Effects of Microalgae Addition and Fish Feed Supplementation in the Integrated Rearing of Pacific White Shrimp and Nile Tilapia Using Biofloc Technology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.1.1. Shrimp
2.1.2. Fish
2.1.3. Microalgae
2.2. Experimental Design
2.3. Chlorophyll-a Analysis
2.4. Water Quality Analysis
2.5. Growth Performance
2.6. Sludge Production
2.7. Water Microbiology Analysis
2.8. Statistical Analysis
3. Results
3.1. Water Quality
3.2. Growth Performance
3.2.1. Shrimp
3.2.2. Fish
3.2.3. Integrated System
3.3. Sludge Production
3.4. Water Microbiology
4. Discussion
4.1. Water Quality
4.2. Growth Performance
4.2.1. Shrimp
4.2.2. Tilapia
4.2.3. Integrated System
4.3. Sludge Production
4.4. Water Microbiology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avnimelech, Y.; Kochba, M. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture 2009, 287, 163–168. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; SRAC: Stoneville, MS, USA, 2013; Volume 4503. [Google Scholar]
- Martínez-Porchas, M.; Martínez-Córdova, L.R. World aquaculture: Environmental impacts and troubleshooting alternatives. Sci. World J. 2012, 2012, 389623. [Google Scholar] [CrossRef] [Green Version]
- Dauda, A.B.; Ajadi, A.; Tola-Fabunmi, A.S.; Akinwole, A.O. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquac. Fish. 2019, 4, 81–88. [Google Scholar] [CrossRef]
- Browdy, C.L.; Ray, A.J.; Leffler, J.W.; Avnimelech, Y. Biofloc-based aquaculture systems. In Aquaculture Production Systems, 1st ed.; Tidwell, J.H., Ed.; John Wiley & Sons: Ames, IA, USA, 2012; pp. 278–307. [Google Scholar] [CrossRef]
- Samocha, T.M.; Prangnell, D.I.; Hanson, T.R.; Treece, G.D.; Morris, T.C.; Castro, L.F.; Staresinic, N. Design and Operation of Super-Intensive Biofloc-Dominated Systems for Indoor Production of the Pacific White Shrimp, Litopenaeus vannamei: The Texas A&M AgriLife Research Experience, 1st ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2017. [Google Scholar]
- Ray, A.J.; Seaborn, G.; Leffler, J.W.; Wilde, S.B.; Lawson, A.; Browdy, C.L. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 2010, 310, 130–138. [Google Scholar] [CrossRef]
- Schveitzer, R.; Arantes, R.; Baloi, M.F.; Costódio, P.F.S.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: Effects on microbial activity, water quality and production rates. Aquac. Eng. 2013, 54, 93–103. [Google Scholar] [CrossRef]
- Silva, K.R.; Wasielesky, W.; Abreu, P.C. Nitrogen and phosphorus dynamics in the biofloc production of the Pacific white shrimp, Litopenaeus vannamei. J. World Aquac. Soc. 2013, 44, 30–41. [Google Scholar] [CrossRef]
- Allsopp, M.; Johnston, P.; Santillo, D. Challenging the Aquaculture Industry on Sustainability, 2nd ed.; Greenpeace International: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Neefus, C. Integrating seaweeds into marine aquaculture systems: A key toward sustainability. J. Phycol. 2013, 37, 975–986. [Google Scholar] [CrossRef]
- Martínez-Porchas, M.; Martínez-Córdova, L.R.; Porchas-Cornejo, M.A.; López-Elías, J.A. Shrimp polyculture: A potentially profitable, sustainable, but uncommon aquacultural practice. Rev. Aquac. 2010, 2, 73–85. [Google Scholar] [CrossRef]
