, G.A.; Olafadehan, O.A.; Abdo, M.M. Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal 2018, 12, 964–972. [Google Scholar] [CrossRef]
- Azzaz, H.H.; Farahat, E.S.A.; Morsy, T.A.; Aziz, H.A.; Hadhoud, F.I.; Abd-Alla, M.S. Moringa oleifera and Echinacea purpurea as supplements for rhamani lactating Ewe’s diets and their effect on rumen characteristics, nutrients digestibility, blood parameters, milk production, composition and its fatty acid profile. Asian J. Anim. Vet. Adv. 2016, 11, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Chen, X. Current status and potential of Moringa oleifera leaf as an alternative protein source for animal feeds. Front. Vet. Sci. 2020, 7, 53. [Google Scholar] [CrossRef]
- Ebeid, H.M.; Kholif, A.E.; Chrenkova, M.; Anele, U.Y. Ruminal fermentation kinetics of Moringa oleifera leaf and seed as protein feeds in dairy cow diets: In sacco degradability and protein and fiber fractions assessed by the CNCPS method. Agrofor. Syst. 2020, 94, 905–915. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Hassan, E.H. Effects of dietary inclusion of Moringa oleifera leaf meal on nutrient digestibility, rumen fermentation, ruminal enzyme activities and growth performance of buffalo calves. Saudi J. Biol. Sci. 2021, 28, 4430–4436. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Chlorella vulgaris microalgae in ruminant nutrition: A review of the chemical composition and nutritive value. Ann. Anim. Sci. 2021, 21, 789–806. [Google Scholar] [CrossRef]
- Akhmedkhanova, R.; Dzhambulatov, Z.; Gadzhaeva, Z.; Shabanov, G.; Alieva, S. The influence of chlorella suspension on the quality of milk and its processing products. E3S Web Conf. 2020, 222, 02021. [Google Scholar] [CrossRef]
- Anele, U.Y.; Yang, W.Z.; McGinn, P.J.; Tibbetts, S.M.; McAllister, T.A. Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Can. J. Anim. Sci. 2016, 96, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Kholif, A.E.; Olafadehan, O.A. Dietary strategies to enrich milk with healthy fatty acids—A review. Ann. Anim. Sci. 2022, 22, 523–536. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Jaakkola, S.; Vanhatalo, A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim. Feed Sci. Technol. 2019, 247, 112–126. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2005; ISBN 0935584544. [Google Scholar]
- Makkar, H.P.S. Quantification of Tannins in Tree and Shrub Foliage; Springer: Dordrecht, The Netherlands, 2003; ISBN 978-90-481-6428-8. [Google Scholar]
- Meier, B.; Julkunen-Tiitto, R.; Tahvanainen, J.; Sticher, O. Comparative high-performance liquid and gas-liquid chromatographic determination of phenolic glucosides in salicaceae species. J. Chromatogr. A 1988, 442, 175–186. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterbury, J.B. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Small Ruminants; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10213-1. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; ISBN 978-90-8686-292-4.
- Ferret, A.; Plaixats, J.; Caja, G.; Gasa, J.; Prió, P. Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. Res. 1999, 33, 145–152. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Mendieta-Araica, B.; Spörndly, R.; Reyes-Sánchez, N.; Spörndly, E. Moringa (Moringa oleifera) leaf meal as a source of protein in locally produced concentrates for dairy cows fed low protein diets in tropical areas. Livest. Sci. 2011, 137, 10–17. [Google Scholar] [CrossRef]
