Nutritional Value, Fermentation Characteristics and In Vitro Degradability of Whole Wheat Hay Harvested at Three Stages of Maturity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Whole Wheat Hay Sample Processing
2.2. In Vitro Incubations
2.3. Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Nutrient Content of Whole Wheat Hay
3.2. In Vitro Gas Production of Whole Wheat Hay
3.3. Rumen Fermentation Characteristics of Whole Wheat Hay
3.4. In Vitro Nutrients Disappearance of Whole Wheat Hay
3.5. Correlation Parameters
4. Discussion
4.1. Composition of Whole Wheat Hay at Harvest
4.2. Fermentation Characteristics of Whole Wheat Hay
4.3. In Vitro Degradability of Whole Wheat Hay at Harvest
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ni, K.; Wang, Y.; Cai, Y.; Pang, H. Natural lactic acid bacteria population and silage fermentation of whole-crop wheat. Asian-Australas. J. Anim. Sci. 2015, 28, 1123. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; He, Y.; Xia, C.; Rahman, M.A.U.; Qiu, Q.; Shao, T.; Liang, Y.; Ji, L.; Wang, H.; Cao, B. Effects of replacing Leymus chinensis with whole-crop wheat hay on Holstein bull apparent digestibility, plasma parameters, rumen fermentation, and microbiota. Sci. Rep. 2017, 7, 2114. [Google Scholar] [CrossRef]
- Niu, W.; He, Y.; Wang, H.; Xia, C.; Shi, H.; Cao, B.; Su, H. Effects of Leymus chinensis replacement with whole-crop wheat hay on blood parameters, fatty acid composition, and microbiomes of Holstein bulls. J. Dairy Sci. 2018, 101, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Bikel, D.; Ben-Meir, Y.A.; Shaani, Y.; Solomon, R.; Richker, I.; Portnik, Y.; Jacoby, S.; Miron, J.; Ben-David, R. Nutritive value for high-yielding lactating cows of barley silage and hay as a substitute for wheat silage and hay in low-roughage diets. Anim. Feed Sci. Technol. 2020, 265, 114498. [Google Scholar] [CrossRef]
- Higgins, J.T.; Campion, D.; Jones, J.; Lott, S.; Lynch, M.B.; McEvoy, M.; McGovern, F.; Boland, T.M. Examining the effects of whole crop wheat silage on ewe performance during late gestation compared to traditional grass silage across three prolific breed types. Animals 2020, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Udén, P. Fresh and ensiled forage plants—total composition, silage losses and the prediction of silage composition from the crop. Grass Forage Sci. 2018, 73, 420–431. [Google Scholar] [CrossRef]
- Miyaji, M.; Matsuyama, H.; Nonaka, K. Effect of ensiling process of total mixed ration on fermentation profile, nutrient loss and in situ ruminal degradation characteristics of diet. Anim. Sci. J. 2017, 88, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Haselmann, A.; Wenter, M.; Fuerst-Waltl, B.; Zollitsch, W.; Zebeli, Q.; Knaus, W. Comparing the effects of silage and hay from similar parent grass forages on organic dairy cows’ feeding behavior, feed intake and performance. Anim. Feed Sci. Technol. 2020, 267, 114560. [Google Scholar] [CrossRef]