- Poli, M.A.; Legarda, E.C.; Lorenzo, M.A.; Martins, M.A.; Vieira, F.N. Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture 2019, 498, 83–89. [Google Scholar] [CrossRef]
- Martins, M.A.; Poli, M.A.; Legarda, E.C.; Pinheiro, I.C.; Carneiro, R.F.S.; Pereira, S.A.; Vieira, F.N. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. Aquaculture 2020, 514, 734517. [Google Scholar] [CrossRef]
- Turker, H.; Eversole, A.G.; Brune, D.E. Effect of Nile tilapia, Oreochromis niloticus (L.), size on phytoplankton filtration rate. Aquac. Res. 2003, 34, 1087–1091. [Google Scholar] [CrossRef]
- Tesfahun, A.; Temesgen, M. Food and feeding habits of Nile tilapia Oreochromis niloticus (L.) in Ethiopian water bodies: A review. Int. J. Fish. Aquat. Stud. 2018, 6, 43–47. [Google Scholar]
- Badwy, T.M.; Ibrahim, E.M.; Zeinhom, M.M. Partial replacement of fish meal with dried microalga (Chlorella spp. and Scenedesmus spp.) in Nile tilapia (Oreochromis niloticus) diets. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12 October 2008. [Google Scholar]
- Michalak, I.; Chojnacka, K. Algal extracts: Technology and advances. Eng. Life Sci. 2014, 14, 581–591. [Google Scholar] [CrossRef]
- Jung, J.Y.; Damusaru, J.H.; Park, Y.; Kim, K.; Seong, M.; Je, H.W.; Bai, S.C. Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). Algal Res. 2017, 27, 259–264. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, J.C.; Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017, 24, 403–415. [Google Scholar] [CrossRef]
- Moriarty, D.J.W. The role of microorganisms in aquaculture ponds. Aquaculture 1997, 151, 333–349. [Google Scholar] [CrossRef]
- Novriadi, R. Vibriosis in aquaculture. Omni-Akuatika 2016, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cadiz, R.E.; Traifalgar, R.F.M.; Sanares, R.C.; Andrino-Felarca, K.G.S.; Corre, V.L., Jr. Comparative efficacies of tilapia green water and biofloc technology (BFT) in suppressing population growth of green vibrios and Vibrio parahaemolyticus in the intensive tank culture of Penaeus vannamei. AACL Bioflux. 2016, 9, 195–203. [Google Scholar]
- Tendencia, E.A.; Dela Peña, M. Investigation of some components of the greenwater system which makes it effective in the initial control of luminous bacteria. Aquaculture 2003, 218, 115–119. [Google Scholar] [CrossRef]
- Tendencia, E.A.; Dela Peña, M.R.; Fermin, A.C.; Lio-Po, G.; Choresca, C.H.; Inui, Y. Antibacterial activity of tilapia Tilapia hornorum against Vibrio harveyi. Aquaculture 2004, 232, 145–152. [Google Scholar] [CrossRef]
- Suresh, A.V.; Lin, C.K. Tilapia culture in saline waters: A review. Aquaculture 1992, 106, 201–226. [Google Scholar] [CrossRef]
- Venancio, H.C.; Cella, H.; Lopes, R.G.; Derner, R.B. Surface-to-volume ratio influence on the growth of Scenedesmus obliquus in a thin-layer cascade system. J. Appl. Phycol. 2020, 32, 821–829. [Google Scholar] [CrossRef]
- Bischoff, H.W.; Bold, H.C. Phycological Studies IV: Some Soil Algae from Enchanted Rock and Related Algal Species; University of Texas Publications: Austin, TX, USA, 1963; p. 6318. [Google Scholar]