- Kotrbáček, V.; Doubek, J.; Doucha, J. The chlorococcalean alga Chlorella in animal nutrition: A review. J. Appl. Phycol. 2015, 27, 2173–2180. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Abdullah, M.A.M.; Skliros, D.; Chatzikonstantinou, M.; Flemetakis, E.; Labrou, N.; Zervas, G. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J. Anim. Physiol. Anim. Nutr. 2017, 101, 275–283. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; MacPherson, T.; McGinn, P.J.; Fredeen, A.H. In vitro digestion of microalgal biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. Algal Res. 2016, 19, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Ebeid, H.M.; Mengwei, L.; Kholif, A.E.; Hassan, F.; Lijuan, P.; Xin, L.; Chengjian, Y. Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr. Microbiol. 2020, 77, 1271–1282. [Google Scholar] [CrossRef]
- Lavrenčič, A.; Levart, A. In vitro dry matter and crude protein rumen degradation and abomasal digestibility of soybean meal treated with chestnut and quebracho wood extracts. Food Sci. Nutr. 2021, 9, 1034–1039. [Google Scholar] [CrossRef]
- Ryle, M.; Ørskov, E.R. Energy Nutrition in Ruminants; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-94-010-6823-9. [Google Scholar]
- Jones, M.; Jones, G. Animal Nutrition, 7th ed.; Pearson Education Limited: London, UK, 2012; ISBN 0582219272. [Google Scholar]
- Vanhatalo, A.; Varvikko, T.; Huhtanen, P. Effects of various glucogenic sources on production and metabolic responses of dairy cows fed grass silage-based diets. J. Dairy Sci. 2003, 86, 3249–3259. [Google Scholar] [CrossRef] [Green Version]
- Kholif, A.E.; Morsy, T.A.; Matloup, O.H.; Anele, U.Y.; Mohamed, A.G.; El-Sayed, A.B. Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci. 2017, 155, 508–518. [Google Scholar] [CrossRef]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Etim, N.N.; Enyenihi, G.E.; Williams, M.E.; Udo, M.D.; Offiong, E.E.A. Haematological parameters: Indicators of the physiological status of farm animals. Br. J. Sci. 2013, 10, 33–45. [Google Scholar]
- Hosten, A.O. BUN and Creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; pp. 874–878. ISBN 040990077X. [Google Scholar]
- Ye, J.A.; Wang, C.; Wang, H.F.; Ye, H.W.; Wang, B.X.; Liu, H.Y.; Wang, Y.M.; Yang, Z.Q.; Liu, J.X. Milk production and fatty acid profile of dairy cows supplemented with flaxseed oil, soybean oil, or extruded soybeans. Acta Agric. Scand. A Anim. Sci. 2009, 59, 121–129. [Google Scholar] [CrossRef]
- Karkos, P.D.; Leong, S.C.; Karkos, C.D.; Sivaji, N.; Assimakopoulos, D.A. Spirulina in clinical practice: Evidence-based human applications. Evid.-Based Complement. Altern. Med. 2011, 2011, 531053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Zinder, M.; Weinberg, Z.; Leibovich, H.; Chen, Y.; Rosen, M.; Sagi, G.; Orlov, A.; Agmon, R.; Yishay, M.; Miron, J.; et al. Ensiled Moringa oleifera: An antioxidant-rich feed that improves dairy cattle performance. J. Agric. Sci. 2017, 155, 1174–1186. [Google Scholar] [CrossRef]