- Shaani, Y.; Nikbachat, M.; Yosef, E.; Ben-Meir, Y.; Mizrahi, I.; Miron, J. Effect of feeding long or short wheat hay v. wheat silage in the ration of lactating cows on intake, milk production and digestibility. Animal 2017, 11, 2203–2210. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Ge, G.; Liu, Y.; Wang, W.; Liu, L.; Jia, Y. Proteomics integrated with metabolomics: Analysis of the internal causes of nutrient changes in alfalfa at different growth stages. BMC Plant Biol. 2018, 18, 1–15. [Google Scholar] [CrossRef]
- Sarepoua, E.; Tangwongchai, R.; Suriharn, B.; Lertrat, K. Influence of variety and harvest maturity on phytochemical content in corn silk. Food Chem. 2015, 169, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Mu, X.; Chen, F.; Yuan, L.; Mi, G. Dynamic change of mineral nutrient content in different plant organs during the grain filling stage in maize grown under contrasting nitrogen supply. Eur. J. Agron. 2016, 80, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Holland, C.; Ryden, P.; Edwards, C.H.; Grundy, M.M.L. Plant cell walls: Impact on nutrient bioaccessibility and digestibility. Foods 2020, 9, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randby, Å.T.; Nadeau, E.; Karlsson, L.; Johansen, A. Effect of maturity stage at harvest and kernel processing of whole crop wheat silage on digestibility by dairy cows. Anim. Feed Sci. Technol. 2019, 253, 141–152. [Google Scholar] [CrossRef]
- Yang, W.Z. Factors affecting rumen fermentation using batch culture technique. Ferment. Processes InTech 2017, 5, 77–92. [Google Scholar]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.L.; Zhang, T.F.; Chen, X.Z.; Li, G.D.; Zhang, J.G. Effects of maturity stages on the nutritive composition and silage quality of whole crop wheat. Asian-Australas. J. Anim. Sci. 2012, 25, 1374. [Google Scholar] [CrossRef]
- Wallsten, J.; Hatfield, R. Cell wall chemical characteristics of whole-crop cereal silages harvested at three maturity stages. J. Sci. Food Agric. 2016, 96, 3604–3612. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.Z.; Ran, T.; Saleem, A.M.; Wang, H.R.; Yang, W.Z. Ground corn steeped in citric acid modulates in vitro gas production kinetics, fermentation patterns and dry matter digestibility. Anim. Feed Sci. Technol. 2019, 247, 9–14. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Ørskov, E.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kirk, T.K.; Obst, J.R. Lignin determination. Methods Enzymol. 1988, 161, 87–101. [Google Scholar]
- Hall, M.B. Determination of starch, including maltooligosaccharides, in animal feeds: Comparison of methods and a method recommended for AOAC collaborative study. J. AOAC Int. 2009, 92, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.; Kang, J. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Cotta, M.A.; Russell, J.B. Effect of Peptides and Amino Acids on Efficiency of Rumen Bacterial Protein Synthesis in Continuous Culture. J. Dairy Sci. 1982, 65, 226–234. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Ding, L.Y.; Chen, L.M.; Xu, J.H.; Zhao, R.; Yang, W.Z.; Wang, H.R.; Wang, M.Z. Feeding corn grain steeped in citric acid modulates rumen fermentation and inflammatory responses in dairy goats. Animal 2019, 13, 301–308. [Google Scholar] [CrossRef]