- Van Wyk, P. Nutrition and feeding of Litopenaeus vannamei in intensive culture systems. In Farming Marine Shrimp in Recirculating Freshwater Systems, 1st ed.; Van Wyk, P., Davis-Hodgkins, M., Laramore, R., Main, K.L., Mountain, J., Scarpa, J., Eds.; Harbor Branch Oceanographic Institution: Tallahassee, FL, USA, 1999; pp. 125–140. [Google Scholar]
- Van Wyk, P.; Scarpa, J. Receiving and acclimation of postlarvae. In Farming Marine Shrimp in Recirculating Freshwater Systems, 1st ed.; Van Wyk, P., Davis-Hodgkins, M., Laramore, R., Main, K.L., Mountain, J., Scarpa, J., Eds.; Harbor Branch Oceanographic Institution: Tallahassee, FL, USA, 1999; pp. 141–161. [Google Scholar]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- APHA (American Public Health Association); American Water Works Association; Water Pollution Control Association. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Grasshoff, K.; Ehrhardt, M.; Kremling, K. Methods of Seawater Analysis, 2nd ed.; Verlag Chemie Weinhein: New York, NY, USA, 1983. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- Vieira, F.; Silva, V.; Pereira, P.; Martins, M.; Lorenzo, M.; Cella, H.; Lopes, R.; Derner, R.; Magallón, P. Effects of microalgae addition and fish feed supplementation in the integrated rearing of Pacific white shrimp and Nile tilapia using biofloc technology (Abstract). In Aquaculture Europe 21—Oceans of Opportunity; European Aquaculture Society (EAS): Madeira, Portugal, 2021; pp. 334–335. [Google Scholar]
- Popma, T.J.; Lovshin, L.L. Worldwide Prospects for Commercial Production of Tilapia; Auburn University: Auburn, AL, USA, 1995. [Google Scholar]
- Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G.; Wasielesky, W., Jr. The reuse of water on the culture of pacific white shrimp, Litopenaeus vannamei, in BFT system. J. World Aquac. Soc. 2014, 45, 3–14. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, J.C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 2003, 224, 193–201. [Google Scholar] [CrossRef]
- Yanbo, W.; Wenju, Z.; Weifen, L.; Zirong, X. Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiol. Biochem. 2006, 32, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.S.; Silva, V.F.; Martins, M.A.; da Silva, A.C.C.P.; Machado, C.; Seiffert, W.Q.; do Nascimento Vieira, F. Strategies for ammonium and nitrite control in Litopenaeus vannamei nursery systems with bioflocs. Aquac. Eng. 2020, 88, 102040. [Google Scholar] [CrossRef]
- Alves Neto, I.; Brandão, H.; Furtado, P.S.; Wasielesky, W., Jr. Acute toxicity of nitrate in Litopenaeus vannamei juveniles at low salinity levels. Cienc. Rural 2019, 49, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Monsees, H.; Klatt, L.; Kloas, W.; Wuertz, S. Chronic exposure to nitrate significantly reduces growth and affects the health status of juvenile Nile tilapia (Oreochromis niloticus L.) in recirculating aquaculture systems. Aquac. Res. 2017, 48, 3482–3492. [Google Scholar] [CrossRef] [Green Version]