- Kovač, D.; Simeunović, J.; Babić, O.; Mišan, A.Č.; Milovanović, I.L. Algae in food and feed. Food Feed Res. 2013, 40, 21–31. [Google Scholar]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Use of microalgae in ruminant nutrition and implications on milk quality—A review. Livest. Sci. 2018, 214, 25–35. [Google Scholar] [CrossRef]
- Prado, L.A.; Schmidely, P.; Nozière, P.; Ferlay, A. Milk saturated fatty acids, odd- and branched-chain fatty acids, and isomers of C18:1, C18:2, and C18:3n-3 according to their duodenal flows in dairy cows: A meta-analysis approach. J. Dairy Sci. 2019, 102, 3053–3070. [Google Scholar] [CrossRef] [Green Version]
- Frutos, P.; Hervás, G.; Natalello, A.; Luciano, G.; Fondevila, M.; Priolo, A.; Toral, P.G.G. Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim. Feed Sci. Technol. 2020, 269, 114623. [Google Scholar] [CrossRef]
- Glover, K.E.; Budge, S.; Rose, M.; Rupasinghe, H.P.V.; MacLaren, L.; Green-Johnson, J.; Fredeen, A.H. Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. J. Dairy Sci. 2012, 95, 2797–2809. [Google Scholar] [CrossRef] [Green Version]
Ingredient | Diet 1 | ||||||
---|---|---|---|---|---|---|---|
Rice Straw | Concentrate Feed Mixture 2 | Moringa oleifera Silage 3 | Chlorella vulgaris Microalgae | Control | MA20 | MA40 | |
Ingredient | |||||||
Rice straw | 400 | 400 | 400 | ||||
Concentrate feed mixture | 600 | 480 | 360 | ||||
Moringa oleifera silage | 0 | 110 | 230 | ||||
Chlorella vulgaris microalgae | 0 | 10 | 10 | ||||
Chemical composition | |||||||
Dry matter | 943 | 838 | 391 | 932 | 880 | 832 | 778 |
Organic matter | 849 | 891 | 862 | 942 | 874 | 872 | 868 |
Crude protein | 43 | 162 | 282 | 579 | 114 | 132 | 146 |
Ether extract | 19 | 42 | 45 | 139 | 33 | 34 | 34 |
Non-structural carbohydrates | 159 | 421 | 190 | 106 | 316 | 288 | 260 |
Neutral detergent fiber | 628 | 266 | 345 | 118 | 411 | 418 | 427 |
Acid detergent fiber | 397 | 99 | 299 | 43 | 218 | 240 | 264 |
TDN (g/kg DM) 4 | 507 | 540 | 545 | ||||
DE (Mcal/kg DM) 4 | 2.24 | 2.38 | 2.40 | ||||
ME (Mcal/kg DM) 4 | 2.26 | 2.41 | 2.43 | ||||
NEL (Mcal/kg DM) 4 | 1.12 | 1.20 | 1.21 | ||||
UFL (Mcal/kg DM) 5 | 1.98 | 2.12 | 2.14 |
Diet 1 | p Values | |||||
---|---|---|---|---|---|---|
Control | MA20 | MA40 | SEM | Diet | Control vs. others | |
Intake (g/d) | ||||||
Dry matter | 1181 | 1167 | 1172 | 7.4 | 0.401 | 0.200 |
Organic matter | 1033 | 1017 | 1017 | 6.5 | 0.160 | 0.057 |
Crude protein | 135 c | 154 b | 171 a | 0.9 | <0.001 | <0.001 |
Non-structural carbohydrates | 374 a | 336 b | 305 c | 2.2 | <0.001 | <0.001 |
Neutral detergent fiber | 485 | 488 | 501 | 6.1 | 0.290 | 0.221 |
Net energy for lactation (Mcal/d) | 1.32 | 1.40 | 1.42 | 0.147 | 0.063 | 0.052 |
Digestibility (g digested/kg ingested) | ||||||
Dry matter | 553 b | 607 a | 614 a | 7.9 | <0.001 | <0.001 |
Organic matter | 559 b | 621 a | 636 a | 7.5 | <0.001 | <0.001 |
Crude protein | 549 b | 624 a | 627 a | 6.4 | <0.001 | <0.001 |
Ether extract | 582 b | 623 a | 627 a | 7.7 | 0.002 | <0.001 |
Non-structural carbohydrates | 591 | 607 | 597 | 9.8 | 0.509 | 0.379 |
Neutral detergent fiber | 521 b | 564 a | 583 a | 9.2 | <0.001 | <0.001 |
Acid detergent fiber | 517 b | 556 a | 572 a | 8.0 | <0.001 | <0.001 |