- Rhine, E.D.; Mulvaney, R.L.; Pratt, E.J.; Sims, G.K. Improving the Berthelot reaction for determining ammonium in soil extracts and water. Soil Sci. Soc. Am. J. 1998, 62, 473–480. [Google Scholar] [CrossRef]
- Rosser, C.L.; Beattie, A.D.; Block, H.C.; McKinnon, J.J.; Lardner, H.A.; Górka, P.; Penner, G.B. Effects of the frequency of forage allocation and harvest maturity of whole-crop oat forage on dry matter intake and ruminal fermentation for beef heifers. Prof. Anim. Sci. 2017, 33, 85–91. [Google Scholar] [CrossRef]
- Wrobel, F.L.; Neumann, M.; Leão, G.F.M.; Horst, E.H.; Ueno, R.K.; Carneiro, M.K.; Perussolo, L.F. Características produtivas e nutricionais do feno de trigo cultivado em dois níveis de adubação nitrogenada e estádios de colheita. Arq. Bras. De Med. Veterinária E Zootec. 2017, 69, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, C.; Wan, G.; Lei, M.; Chi, M.; Wang, S.; Min, D. Solar light induced synthesis of silver nanoparticles by using lignin as a reductant, and their application to ultrasensitive spectrophotometric determination of mercury (II). Microchim. Acta 2019, 186, 727. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Allakhverdiev, S.I.; Murata, N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol. Plant. 2011, 142, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Ronga, D.; Dal Prà, A.; Immovilli, A.; Ruozzi, F.; Davolio, R.; Pacchioli, M.T. Effects of harvest time on the yield and quality of winter wheat hay produced in Northern Italy. Agronomy 2020, 10, 917. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Crump, P.M.; Shaver, R.D. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J. Dairy Sci. 2013, 96, 533–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Bu, D.; Wang, J.; Zhou, X.; Zhu, D.; Zhang, T.; Niu, J.; Ma, L. Milk production and composition responds to dietary neutral detergent fiber and starch ratio in dairy cows. Anim. Sci. J. 2016, 87, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Stirbet, A.; Lazár, D.; Guo, Y.; Govindjee, G. Photosynthesis: Basics, history and modelling. Ann. Bot. 2020, 126, 511–537. [Google Scholar] [CrossRef] [PubMed]
- Getachew, G.; Laca, E.A.; Putnam, D.H.; Witte, D.; McCaslin, M.; Ortega, K.P.; DePeters, E.J. The impact of lignin downregulation on alfalfa yield, chemical composition, and in vitro gas production. J. Sci. Food Agric. 2018, 98, 4205–4215. [Google Scholar] [CrossRef]
- Maccarana, L.; Cattani, M.; Tagliapietra, F.; Bailoni, L.; Schiavon, S. Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J. Anim. Sci. Biotechnol. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Krieg, J.; Seifried, N.; Steingass, H.; Rodehutscord, M. In situ and in vitro ruminal starch degradation of grains from different rye, triticale and barley genotypes. Animal 2017, 11, 1745–1753. [Google Scholar] [CrossRef]
- Schwaiger, T.; Beauchemin, K.A.; Penner, G.B. The duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: Dry matter intake and ruminal fermentation. J. Anim. Sci. 2013, 91, 5729–5742. [Google Scholar] [CrossRef]
- Hristov, A.N.; Ropp, J.K.; Hunt, C.W. Effect of barley and its amylopectin content on ruminal fermentation and bacterial utilization of ammonia-N in vitro. Anim. Feed Sci. Technol. 2002, 99, 25–36. [Google Scholar] [CrossRef]