- Lima, P.C.M.; Silva, L.O.B.; de Lima Abreu, J.; da Silva, S.M.B.C.; Severi, W.; Gálvez, A.O. Tilapia cultivated in a low-salinity biofloc system supplemented with Chlorella vulgaris and differents molasses application rates. Bol. Inst. Pesca 2019, 45, e494. [Google Scholar] [CrossRef]
- Baloi, M.; Arantes, R.; Schveitzer, R.; Magnotti, C.; Vinatea, L. Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquac. Eng. 2013, 52, 39–44. [Google Scholar] [CrossRef]
- Arnold, S.; Sellars, M.J.; Crocos, P.J.; Coman, G.J. Intensive production of juvenile tiger shrimp Penaeus monodon: An evaluation of stocking density and artificial substrates. Aquaculture 2006, 261, 890–896. [Google Scholar] [CrossRef]
- Legarda, E.C.; Poli, M.A.; Martins, M.A.; Pereira, S.A.; Martins, M.L.; Machado, C.; Vieira, F.N. Integrated recirculating aquaculture system for mullet and shrimp using biofloc technology. Aquaculture 2019, 512, 734308. [Google Scholar] [CrossRef]
- Pinheiro, I.; Arantes, R.; Santo, C.M.E.; Vieira, F.N.; Lapa, K.R.; Gonzaga, L.V.; Fett, R.; Seiffert, W.Q. Production of the halophyte Sarcocornia ambigua and Pacific white shrimp in an aquaponic system with biofloc technology. Ecol. Eng. 2017, 100, 261–267. [Google Scholar] [CrossRef]
- Avnimelech, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 2007, 264, 140–147. [Google Scholar] [CrossRef]
- Azim, M.E.; Little, D.C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 2008, 283, 29–35. [Google Scholar] [CrossRef]
- Cavalcante, D.H.; Lima, F.R.D.S.; Rebouças, V.T. Nile tilapia culture under feeding restriction in bioflocs and bioflocs plus periphyton tanks. Acta Sci. 2017, 39, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Ostrensky, A.; Boeger, W. Piscicultura: Fundamentos e Técnicas de Manejo, 1st ed.; Livraria e Editora Agropecuária LTDA: Guaíba, Brazil, 1998. (In Portuguese) [Google Scholar]
- Poli, M.A.; Legarda, E.C.; Lorenzo, M.A.; Pinheiro, I.; Martins, M.A.; Seiffert, W.Q.; Vieira, F.N. Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture 2019, 511, 734274. [Google Scholar] [CrossRef]
- Dauda, A.B.; Romano, N.; Ebrahimi, M.; Teh, J.C.; Ajadi, A.; Chong, C.M.; Kamarudin, M.S. Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture 2018, 483, 120–130. [Google Scholar] [CrossRef]
- Rajkumar, M.; Pandey, P.K.; Aravind, R.; Vennila, A.; Bharti, V.; Purushothaman, C.S. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquac. Res. 2016, 47, 3432–3444. [Google Scholar] [CrossRef]
- Oliva-Teles, A. Nutrition and health of aquaculture fish. J. Fish Dis. 2012, 35, 83–108. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Córdova, L.R.; Emerenciano, M.; Miranda-Baeza, A.; Martínez-Porchas, M. Microbial-based systems for aquaculture of fish and shrimp: An updated review. Rev. Aquac. 2015, 7, 131–148. [Google Scholar] [CrossRef]