Diet 1 | p Values | |||||
---|---|---|---|---|---|---|
Control | MA20 | MA40 | SEM | Diet | Control vs. Others | |
pH | 5.59 b | 6.05 a | 6.09 a | 0.053 | <0.001 | <0.001 |
Ammonia-N, mg/dL | 32.2 a | 29.8 b | 28.9 b | 0.57 | 0.018 | 0.006 |
Total volatile fatty acids, mmol/L | 121 b | 132 a | 135 a | 3.1 | 0.008 | 0.002 |
Acetate, mmol/L | 72.6 b | 80.4 a | 81.1 a | 1.80 | 0.003 | 0.007 |
Propionate, mmol/L | 27.4 b | 29.9 a | 30.6 a | 0.67 | 0.005 | 0.002 |
Butyrate, mmol/L | 21.0 | 22.0 | 22.8 | 1.18 | 0.559 | 0.334 |
Acetate: propionate ratio | 2.65 | 2.71 | 2.66 | 0.063 | 0.798 | 0.700 |
Diet 1 | p Values | |||||
---|---|---|---|---|---|---|
Control | MA20 | MA40 | SEM | Diet | Control vs. Others | |
Total proteins, g/dL | 7.26 | 7.56 | 7.57 | 0.258 | 0.055 | 0.731 |
Albumin, g/dL | 3.89 | 3.99 | 4.09 | 0.137 | 0.102 | 0.120 |
Globulin, g/L | 3.37 | 3.56 | 3.49 | 0.069 | 0.160 | 0.079 |
Urea-N, mg/dL | 39.8 | 39.6 | 40.4 | 1.62 | 0.552 | 0.052 |
Glucose, mg/dL | 77.3 b | 85.4 a | 85.7 a | 0.45 | <0.001 | <0.001 |
Alanine aminotransferase, units/L | 15.6 | 16.2 | 16.0 | 0.20 | 0.129 | 0.052 |
Aspartate transaminase, units/L | 32.8 | 31.7 | 31.4 | 0.32 | 0.081 | 0.053 |
Triglycerides, mg/dL | 164 b | 172 a | 171 a | 2.65 | 0.024 | 0.025 |
High-density lipoprotein, mg/dL | 84.2 b | 94.3 a | 95.2 a | 0.60 | <0.001 | <0.001 |
Low-density lipoprotein, mg/dL | 70.7 | 71.6 | 71.1 | 0.76 | 0.721 | 0.507 |
Antioxidant capacity, mg/dL | 101 b | 110 a | 112 a | 2.40 | 0.003 | 0.008 |
β-Hydroxybutyrate, mg/dL | 0.85 | 0.85 | 0.85 | 0.027 | 0.991 | 0.984 |
Nonesterified fatty acids, mg/dL | 1.79 | 1.79 | 1.80 | 0.063 | 0.996 | 0.966 |
Diet 1 | p Values | |||||
---|---|---|---|---|---|---|
Control | MA20 | MA40 | SEM | Diet | Control vs. Others | |
Production, g/d (unless stated otherwise) | ||||||
Milk | 876 b | 1003 a | 1023 a | 32.0 | 0.005 | 0.001 |
Energy corrected milk (ECM) | 839 b | 1066 a | 1030 a | 33.3 | <0.001 | <0.001 |
Fat corrected milk (4% FCM) | 828 b | 1026 a | 998 a | 32.0 | 0.001 | <0.001 |
Milk energy output, MJ/d | 2.58 b | 3.29 a | 3.18 a | 0.103 | <0.001 | <0.001 |
Total solids | 108 b | 137 a | 132 a | 4.3 | <0.001 | <0.001 |
Solids non-fat | 76.3 b | 95.4 a | 92.0 a | 3.07 | 0.002 | <0.001 |
Fat | 31.8 b | 41.1 a | 39.8 a | 1.29 | <0.001 | <0.001 |
Protein | 32.9 b | 40.7 a | 39.7 a | 1.41 | 0.006 | 0.002 |
Lactose | 36.2 b | 46.2 a | 44.0 a | 1.40 | <0.001 | <0.001 |
Composition, g/kg unless stated otherwise | ||||||
Total solids | 123 | 133 | 131 | 3.96 | 0.062 | 0.066 |
Solids non-fat | 87.0 | 93.3 | 91.8 | 3.97 | 0.055 | 0.072 |
Fat | 36.3 b | 40.2 a | 39.7 a | 0.37 | <0.001 | <0.001 |
Protein | 37.6 | 39.8 | 39.5 | 2.52 | 0.091 | 0.205 |
Lactose | 41.3 b | 45.2 a | 43.9 a | 0.58 | 0.001 | <0.001 |
Milk energy content, MJ/kg | 2.94 b | 3.22 a | 3.17 a | 0.022 | <0.001 | <0.001 |
Feed efficiency | ||||||
Milk: intake ratio | 0.74 b | 0.87 a | 0.86 a | 0.028 | 0.004 | 0.009 |
ECM: intake ratio | 0.71 b | 0.91 a | 0.89 a | 0.030 | <0.001 | <0.001 |
FCM: intake ratio | 0.70 b | 0.88 a | 0.86 a | 0.028 | <0.001 | <0.001 |
Diet 1 | p Values | |||||
---|---|---|---|---|---|---|
Control | MA20 | MA40 | SEM | Diet | Control vs. Others | |