- Njokweni, S.G.; Weimer, P.J.; Botes, M.; van Zyl, W.H. Effects of preservation of rumen inoculum on volatile fatty acids production and the community dynamics during batch fermentation of fruit pomace. Bioresour. Technol. 2021, 321, 124518. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Wang, R.; Xie, T.Y.; Janssen, P.H.; Sun, X.Z.; Beauchemin, K.A.; Tan, Z.L.; Gao, M. Shifts in rumen fermentation and microbiota are associated with dissolved ruminal hydrogen concentrations in lactating dairy cows fed different types of carbohydrates. J. Nutr. 2016, 146, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.G.; Li, X.Y.; Wang, Y.Y.; Li, Z.Z.; Chen, Y.L.; Yang, Y.X. Determination of ruminal dry matter and crude protein degradability and degradation kinetics of several concentrate feed ingredients in cashmere goat. J. Appl. Anim. Res. 2017, 46, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Al-Arif, M.A.; Suwanti, L.T.; Estoepangestie, A.S.; Lamid, M. The nutrients contents, dry matter digestibility, organic matter digestibility, total digestible nutrient, and NH3 rumen production of three kinds of cattle feeding models. KnE Life Sci. 2017, 3, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, L.; Yang, J.; Zhang, W.; Wang, Q.; Zhang, J.; Xin, J.; Chen, S. Study on the nutritional value and ruminal degradation characteristics of fermented waste vinegar residue by N. sitophila. Trop. Anim. Health Prod. 2019, 51, 1449–1454. [Google Scholar] [CrossRef]
- Yu, P.; Christensen, D.A.; McKinnon, J.J.; Markert, J.D. Effect of variety and maturity stage on chemical composition, carbohydrate and protein subfractions, in vitro rumen degradability and energy values of timothy and alfalfa. Can. J. Anim. Sci. 2003, 83, 279–290. [Google Scholar] [CrossRef]
- Lin, W.; Yang, J.; Zheng, Y.; Huang, C.; Yong, Q. Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility. Biotechnol. Biofuels 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Chen, Y.; Solomon, R. The quality of commercial wheat silages in Israel. J. Dairy Sci. 2009, 92, 638–644. [Google Scholar] [CrossRef] [Green Version]
Items 1 | Flowering Stage | Late Milk Stage | Dough Stage | SEM | p |
---|---|---|---|---|---|
NEL (MJ/kg) | 1.36 | 1.44 | 1.45 | 0.098 | 0.78 |
CP (%) | 11.44 | 10.78 | 10.50 | 0.358 | 0.49 |
EE (%) | 2.99 | 2.71 | 2.25 | 0.173 | 0.06 |
NDF (%) | 51.09 a | 40.98 b | 32.95 c | 1.111 | <0.01 |
ADF (%) | 28.79 a | 22.82 b | 17.17 c | 0.874 | <0.01 |
ADL (%) | 4.31 a | 3.50 ab | 3.02 b | 0.192 | <0.01 |
ADL/NDF | 8.43 | 8.53 | 9.16 | 0.187 | 0.19 |
NFC (%) | 23.70 b | 34.66 a | 35.63 a | 1.010 | <0.01 |
Starch/NFC | 25.68 c | 54.80 b | 70.01 a | 0.882 | <0.01 |
Items 1 | Flowering Stage | Late Milk Stage | Dough Stage | SEM | p |
---|---|---|---|---|---|
GP3h (mL/0.5g DM) | 7.5 b | 8.31 b | 9.94 a | 0.272 | <0.01 |
GP6h (mL/0.5g DM) | 14.99 b | 18.93 a | 20.58 a | 0.496 | <0.01 |
GP12h (mL/0.5g DM) | 26.42 c | 35.70 b | 40.13 a | 0.483 | <0.01 |
GP24h (mL/0.5g DM) | 42.39 c | 57.55 b | 67.09 a | 0.582 | <0.01 |
GP36h (mL/0.5g DM) | 60.23 c | 74.79 b | 88.37 a | 0.470 | <0.01 |
GP48h (mL/0.5g DM) | 73.56 c | 87.06 b | 100.86 a | 0.626 | <0.01 |