- Aaronson, S.; Dhawale, S.W.; Patni, N.J.; DeAngelis, B.; Frank, O.; Baker, H. The cell content and secretion of water-soluble vitamins by several freshwater algae. Arch. Microbiol. 1977, 112, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Guedes, A.C.; Malcata, F.X. Nutritional Value and Uses of Microalgae in Aquaculture. In Aquaculture; Muchlisin, Z.A., Ed.; IntechOpen Limited: London, UK, 2012; pp. 59–80. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.M.M. Ação Antimicrobiana e Antioxidante In Vitro das Frações Proteicas da Microalga Scenedesmus obliquus. Master’s Thesis, Graduate Program in Food Science and Technology, Federal University of Ceará, Fortaleza, Brazil, 2016. Available online: http://www.repositorio.ufc.br/handle/riufc/23666 (accessed on 6 June 2022). (In Portuguese with English abstract).
- Avnimelech, Y. Biofloc Technology—A Practical Guidebook, 3rd ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2015. [Google Scholar]
- Cole, J.J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 1982, 13, 291–314. [Google Scholar] [CrossRef]
- Natrah, F.M.I.; Bossier, P.; Sorgeloos, P.; Yusoff, F.M.; Defoirdt, T. Significance of microbial-algal interaction for aquaculture. Rev. Aquac. 2013, 5, 48–61. [Google Scholar] [CrossRef]
- Gurung, T.B.; Urabe, J.; Nkanishi, M. Regulation of the relationship between phytoplankton Scenedesmus acutus and the heterotrophic bacteria by the balance of light and nutrients. Aquat. Microb. Ecol. 1999, 17, 27–35. [Google Scholar] [CrossRef]
Variables | Treatments | |||
---|---|---|---|---|
No Microalgae/No Fish Feed | No Microalgae/with Fish Feed | With Microalgae/No Fish Feed | With Microalgae/with Fish Feed | |
pH | 8.07 ± 0.14 | 8.02 ± 0.16 | 8.02 ± 0.15 | 8.04 ± 0.16 |
Alkalinity (mg CaCO3 L−1) | 157.3 ± 30 | 150.7 ± 31.3 | 159.1 ± 31 | 152.7 ± 31.8 |
Total ammonia-N (mg L−1) | 0.17 ± 0.13 | 0.18 ± 0.12 | 0.16 ± 0.11 | 0.17 ± 0.14 |
Nitrite (N-NO2-) (mg L−1) | 0.61 ± 0.4 | 0.58 ± 0.38 | 0.59 ± 0.38 | 0.62 ± 0.4 |
Nitrate (N-NO3−) (mg L−1) | 19.1 ± 12.3 | 18.5 ± 10.6 | 19.1 ± 11.3 | 19.8 ± 11.8 |
Salinity (g L−1) | 15.5 ± 0.8 | 15.5 ± 1.3 | 15.5 ± 0.8 | 15.5 ± 0.8 |
Ortophosphate (P-PO43−) (mg L−1) | 4.9 ± 3.5 | 5.1 ± 3.7 | 5.2 ± 3.7 | 5.3 ± 3.9 |
TSS (mg L−1) | 476 ± 130 | 473 ± 131 | 480 ± 129 | 484 ± 130 |
Chlorophyll-a (µg mL−1) * | 0.0077 ± 0.0061 | 0.0076 ± 0.0048 | 0.0361 ± 0.0146 | 0.0461 ± 0.0112 |
Variables | Treatments | |||
---|---|---|---|---|
No Microalgae/No Fish Feed | No Microalgae/with Fish Feed | With Microalgae/No Fish Feed | With Microalgae/with Fish Feed | |
Final mean weight (g) | 12.49 ± 0.81 | 12.11 ± 0.39 | 11.88 ± 0.13 | 11.93± 0.73 |
WGR (g week −1) | 1.16 ± 0.08 | 1.13 ± 0.05 | 1.13 ± 0.1 | 1.11 ± 0.03 |
DGC (% day−1) | 1.66 ± 0.07 | 1.62 ± 0.03 | 1.60 ± 0.01 | 1.60 ± 0.06 |
Survival (%) | 73.82 ± 8.37 | 78.43 ± 4.58 | 81.64 ± 3.70 | 79.29 ± 10.33 |
FCR | 2.12 ± 0.17 | 2.04 ± 0.19 | 1.98 ± 0.12 | 2.07 ± 0.23 |
Biomass (kg) | 2.93 ± 0.18 | 3.04 ± 0.21 | 3.1 ± 0.14 | 3.01 ± 0.26 |
Yield (kg m−3) | 3.67 ± 0.22 | 3.8 ± 0.26 | 3.88 ± 0.18 | 3.76 ± 0.33 |
Variables | Fish Feed Addition | Microalgae Addition | Mean | Two-Factor ANOVA | |||
---|---|---|---|---|---|---|---|
No | Yes | ff | m | ff × m | |||
Final mean weight (g) | No | 11.06 ± 0.18 | 11.23 ± 0.51 | 11.15 b ± 0.37 | * | ns | ns |
Yes | 16.49 ± 1.65 | 17.86 ± 2.65 | 17.18 a ± 2.17 | ||||
Mean | 13.77 ± 3.09 | 14.55 ± 3.96 | |||||