C4:0 | 2.76 | 2.95 | 2.94 | 0.096 | 0.321 | 0.135 |
C6:0 | 2.07 | 2.10 | 2.16 | 0.043 | 0.322 | 0.273 |
C8:0 | 2.27 | 2.34 | 2.34 | 0.019 | 0.028 | 0.008 |
C10:0 | 5.05 | 5.13 | 5.15 | 0.042 | 0.179 | 0.069 |
C11:0 | 0.87 | 0.88 | 0.89 | 0.022 | 0.791 | 0.507 |
C12:0 | 3.16 | 3.21 | 3.17 | 0.028 | 0.429 | 0.387 |
C14:0 | 9.09 | 9.05 | 9.06 | 0.071 | 0.933 | 0.713 |
C14:1 | 0.68 | 0.68 | 0.69 | 0.005 | 0.169 | 0.094 |
C15:0 | 0.54 b | 0.53 b | 0.56 a | 0.006 | 0.022 | 0.310 |
C16:0 | 26.1 a | 24.9 b | 24.1 b | 0.20 | <0.001 | <0.001 |
C16:1 | 1.20 b | 1.23 b | 1.28 a | 0.013 | 0.002 | 0.003 |
C17:0 | 0.89 | 0.90 | 0.90 | 0.010 | 0.819 | 0.670 |
C18:0 | 16.5 a | 16.0 b | 16.3 a | 0.10 | 0.010 | 0.008 |
C18:1n9 cis | 24.7 b | 25.5 a | 25.9 a | 0.21 | 0.001 | 0.005 |
C18:1n9 trans | 2.42 b | 2.86 a | 2.84 a | 0.030 | <0.001 | <0.001 |
C18:2 trans-10, cis-12 | 0.27 b | 0.30 a | 0.31 a | 0.005 | <0.001 | <0.001 |
C18:2 cis-9, trans-11 | 0.18 c | 0.20 a | 0.19 b | 0.005 | 0.036 | 0.037 |
C18:3n3 | 0.17 | 0.18 | 0.18 | 0.005 | 0.225 | 0.086 |
C18:3n6 | 0.36 b | 0.39 a | 0.40 a | 0.006 | 0.001 | <0.001 |
C20:0 | 0.66 a | 0.63 b | 0.63 b | 0.008 | 0.002 | 0.005 |
C20:5n3 | 0.15 b | 0.18 a | 0.17 a | 0.004 | 0.003 | 0.001 |
C22:5n3 | 0.19 b | 0.22 a | 0.21 a | 0.007 | 0.014 | 0.005 |
SFA | 70.0 | 68.7 | 68.2 | 1.20 | 0.881 | 0.801 |
UFA | 30.3 | 31.7 | 32.2 | 1.20 | 0.555 | 0.501 |
MUFA | 29.0 | 30.3 | 30.7 | 1.22 | 0.617 | 0.538 |
PUFA | 1.33 b | 1.46 a | 1.46 a | 0.014 | <0.001 | <0.001 |
Total CLA | 0.45 b | 0.50 a | 0.50 a | 0.007 | <0.001 | <0.001 |
n6: n3 FA ratio | 2.18 | 2.23 | 2.27 | 0.065 | 0.634 | 0.392 |
UFA: SFA ratio | 0.43 b | 0.46 a | 0.47 a | 0.004 | <0.001 | <0.001 |
Athrogenicity index 2 | 2.17 a | 2.03 b | 1.98 b | 0.021 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kholif, A.E.; Gouda, G.A.; Abu Elella, A.A.; Patra, A.K. Replacing the Concentrate Feed Mixture with Moringa oleifera Leaves Silage and Chlorella vulgaris Microalgae Mixture in Diets of Damascus Goats: Lactation Performance, Nutrient Utilization, and Ruminal Fermentation. Animals 2022, 12, 1589. https://doi.org/10.3390/ani12121589
Kholif AE, Gouda GA, Abu Elella AA, Patra AK. Replacing the Concentrate Feed Mixture with Moringa oleifera Leaves Silage and Chlorella vulgaris Microalgae Mixture in Diets of Damascus Goats: Lactation Performance, Nutrient Utilization, and Ruminal Fermentation. Animals. 2022; 12(12):1589. https://doi.org/10.3390/ani12121589
Chicago/Turabian StyleKholif, Ahmed E., Gouda A. Gouda, Amgad A. Abu Elella, and Amlan K. Patra. 2022. "Replacing the Concentrate Feed Mixture with Moringa oleifera Leaves Silage and Chlorella vulgaris Microalgae Mixture in Diets of Damascus Goats: Lactation Performance, Nutrient Utilization, and Ruminal Fermentation" Animals 12, no. 12: 1589. https://doi.org/10.3390/ani12121589
APA StyleKholif, A. E., Gouda, G. A., Abu Elella, A. A., & Patra, A. K. (2022). Replacing the Concentrate Feed Mixture with Moringa oleifera Leaves Silage and Chlorella vulgaris Microalgae Mixture in Diets of Damascus Goats: Lactation Performance, Nutrient Utilization, and Ruminal Fermentation. Animals, 12(12), 1589. https://doi.org/10.3390/ani12121589