GP72h (mL/0.5g DM) | 86.85 c | 100.63 b | 114.40 a | 0.709 | <0.01 |
a + b (mL/0.5g DM) | 113.02 b | 113.06 b | 126.81 a | 1.531 | <0.01 |
c (/h) | 0.020 c | 0.030 b | 0.033 a | 0.0005 | <0.01 |
Items 1 | Flowering Stage | Late Milk Stage | Dough Stage | SEM | p |
---|---|---|---|---|---|
pH | 6.56 ab | 6.64 b | 6.52 b | 0.008 | 0.03 |
NH3-N (mg/dL) | 11.99 | 11.73 | 11.98 | 0.366 | 0.83 |
MCP (mgN/dL) | 4.83 | 5.48 | 4.65 | 0.249 | 0.07 |
TVFA (mmol/mL) | 70.55 c | 84.30 b | 87.14 a | 0.424 | <0.01 |
Acetate (%) | 59.08 a | 53.47 b | 50.88 c | 0.174 | <0.01 |
Propionate (%) | 24.94 c | 29.40 b | 32.96 a | 0.273 | <0.01 |
Butyrate (%) | 11.72 b | 12.39 b | 13.29 a | 0.184 | <0.01 |
Acetate/Propionate | 2.37 a | 1.82 b | 1.54 c | 0.027 | <0.01 |
Items 1 | Flowering Stage | Late Milk Stage | Dough Stage | SEM | p |
---|---|---|---|---|---|
DML (%) | 57.93 b | 63.49 a | 59.77 b | 0.500 | <0.01 |
NDFL (%) | 52.19 a | 51.57 a | 50.20 b | 0.278 | 0.01 |
ADFL (%) | 53.17 a | 53.04 a | 47.54 b | 0.425 | <0.01 |
Items 1,2 | NEL | CP | EE | NDF | ADF | ADL/NDF | NFC | Starch/NFC |
---|---|---|---|---|---|---|---|---|
GP72h | 0.277 | −0.429 | −0.782 ** | −0.980 ** | −0.951 ** | 0.575 * | 0.858 ** | 0.981 ** |
pH | −0.133 | 0.413 | 0.907 ** | 0.794 ** | 0.728 ** | −0.561 * | −0.769 ** | −0.813 ** |
NH3-N | −0.201 | −0.392 | −0.144 | 0.084 | −0.014 | 0.133 | −0.197 | −0.009 |
MCP | −0.034 | 0.006 | −0.071 | 0.089 | 0.144 | −0.320 | 0.125 | −0.002 |
Acetate | 0.239 | −0.354 | −0.574 * | −0.738 ** | −0.646 ** | 0.109 | 0.859 ** | 0.784 ** |
Propionate | 0.238 | −0.467 | −0.789 ** | −0.966 ** | −0.934 ** | 0.567 * | 0.929 ** | 0.987 ** |
Butyrate | 0.257 | −0.506 | −0.672 ** | −0.949 ** | −0.954 ** | 0.505 * | 0.887 ** | 0.980 ** |
TVFA | 0.252 | −0.470 * | −0.754 ** | −0.954 ** | −0.915 ** | 0.480 * | 0.945 ** | 0.983 ** |
Acetate/Propionate | −0.227 | 0.469 * | 0.779 ** | 0.944 ** | 0.929 ** | −0.608 ** | −0.931 ** | −0.980 ** |
DML | 0.132 | −0.176 | −0.118 | −0.380 | −0.319 | −0.015 | 0.701 ** | 0.450 |
NDFL | −0.068 | 0.492 * | 0.593 ** | 0.853 ** | 0.908 ** | −0.520 * | −0.757 ** | −0.823 ** |
ADFL | −0.140 | 0.306 | 0.767 ** | 0.819 ** | 0.792 ** | −0.618 ** | −0.591 ** | −0.750 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, X.; Yang, M.; Saleem, A.M.; Zhao, X.; Xu, H.; Li, Y.; Xu, R.; Cao, J.; Xu, C.; Cui, Y.; et al. Nutritional Value, Fermentation Characteristics and In Vitro Degradability of Whole Wheat Hay Harvested at Three Stages of Maturity. Animals 2022, 12, 1466. https://doi.org/10.3390/ani12111466
Lang X, Yang M, Saleem AM, Zhao X, Xu H, Li Y, Xu R, Cao J, Xu C, Cui Y, et al. Nutritional Value, Fermentation Characteristics and In Vitro Degradability of Whole Wheat Hay Harvested at Three Stages of Maturity. Animals. 2022; 12(11):1466. https://doi.org/10.3390/ani12111466
Chicago/Turabian StyleLang, Xiaochen, Meng Yang, Atef M. Saleem, Xiaojing Zhao, Hua Xu, Yan Li, Ruiting Xu, Jiaqiu Cao, Congcong Xu, Yushan Cui, and et al. 2022. "Nutritional Value, Fermentation Characteristics and In Vitro Degradability of Whole Wheat Hay Harvested at Three Stages of Maturity" Animals 12, no. 11: 1466. https://doi.org/10.3390/ani12111466