DGC (% day−1) | No | 1.69 ± 0.07 | 1.79 ± 0.05 | 1.74 ± 0.08 b | * | ns | ns |
Yes | 2.24 ± 0.12 | 2.36 ± 0.20 | 2.30 ± 0.17 a | ||||
Mean | 1.97 ± 0.29 | 2.07 ± 0.32 | |||||
Survival (%) | No | 81.91 ± 7.86 | 94.14 ± 1.06 | 88.03 ± 8.35 | ns | * | ns |
Yes | 90.42 ± 5.06 | 93.61 ± 2.45 | 92.02 ± 4.06 | ||||
Mean | 86.17 B ± 7.62 | 93.88 A ± 1.77 | |||||
FCR 1 | No | - | - | - | - | ns | - |
Yes | 0.24 ± 0.01 | 0.23 ± 0.02 | - | ||||
Mean | - | - | |||||
Biomass (kg) | No | 0.42 ± 0.04 | 0.49 ± 0.02 | 0.46 b ± 0.05 | * | * | ns |
Yes | 0.69 ± 0.04 | 0.78 ± 0.11 | 0.74 a ± 0.09 | ||||
Mean | 0.56 B ± 0.15 | 0.64 A ± 0.17 |
Variables | Fish Feed Addition | Microalgae Addition | Mean | Two-Factor ANOVA | |||
---|---|---|---|---|---|---|---|
No | Yes | ff | m | ff × m | |||
FCR | No | 1.84 ± 0.08 | 1.68 ± 0.07 | 1.76 b ± 0.11 | * | ns | ns |
Yes | 1.66 ± 0.09 | 1.63 ± 0.09 | 1.65 a ± 0.09 | ||||
Mean | 1.75 ± 0.12 | 1.66 ± 0.08 | |||||
Biomass (kg tank−1) | No | 3.4 ± 0.1 | 3.6 ± 0.1 | 3.5 b ± 0.20 | * | ns | ns |
Yes | 3.7 ± 0.2 | 3.8 ± 0.2 | 3.8 a ± 0.20 | ||||
Mean | 3.6 ± 0.3 | 3.7 ± 0.2 | |||||
Yield (kg m−3) | No | 3.8 ± 0.2 | 4 ± 0.1 | 3.9 b ± 0.20 | * | ns | ns |
Yes | 4.2 ± 0.2 | 4.3 ± 0.2 | 4.2 a ± 0.20 | ||||
Mean | 4.0 ± 0.3 | 4.2 ± 0.2 |
Variables | Treatments | Two-Factor ANOVA | |||||
---|---|---|---|---|---|---|---|
No Microalgae/No Fish Feed | No Microalgae/with Fish Feed | With Microalgae/No Fish Feed | With Microalgae/with Fish Feed | ff | m | ff × m | |
Sludge production (kg tank−1) | 1.01 ± 0.19 | 1.12 ± 0.05 | 1.02 ± 0.09 | 0.98 ± 0.15 | ns | ns | ns |
Sludge: biomass relationship | 0.30 ± 0.05 | 0.30 ± 0.05 | 0.28 ± 0.03 | 0.26 ± 0.05 | ns | ns | ns |
TSS (mg L−1) | 476 ± 130 | 473 ± 131 | 480 ± 129 | 484 ± 130 | ns | ns | ns |
VSS (%) | 47.7 a ± 2.7 | 47.3 a ± 2.4 | 48.1 a,b ± 2.5 | 49.0 b ± 2.4 | ns | * | * |
FSS (%) 1 | 52.7 ± 4.2 | 52.9 ± 2.8 | 51.9 ± 2.5 | 51.0 ± 2.4 | ns | * | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.F.; Pereira, P.K.M.; Martins, M.A.; Lorenzo, M.A.d.; Cella, H.; Lopes, R.G.; Derner, R.B.; Magallón-Servín, P.; Vieira, F.d.N. Effects of Microalgae Addition and Fish Feed Supplementation in the Integrated Rearing of Pacific White Shrimp and Nile Tilapia Using Biofloc Technology. Animals 2022, 12, 1527. https://doi.org/10.3390/ani12121527
Silva VF, Pereira PKM, Martins MA, Lorenzo MAd, Cella H, Lopes RG, Derner RB, Magallón-Servín P, Vieira FdN. Effects of Microalgae Addition and Fish Feed Supplementation in the Integrated Rearing of Pacific White Shrimp and Nile Tilapia Using Biofloc Technology. Animals. 2022; 12(12):1527. https://doi.org/10.3390/ani12121527
Chicago/Turabian StyleSilva, Vitor F., Patriula K. M. Pereira, Mateus A. Martins, Marco A. d. Lorenzo, Herculano Cella, Rafael G. Lopes, Roberto B. Derner, Paola Magallón-Servín, and Felipe d. N. Vieira. 2022. "Effects of Microalgae Addition and Fish Feed Supplementation in the Integrated Rearing of Pacific White Shrimp and Nile Tilapia Using Biofloc Technology" Animals 12, no. 12: 1527. https://doi.org/10.3390/ani12121527